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A B S T R A C T   

Transmission of foodborne pathogens by plants, especially shiga toxin-producing Escherichia coli, has become a 
public health concern for ready-to-eat products. Due to the patchy distribution of foodborne pathogens on 
commodities, random sampling before processing and following packaging cannot reliably exclude presence of 
pathogenic microbes. Robust, cost-effective, and reliable methods for monitoring pathogenic E. coli on fresh 
produce are therefore urgently needed. We investigated whether volatile organic compounds are suitable for 
detection of E. coli O157:H7 contamination of leafy vegetables. Using solid-phase microextraction coupled with 
gas chromatography-mass spectrometry, we analyzed volatilomes of spinach (Spinacia oleracea L.) and rocket 
(Eruca sativa L.) leaf lysates, and of a common culture medium (lysogeny broth), in the presence and absence of 
E. coli O157:H7. Volatile profiles varied with the nutrient medium. We found higher proportions of indole, 
phenylmethanol, 2-methoxyphenol, ethanol, propan-1-ol, decan-1-ol, tridecan-1-ol, nonan-2-one and tridecan-2- 
one in headspace from inoculated compared with non-inoculated samples. This demonstrates that volatile 
organic compounds are suitable for detecting contamination of leafy vegetables with E. coli O157:H7. In future 
work we will focus on adapting the volatile assay for screening for E. coli O157:H7 contamination under different 
conditions, including intact and damaged baby leaves, leaf packages, or leaf batches, and on increasing its 
sensitivity.   

1. Introduction 

Shigatoxigenic Escherichia coli O157:H7 (STEC) is an important 
foodborne pathogen, causing foodborne illness at a very low infectious 
dose of only 10–100 cells (EFSA, 2013). Although the primary reservoir 
appears to be ruminants (WHO, 2018), STEC uses plants as vectors for 
transmission (Barak & Schroeder, 2012; Holden et al., 2009), and is 
hence spread in the food chain via edible plants (Holden et al., 2015; 
Slayton et al., 2013; Söderström et al., 2008). Between 1999 and 2019, 
around 44 outbreaks of microbial infections related to consumption of 
fresh produce were recorded in the European Union, with 64% of the 
cases linked to consumption of contaminated vegetables and salads 
(Aiyedun et al., 2020). Contamination of leafy vegetables with enteric 
pathogens can occur in the entire value chain, and different sources of 
contamination and routes of transmission have been identified (Beuchat, 

2002; Castro-Ibáñez et al., 2017; Gil et al., 2015; Julien-Javaux et al., 
2019; Mogren et al., 2018). 

Although of enteric origin, foodborne pathogens survive epiphyti-
cally on plant surfaces and endophytically in plant tissue (Erickson, 
2012; Hartmann et al., 2017; Hirano & Upper, 1983; Merget et al., 2019; 
Mulaosmanovic et al., 2021; Wright et al., 2017). In general, the ca-
pacity of human pathogens to colonize, grow, and internalize plant 
tissue depends on numerous biotic and abiotic factors, such as (i) plant 
physiology (e.g., leaf age, morphology) (Brandl & Amundson, 2008); (ii) 
interactions with resident microorganisms, which may either promote 
or inhibit establishment of enteric pathogens (Cooley et al., 2006); (iii) 
leaf tissue damage (Mulaosmanovic et al., 2021); (iv) temperature 
(Merget et al., 2019), and (v) ability of the pathogen to overcome plant 
defenses (Schikora et al., 2008; Spoel & Dong, 2012). As endophytes, 
enteric pathogens may have better access to plant nutrients and are less 
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exposed to environmental fluctuations in the phylloplane (Quilliam 
et al., 2012). Importantly, internalized foodborne pathogens are pro-
tected against rinse water and sanitizers (Lanciotti et al., 2003; Shirron 
et al., 2009). 

Consumption of spinach (Spinaca oleracea L.) and rocket (Eruca sativa 
L.) baby leaves and of other leafy vegetables is increasing (Betts, 2014). 
Consumer demand for leafy vegetables has resulted in an increase in 
global production of spinach from 4.1 million tons in 1990 to 27.3 
million tons in 2018 (FAO/WHO, 2008). Since leafy greens are eaten 
raw and without any decontamination step between farm and fork, 
maintaining product safety during production, harvesting, and 
post-harvest handling is essential. This is challenging due to multiple 
steps along the leafy vegetables value chain where contamination can 
occur (Gil et al., 2015; López-Gálvez et al., 2009; Mogren et al., 2018), 
and due to cumulative damage to leaf tissue from field to bag 
(Mulaosmanovic et al., 2021). Classical methods for bacterial di-
agnostics are well established and reliable, but have certain limitations, 
e.g., they are destructive, costly, and require expertise (Ratiu et al., 
2017). Development of robust, non-destructive, fast, efficient, timely, 
sensitive, and cost-effective analytical techniques that continuously 
monitor food safety is therefore of particular interest. 

Volatile organic compounds (VOCs) released from plants can signal 
food aroma and quality (Lytou et al., 2019; Mastrandrea et al., 2017; 
Raffo et al., 2021), but may also include compounds suitable for moni-
toring food safety (Chen et al., 2017; Fang et al., 2021). Solid phase 
microextraction (SPME), combined with gas chromatography-mass 
spectrometry (GC-MS) is a frequently used method for analysis of 
VOCs from food and microorganisms (Spietelun et al., 2013; Zhang & Li, 
2010). The ensemble of VOCs emitted from an organism or food matrix, 
including VOCs emitted from microbial metabolic activity, is termed the 
volatilome (Casaburi et al., 2015). Volatilomics, within the field of 
metabolomics, has already been employed for detection, characteriza-
tion, and quantification of volatile metabolites in food science (Bonah 
et al., 2019, 2020; Castro-Puyana & Herrero, 2013; Chen et al., 2016, 
2017; Fang et al., 2021; Fitzgerald et al., 2020; Kai, 2020; Lytou et al., 
2019; Mastrandrea et al., 2017; Raffo et al., 2018, 2020, 2021; Ramír-
ez-Guízar et al., 2017; Ratiu et al., 2020; Spadafora et al., 2020; Yu et al., 
2015 and references therein). It is used primarily in assessment of 
quality and food safety. In general, VOC profiles are affected by pro-
duction site, season, storage conditions, or different nutritional regimes, 
and hence different batches of the same product will exhibit distinctly 
different profiles (Lytou et al., 2019; Santos & Oliveira, 2017). 

Bacteria produce blends of mainly alkenes, alcohols, ketones, and 
terpenes (Farré-Armengol et al., 2016), released as primary metabolites 
during growth, and as secondary metabolites that serve as signaling 
molecules and protection against antagonists (Kai et al., 2009; Schulz & 
Dickschat, 2007). Further, some microbial VOCs are specific to micro-
bial species, growth substrate, and environmental factors (Minerdi et al., 
2009; Zhang et al., 2015). SPME has been widely used to monitor the 
chemical signature of bacterial metabolites from e.g., Escherichia coli 
(Chen et al., 2017; Fang et al., 2021; Fitzgerald et al., 2020; Hamil-
ton-Kemp et al., 2005; Hossain et al., 2013), Listeria monocytogenes 
(Chen et al., 2017; Tait et al., 2014; Yu et al., 2015), Salmonella typhi-
murium (Fang et al., 2021), Staphylococcus aureus (Chen et al., 2017; 
Fitzgerald et al., 2020), and Pseudomonas aeruginosa (Fitzgerald et al., 
2020). Some VOCs emitted by bacteria have been shown to be 
species-specific and are therefore being considered as biomarkers for 
bacterial detection (Chen et al., 2017; Fang et al., 2021; Kai et al., 2009; 
Schulz & Dickschat, 2007; Sohrabi et al., 2014). Indole has been indi-
cated as a diagnostic marker for identification of different members of 
the Enterobacteriaceae, including E. coli, and seems to act as an extra-
cellular signal of biofilm formation (Di Martino et al., 2003; Wang et al., 
2001). Bacterial volatiles may differ in occurrence and abundance 
depending on whether the bacteria are incubated on culture medium or 
food matrices (Fang et al., 2021). To fully identify bacterial volatiles 
associated with food, food substrates rather than growth medium should 

be used for fingerprinting studies of bacterial volatiles. 
The aim of this study was to examine the possibility to use headspace 

analysis as a simple and efficient method to detect E. coli O157:H7 
contamination in leaf lysates. Changes in volatilomes in the presence of 
E. coli O157:H7 were studied in vitro under gnotobiotic conditions, using 
sterile-filtered leaf lysates of spinach and rocket, with microbiological 
nutrient broth as a control. 

2. Material and methods 

2.1. Leaf lysate extractions 

Six batches of washed and packaged ready-to-eat baby leaves of 
spinach (Spinacia oleracea L.) and rocket (Eruca sativa L.), obtained from 
commercial suppliers, were used for the experiments. For lysate 
extraction, 25 g of leaves were rapidly macerated on ice using a mortar 
and pestle. The macerated samples were placed in filter bags (Separator 
400, Blender Bags, 180 mm × 300 mm x 65 μm, Grade, England) 
together with 50 mL of 0.85% NaCl (VWR, Belgium). The mixture was 
homogenized in a smasher (AES Laboratoire, Chemunex, France) for 2 
min in fast mode. The lysate obtained was centrifuged (Blackman 
Coulter Avanti J-20, USA, 5000×g, 10 min, 4 ◦C) and the supernatant 
was immediately filter-sterilized (pore size: 0.22 μm, Acrodisc Syringe 
Filters, Pall Corporation, USA). Finally, 10-mL aliquots of lysate were 
transferred to triplicate sterile centrifugation tubes (Eppendorf, 13 mL). 

2.2. Preparation of inoculated and non-inoculated samples 

Escherichia coli O157:H7 (strain register no. E81186, obtained from 
the Swedish Institute for Communicable Disease Control (SMI), Stock-
holm, Sweden), which is negative for verotoxin-1 and verotoxin-2, but 
positive for the eae-gene, was used for inoculation. This strain is tagged 
with green fluorescence protein (GFP), which is expressed when the 
strain is grown in the presence of 0.1% L-arabinose, and is resistant to 
ampicillin . For the inoculation experiments, E. coli O157:H7 from 
glycerol stocks (stored at − 80 ◦C) was grown overnight at 37 ◦C in 
lysogenic broth (LB) (Sigma-Aldrich St. Louis, USA) supplemented with 
100 μg/mL ampicillin (Sigma-Aldrich Steinheim, Belgium), on a rotary 
shaker (Minispin rotary shaker; VWR International AB, Stockholm, 
Sweden) at 180 rpm. The inoculated broth was centrifuged (3000×g at 
4 ◦C for 15 min), and the cells were washed with 0.85% NaCl and re- 
suspended with 0.085% NaCl. Cell density was adjusted by adding 
NaCl (0.085%) to an optical density at 620 nm (OD620) of 1.0, corre-
sponding to log 9.7 CFU mL− 1 (Expert 96™ spectrophotometer; Asy-
sHiTech, Eugendorf, Austria) (El-Mogy and Alsanius, 2012). The final 
concentration of the inoculum suspension was set to log 7.7 CFU mL− 1 of 
E. coli O157:H7 in 0.085% NaCl. Aliquots of 100 μL of the inoculum were 
transferred to two of three sterile tubes containing 10 mL spinach or 
rocket lysate (see above) or 10 mL of LB. The third non-inoculated tube 
of lysate or LB served as a control. The inoculum strength in each tube 
was verified through serial dilution (10− 1-10− 4) and plating on LB 
supplemented with ampicillin (100 μg/mL agar) and L-arabinose (1.0 g 
L− 1 agar, Merck KGaA, Darmstadt, Germany) and solidified with 15 g/L 
of Bacto agar (DIFCO, Becton, Dickinson and Company, Sparks, USA). 
All tubes were sealed with parafilm and incubated at 37 ◦C for 72 h. 

2.3. E. coli O157:H7 proliferation 

The propagation of E. coli O157:H7 was followed on three nutrient 
media (n = 6). Duplicate tubes of LB, spinach lysate, and rocket lysate 
were all inoculated with log 4 CFU mL − 1 cells mL− 1 and incubated at 
37 ◦C for 72 h. Samples were taken after 24, 48, and 72 h, diluted, and 
plated on LB solidified with 15 g/L Bacto agar and supplemented with 
100 μg/mL ampicillin and 0.1% L-arabinose. 
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2.4. SPME headspace collection and GC-MS analysis 

Headspace solid-phase microextraction (HS-SPME) coupled with gas 
chromatography-mass spectrometry (GC-MS) was used to study volatile 
emissions from sterile or inoculated samples of LB, spinach lysate, or 
rocket lysate after 24, 48, and 72 h of incubation. For HS-SPME, a 
divinylbenzene (DVB)/carboxen (CAR) on polydimethylsiloxane 
(PDMS) coating stable fiber (Supelco, 50/30 μM), preconditioned ac-
cording to the manufacturer’s instructions, was used. The HS-SPME fiber 
was exposed to the headspace of each tube for 1 h by manually pene-
trating the parafilm covering the tubes. After collection, volatiles were 
analyzed by GC-MS (7890 GC and 5972 MS, Agilent Technologies Inc., 
Santa Clara, CA, USA) operated in splitless mode (30 s, injector tem-
perature 225 ◦C). The GC was equipped with a fused silica capillary 
column (60 m by 0,25 mm; df = 0.25 μm), DB-Wax (J&W Scientific, 
Folsom, CA, USA). The GC oven temperature was programmed from 
30 ◦C (3-min hold) and 8 ◦C/min to 225 ◦C (10-min hold). Helium was 
used as the mobile phase, at an average linear flow of 35 cm/s. The MS 
was operated in electron impact ionization mode at 70 eV and scan 
range over 29–400 m/z. The temperature of the ion source and con-
necting parts was set to 230 ◦C and 150 ◦C, respectively. Compounds 
were identified according to their retention time (Kovat’s indices) and 
by comparing mass spectra against the mass spectral library of the Na-
tional Institute of Standards and Technology (NIST, v 20) and authentic 
standards. 

2.5. Statistical analysis 

All statistical analyses were performed in R studio (version 1.3.959) 
(RStudio, 2020). Relative percentage of compounds was plotted using 
ggplot from the package ggplot2 (Wickham et al., 2016). 

To test for significant differences between i) overall volatile profiles 
collected from the different treatments (inoculated and non-inoculated 
LB, spinach lysate, and rocket lysate) and ii) overall volatile profiles 
from inoculated samples over time, we used permutational multivariate 
analysis of variance (PERMANOVA, based on Bray-Cutis distances 
calculated from amount of compounds, 999 permutations). We used 
pairwise PERMANOVA with Bonferroni correction for multiple testing, 
with the functions adonis and pairwise.factorfit from the vegan package 

(Oksanen et al., 2013). To identify groups of compounds present in 
higher relative percentages in one treatment or substrate compared with 
the others, we applied the multi-level pattern analyses multipatt function 
from the indicspecies package (De Cáceres et al., 2010). To visualize the 
overall data collected, we applied principal component analysis (PCA) 
from the package ade4, using the function fviz_pca_ind (Oksanen et al., 
2015). We examined relationships between volatile components using 
partial distance-based redundancy analysis (dbRDA), with the capscale 
function of the vegan package (Oksanen et al., 2015). Compounds 
contributing to separation based on medium were omitted. Model 
verification was based on permutation tests for the partial dbRDA 
model, CAP axes and explanatory variables, using the anova.cca function 
from the vegan package (Oksanen et al., 2015). 

3. Results and discussion 

3.1. Proliferation of E. coli O157:H7 on different nutritional media 

The effect of the three nutritional media (LB, spinach lysate, rocket 
lysate) on growth of E. coli O157:H7 is shown in Fig. 1. Lower growth 
rate and faster decline were observed when E. coli O157:H7 was prop-
agated on rocket lysate, compared with LB and spinach lysate. In LB and 
spinach lysate, cell numbers increased significantly, from 104 to 107 

CFU/mL, within the first 24 h of observation and the population then 
remained quite stable until 72 h. In rocket lysate, there was an increase 
in cell numbers from 104 to 106 CFU/mL during the first 24 h, after 
which viable counts decreased over the remaining observation time. 
This decrease was corroborated by considerable deviation between 
replicates, mainly at 72 h. Moreover, we observed differences in the size 
of E. coli O157:H7 colonies between the three solidified nutritional 
media, with rocket lysate-based medium exhibiting reduced colony size 
(Fig. 1). Rocket is considered a valuable source of nitrates and antioxi-
dants, as it contains phenolic compounds and their degradation products 
(Villatoro-Pulido et al., 2012). Additionally, in-vitro inhibitory action 
has been reported for rocket leaf water extract against E. coli and 
Staphylococcus aureus (Qaddoumi & El-Banna, 2019) and Clostridium 
perfringens (Martínez et al., 2019). It is unclear whether the reduced 
number of viable counts on solidified rocket lysates seen in our study 
was due to a switch to viable, but not culturable, cells or persistter cells, 

Fig. 1. Growth curves (log CFU+1/mL) and colony size of E. coli O157:H7 in solidified LB, spinach lysate, and rocket lysate. Each point represents the mean bacterial 
concentration in six replicate cultures, bars indicate the standard deviation. Colony size was determined microscopically (LEICA M165FC). 
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or whether it was a consequence of the compound composition in rocket 
lysate medium. It is intriguing to speculate about interactions between 
E. coli and the green leaf volatile (E)-hex-2-enal, a compound with 
known antimicrobial properties (Hatanaka et al., 1987; Patrignani et al., 
2008), found in rocket lysate. According to Patrignani et al. (2008), 
(E)-hex-2-enal can induce noticeable modifications in bacteria VOCs 
production and on cell membranes. How it exerts these antimicrobial 
properties is not yet clear, but it has been reported that the compound 
can permeate bacterial membranes and, once inside the cell, react with 
biologically important structures (Kubo & Fujita, 2001). 

3.2. Volatilomes of sterile and E. coli O157:H7 inoculated samples 

We investigated the occurrence and relative abundance of VOCs 
emitted from the three different nutritional media, non-inoculated and 
inoculated, under the same experimental conditions (n = 6). By 
comparing volatilomes, it was possible to differentiate between nutri-
tional media and also between samples with and without E. coli O157: 
H7. A total of 46 compounds were found in the headspace collections 
from sterile or inoculated samples after 24, 48, and 72 h (Fig. 2, Sup-
plementary Table S1). The overall volatile profiles differed significantly 
between the three nutritional media used and between non-inoculated 
and inoculated samples, both overall (PERMANOVA on all percentage 
composition data, P = 0.001) and in pairwise comparisons (pairwise 
PERMANOVA with Bonferroni correction, P = 0.001). A significant effect 
of the nutritional media was confirmed by the PCA plots, where prin-
cipal component 1 (PC1) discriminated according to the type of medium 
(14.2%), while PC2 discriminated between non-inoculated and inocu-
lated samples (13%) (Fig. 3A and B). 

The volatiles emitted from the three different non-inoculated nutri-
tional media also differed. In the absence of E. coli O157:H7, LB head-
space comprised of only a few compounds, dominated by benzaldehyde, 
undecan-2-one, phenol, butan-1-ol, 2,5-dimethyl pyrazine, and two 
unidentified compounds (Fig. 2, Supplementary Table S1). The volatile 
profiles emitted from the non-inoculated leaf lysate were rich in green 
leaf alcohols and aldehydes, but spinach lysate differed from rocket 
lysate in terms of VOCs produced. Spinach lysate had significantly 
higher proportions of phenol, pentan-1-ol, hexen-1-ol, and 1-methyl-4- 
propan-2-yl benzene, while rocket lysate contained significantly more 
2-ethyl furan, (E)-hex-3-en-1-ol, and (E)-hex-2-enal (P < 0.01, Multi-
patt) (Fig. 2). In addition, compounds such as unknown 2, heptan-1-ol, 
octen-1-en-3-ol, 2-hydrobenzoaldehyde, 2-phenyacetaldehyde and (E)- 
4-(2,6,6-trimethylcyclohex-2-en-yl)but-3-en-2-one were only found in 
spinach lysate, while trisulfide dimethyl, 3-ethyl thiophene, 2-methoxy- 
4-propan-2-ylphenol, 1,3-ditert-butylbenzene, 1-penten-3-ol, (Z)-pent- 
2-en-1-ol, (Z)-hex-2-en-1-ol and (2E,4E)-hexadienal were only found in 
rocket lysate (Fig. 2, Supplementary Table S1). 

The headspace emissions from inoculated nutritional media showed 
similar trends (Fig. 2). In the presence of E. coli O157:H7, the headspace 
of inoculated samples showed increased relative abundance of aromatics 
(e.g., of phenylmethanol), ketones (e.g., nonan-2-one, tridecan-2-one 
undecan-2-one) and alcohols (e.g., hexen-1-ol, (E)-hexen-3-en-1-ol, (Z)- 
hex-2-en-1-ol, and 3-methylbuten-1-ol in leaf lysates; ethanol, propan-1- 
ol, decan-1-ol, and tridecan-1-ol in LB (Figs. 2 and 4, Supplementary 
Table S2). 

From all three inoculated nutritional media (leaf lysates and LB), one 
similar set of distinct VOCs, namely indole, nonan-2-one, tridecan-2- 
one, and undecan-2-one, was produced in the presence of E. coli O157: 
H7. The nitrogen-containing compound indole was the most represen-
tative VOC in E. coli O157:H7-inoculated samples (Stat = 0.69, P <
0.001, Multipatt) (Supplementary Table S2). The chemical fingerprint of 
bacterial metabolites emitted from different substrates inoculated with 
E. coli has been investigated previously (Chen et al., 2017; Fang et al., 
2021; Fitzgerald et al., 2020; Hamilton-Kemp et al., 2005; Hossain et al., 
2013). Similar compounds have been reported as VOCs produced by 
E. coli O157:H7 grown on other substrates (Chen et al., 2016; Yu et al., 

2000). Chen et al. (2017) reported indole, 2-nonanone, 2-heptanone, 
2-undecanone, 1-decanol, and 1-dodecanol as VOCs produced by E. coli 
O157:H7 on culture media. Maddula et al. (2009) detected 2-heptanone 
and 2-nonanone, while Fang et al. (2021) detected indole, 2-ethylhexa-
nol, 1-decanol, and 2,5 dimethylpyrazine. 

Several studies have already identified indole as a major compound 
in the presence of E. coli (Bunge et al., 2008; Chen et al., 2017; Fang 
et al., 2021; Kunze et al., 2013; Maddula et al., 2009; Thorn et al., 2011). 
However, in our contaminated leaf lysate the amount of indole detected 
varied. One aspect to be considered when exploring the characteristics 
of bacterial VOC profiles is that the occurrence and abundance of VOCs 
changes throughout the growth process of bacteria, with emission of 
volatiles affected by cell density and growth stage (Chen et al., 2017). 
During bacterial proliferation, readily available carbon sources are 
degraded and transformed, which in turn may alter the volatiles emitted 
by the bacteria and the matrix (Farré-Armengol et al., 2016). Correla-
tions between the concentrations of major VOCs and bacterial cell 
counts have been reported previously (Chen et al., 2017; Mayr et al., 
2003). However, the relationship between total bacteria and VOCs is not 
always linear (Silcock et al., 2014). The concentration of VOCs is re-
ported to be largely unchanged until the number of bacteria reaches 
106–108 CFU/mL (Chen et al., 2017), 107 CFU/mL (Mayr et al., 2003), 
or 107–108 CFU/mL (Silcock et al., 2014), which is far above the in-
fectious dose of E. coli O157:H7. 

Some leaf compounds (e.g., aldehydes) may have a negative influ-
ence on VOC emissions by bacteria (Patrignani et al., 2008). In the 
presence of E. coli O157:H7, headspace samples from all three nutri-
tional media we analyzed displayed a decrease in the relative percentage 
of aldehydes (e.g., benzaldehyde). It has been shown that aldehydes can 
be used as substrate for bacterial metabolism (Kunjapur & Prather, 
2015; Yu et al., 2000), and that some microorganisms can naturally 
convert aldehydes into their respective alcohols, and thus detoxify them 
(Kunjapur & Prather, 2015). It has also been shown that E. coli O157:H7 
is able to oxidize different carbon sources, which increases its survival in 
different microenvironments (Franz et al., 2011). 

So far, only a few studies have examined production of VOCs over 
time in bacterial cultures (Bunge et al., 2008; Chen et al., 2017; Kunze 
et al., 2013; Maddula et al., 2009). In the present study, we attempted to 
study production of VOCs as a function of time. However, we found that 
the abundance of VOCs did not differ between samplings at 24, 48, and 
72 h. This may be due to the majority of volatiles being formed during 
secondary metabolism, when bacteria are entering the stationary phase, 
which was already reached by E. coli O157:H7 in all substrates at 24–28 
h (Fig. 1). 

3.3. Key compounds emitted in the presence of E.coli O157:H7 as 
potential biomarkers for EHEC contamination 

Detection of foodborne pathogens, including E. coli O157:H7, is a 
critical step in elimination of pathogens in the food supply chain. 
Available detection methods include conventional culture-dependent 
methods, immunological assays, DNA-based methods, biosensor-based 
methods and, more recently, spectroscopic methods and spectral imag-
ing techniques (Bonah et al., 2020). A major advantage of VOC assay 
over conventional methods for detection of foodborne pathogens is its 
non-destructive nature. Furthermore, analysis of key volatiles present in 
the headspace of leafy vegetables could allow screening for presence of 
pathogens in larger volumes of salad, irrespective of site (package, 
cooling compartment/storage, or transport). To identify volatiles that 
are the most reliable indicators of E. coli O157:H7 contamination, 
regardless of the medium, we performed partial dbRDA by eliminating 
the influence of the unknown 1, unknown 3, and 2,5-dimethyl pyrazine 
compounds associated with LB, the 3-ethyl thiophene associated with 
rocket lysate, and the 2-phenyl acetaldehyde associated with spinach 
lysate (Figs. 5 and 6). After minimizing the influence of medium, we 
found that the volatiles emitted from non-inoculated samples were 
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Fig. 2. Volatilome composition from LB-broth and leaf lysates (rocket and spinach) with and without inoculation of E. coli O157:H7. Samples were taken after 24 h, 
48 h and 72 h post inoculation. (see Supplementary Table S1). Size of the circles represent the results from the square root of relative abundance of compounds (rows) 
detected in each treatment (columns). Asterisks (*) indicates significant differences in the relative abundance of compounds detected between the treatments (***P 
< 0.001, **P < 0.01, *P ≤ 0.05, Multipatt). 
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grouped on the positive side of the CAP2 axis from those emitted from 
inoculated samples (Jaccard distance: F = 9.761781, P = 0.001). Indole, 
phenylmethanol, 2-methoxyphenol, ethanol, propan-1-ol, decan-1-ol, 
and tridecan-1-ol contributed most to separation along CAP2 axis 
(Figs. 5 and 6, Table 1). Correspondingly, higher proportions of these 
compounds were found in inoculated samples compared with uninocu-
lated samples, irrespective of growth medium (Fig. 2 and Supplementary 

Table S1). Thus, these seven compounds and the ketones such as 
nonan-2-one and tridecan-2-one (Table 1) should be investigated further 
as potential biomarkers for E. coli O157:H7 contamination of leafy 
vegetables, using whole spinach and rocket leaves as a matrix. 

Fig. 3. Principal component analysis (PCA) on the volatilome of LB-broth and leaf lysates (rocket and spinach) with and without inoculation of E. coli O157:H7. PC1 
and PC2 summarized 27,2% of the overall variance of the dataset. A. Variable plot: represents the contribution of each compound to the main variance in the dataset. 
Positively correlated compounds are grouped together; negative correlated compounds are grouped on opposite quadrants. Compounds with high distance from 
origin (long arrows) are well-represented on the factor map. In green: compounds significantly contributing to the overall odour profiles of samples without 
inoculation; in red: compounds significantly contributing to the overall odour profiles of samples with inoculation (Multipatt, P < 0.05). B. Score plot: each point 
represents one volatile sample. 

Fig. 4. Relative abundance of groups of volatile organic compounds across treatments.  
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4. Conclusions 

Isolation and identification of microorganisms is currently used for 
monitoring contamination of leafy vegetables by E. coli O157:H7, which 
is time-consuming and costly. The preliminary results obtained in this 
study indicate that headspace analysis may instead become a more cost- 
effective decision-making and monitoring tool in the future. Using 
spinach and rocket leaf lysates as a proxy for baby leaves, we obtained 
empirical evidence showing that it is possible to use volatilome profiles 

to discriminate between sterile and E. coli O157:H7-contaminated 
samples. The strain E. coli O157:H7 produced a volatile signature 
(consisting of a particular set of compounds) irrespective of the substrate 
used for growth and an increase in aromatics, ketones, and alcohols. 
Emission of the volatile compounds indole, phenylmethanol, 2-methox-
yphenol, ethanol, propan-1-ol, decan-1-ol, tridecan-1-ol, nonan-2-one 
and tridecan-2-one contributed most to separation between E. coli O157: 
H7-contaminated and non-contaminated samples in this study. Future 
investigations are planned to assess the sensitivity of the assay and to 
adjust it to different sample sizes and types of leafy vegetables, including 
precut, mixed, and ready-to-eat products. For future routine use, 
chemical analysis could possibly be replaced with electronic noses, 
which could be calibrated and fine-tuned using synthetic copies of the 
key compounds identified here. 

CRediT authorship contribution statement 

Maria Sousa: Conceptualization, Data curation, Visualization, 
Formal analysis, Investigation, Methodology, Writing – original draft. 
Emina Mulaosmanovic: Visualization, Formal analysis, Writing – re-
view & editing. Anna Laura Erdei: Visualization, Formal analysis, 
Writing – review & editing. Marie Bengtsson: Conceptualization, 
Methodology, Supervision, Writing – review & editing. Peter Witzgall: 
Supervision, Writing – review & editing. Beatrix W. Alsanius: 
Conceptualization, Methodology, Funding acquisition, Supervision, 
Writing – review & editing. 

Declaration of competing interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Data availability 

Data will be made available on request. 

Acknowledgments 
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Fig. 5. Partial distance-based redundancy analysis plots showing separation 
between inoculated and non-inoculated samples. Partial dbRDA based on Jac-
card distance in volatile composition, each colour represents a different treat-
ment. Fmodel = 14.605 Pmodel = 0.001, λCAP1 = 6.062, Proportion explainedCAP1 
= 0.3435, FCAP1 = 136.3368, pCAP1 = 0.001, λCAP2 = 2.9605, Proportion 
explainedCAP2 = 0.0.1677, FCAP2 = 66.5826, pCAP2 = 0.001. 

Fig. 6. Partial distance-based redundancy analysis plots showing contribution 
of volatile components in separation. Vectors show the strength of relationship 
between predictor variables and dbRDA axis. Fmodel = 14.605 Pmodel = 0.001, 
λCAP1 = 6.062, Proportion explainedCAP1 = 0.3435, FCAP1 = 136.3368, pCAP1 =

0.001, λCAP2 = 2.9605, Proportion explainedCAP2 = 0.0.1677, FCAP2 = 66.5826, 
pCAP2 = 0.001. 

Table 1 
Compounds significantly associated with E. coli O157:H7 irrespective of the 
growth medium. The db-RDA shows the correlation coefficients of vectors fitted 
to the first two constrained axes (CAP1 and CAP2) and the significance of per-
mutation tests. n.f. indicates that no significant correlations were found for the 
compound using this method. The multilevel pattern analysis (Multipatt) shows 
stat that represents the strength of the association of each compound with the 
inoculated samples and variates from 0 (low) to 1 (high), and the p-value that 
provides a measure for significant difference on the relative abundance of the 
compound found between inoculated and non-inoculated samples.  

Compounds CAS db-RDA vector fitting Multipatt 
analysis 

CAP1 CAP2 p-value Stat p-value 

indole 120-72-9 0.298 0.954 <0.001 0.69 <0.001 
phenylmethanol 100-51-6 0.296 0.955 <0.001 0.38 <0.001 
2-methoxyphenol 90-05-1 − 0.157 0.987 <0.005 0.33 <0.001 
ethanol 64-17-5 0.935 0.354 <0.001 0.32 <0.01 
propan-1-ol 71-23-8 0.934 0.354 <0.001 0.31 <0.01 
decan-1-ol 112-30-1 0.934 0.354 <0.001 0.29 <0.01 
tridecan-1-ol 112-70-9 0.935 0.354 <0.001 0.28 <0.01 
tridecan-2-one 112-70-9 n.f. n.f. n.f. 0.36 <0.001 
nonan-2-one 821-55-6 n.f. n.f. n.f. 0.42 <0.001  
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Appendix A. Supplementary data 

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.foodcont.2022.109513. 
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De Cáceres, M., Legendre, P., & Moretti, M. (2010). Improving indicator species analysis 
by combining groups of sites. Oikos, 119(10), 1674–1684. https://doi.org/10.1111/ 
j.1600-0706.2010.18334.x 

Di Martino, P., Fursy, R., Bret, L., Sundararaju, B., & Phillips, R. (2003). Indole can act as 
an extracellular signal to regulate biofilm formation of Escherichia coli and other 
indole-producing bacteria. Canadian Journal of Microbiology, 49(7), 443–449. 
https://doi.org/10.1139/w03-056 

EFSA. (2013). Scientific Opinion on the risk posed by pathogens in food of non-animal 
origin. Part 1 (outbreak data analysis and risk ranking of food/pathogen 
combinations). EFSA Journal, 11(1), 3025. https://doi.org/10.2903/j. 
efsa.2013.3025 

El-Mogy, M. M., & Alsanius, B. W. (2012). Cassia oil for controlling plant and human 
pathogens on fresh strawberries. Food Control, 28(1), 157–162. https://doi.org/ 
10.1016/j.foodcont.2012.04.036 

Erickson, M. C. (2012). Internalization of fresh produce by foodborne pathogens. Annual 
Review of Food Science and Technology, 3, 283–310. https://doi.org/10.1146/ 
annurev-food-022811-101211 

Fang, S., Liu, S., Song, J., Huang, Q., & Xiang, Z. (2021). Recognition of pathogens in 
food matrixes based on the untargeted in vivo microbial metabolite profiling via a 
novel SPME/GC× GC-QTOFMS approach. Food Research International, 142, Article 
110213. https://doi.org/10.1016/j.foodres.2021.110213 

FAO/WHO. (2008). Microbiological hazards in fresh leafy vegetables and herbs: Meeting 
report, 14. World Health Organization.  
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