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Abstract 

Background The design of ecologically sustainable and plant‑beneficial soil systems is a key goal in actively manipu‑
lating root‑associated microbiomes. Community engineering efforts commonly seek to harness the potential of the 
indigenous microbiome through substrate‑mediated recruitment of beneficial members. In most sustainable prac‑
tices, microbial recruitment mechanisms rely on the application of complex organic mixtures where the resources/
metabolites that act as direct stimulants of beneficial groups are not characterized. Outcomes of such indirect amend‑
ments are unpredictable regarding engineering the microbiome and achieving a plant‑beneficial environment.

Results This study applied network analysis of metagenomics data to explore amendment‑derived transformations 
in the soil microbiome, which lead to the suppression of pathogens affecting apple root systems. Shotgun metagen‑
omic analysis was conducted with data from ‘sick’ vs ‘healthy/recovered’ rhizosphere soil microbiomes. The data was 
then converted into community‑level metabolic networks. Simulations examined the functional contribution of 
treatment‑associated taxonomic groups and linked them with specific amendment‑induced metabolites. This analysis 
enabled the selection of specific metabolites that were predicted to amplify or diminish the abundance of targeted 
microbes functional in the healthy soil system. Many of these predictions were corroborated by experimental evi‑
dence from the literature. The potential of two of these metabolites (dopamine and vitamin  B12) to either stimulate 
or suppress targeted microbial groups was evaluated in a follow‑up set of soil microcosm experiments. The results 
corroborated the stimulant’s potential (but not the suppressor) to act as a modulator of plant beneficial bacteria, pav‑
ing the way for future development of knowledge‑based (rather than trial and error) metabolic‑defined amendments. 
Our pipeline for generating predictions for the selective targeting of microbial groups based on processing assem‑
bled and annotated metagenomics data is available at https:// github. com/ ot483/ NetCo m2.

Conclusions This research demonstrates how genomic‑based algorithms can be used to formulate testable hypoth‑
eses for strategically engineering the rhizosphere microbiome by identifying specific compounds, which may act 
as selective modulators of microbial communities. Applying this framework to reduce unpredictable elements in 
amendment‑based solutions promotes the development of ecologically‑sound methods for re‑establishing a func‑
tional microbiome in agro and other ecosystems.
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Background
The soil microbiome plays key roles in nutrient cycling 
through diverse metabolic processes regulating the trans-
formation of organic forms of carbon and nitrogen as 
well as the availability of essential minerals (e.g., phos-
phorous) [1–4]. The functioning of the soil microbiome 
shapes microbial and plant–microbe interactions with 
ecological outcomes ranging from local (e.g., impacts on 
soil fatigue and fertility) to global scales (e.g., the emis-
sion of greenhouse gases). The sustained plant health 
observed in native ecosystems is believed to rely, in part, 
upon a diverse soil microbiome which is supported by the 
local plant population. This microbial diversity enhances 
system resilience to disturbances and limits the activity of 
detrimental biota such as soilborne pathogens. However, 
the relationship between soil microbiome diversity and 
ecosystem resilience depends upon the presence of a par-
ticular corps of microorganisms possessing specific traits 
[5–7]. Highly manipulated or managed ecosystems, such 
as those experienced in crop cultivation, demonstrate 
reduced productivity over time due to diminished soil 
fertility, increased pest and disease incidence and nega-
tive transformative effects on the soil microbiome lead-
ing to disruption of required functions. The rhizosphere 
soil microbiome is considered a first line of plant protec-
tion against the consortia of soilborne microorganisms 
that can be detrimental to plant health [8]. Indeed, con-
tinuous cropping of both annual and perennial plants, in 
general, leads to a transformation of the soil microbiome 
that confers increased soilborne pathogen densities and 
reduced plant productivity [9].

Strategies for surmounting the negative effects of crop 
monoculture on microbial operations in soil ecosystems 
have generally relied upon the use of indiscriminate 
approaches (e.g., soil fumigation) without examination of 
ecologically sound methods to re-establish a functional 
microbiome [10]. Attempts to recruit soil microbial 
resources for use in practices ranging from bioremedia-
tion to the control of plant pathogens have largely relied 
upon inputs with the potential to foster the activity of 
specific microbial functions. Various soil amendments, 
in the form of green manure compost and cover crops, 
are extensively utilized in organic agricultural systems 
for soilborne disease management [11]. Such soil amend-
ment-based strategies have traditionally been perceived 
to benefit plant health by providing effective nutritional 
sources for disease-suppressing microbial populations 

[12], or via the generation of chemistries that directly 
suppress pathogenic elements [13]. While several tactics, 
including vegetation management strategies [14] and the 
use of organic inputs [15] have been utilized to remedi-
ate the composition and function of disturbed soil micro-
bial communities, the complexity of interactions among 
the diversity of organisms that reside in a soil ecosystem 
has hindered the ability to successfully direct the trajec-
tory of microbial succession in a manner that leads to the 
desired function. These limitations are exhibited when 
instituting methods to establish or engineer a rhizos-
phere soil microbiome to effectively control plant patho-
gens in agroecosystems [6, 16].

Strategic management of the soil microbiome has been 
at the center of study concerning formulation of an eco-
logically resilient system to control the phenomenon 
called apple replant disease. The disease is encountered 
worldwide and not only diminishes the productivity of 
the current apple orchard but also impedes the success-
ful establishment of new plantings on the site [17]. Apple 
replant disease (ARD) results from changes in the soil 
microbiome, including elevation of pathogen populations 
that are driven by the tree root system with such com-
munity transformations occurring rapidly in response to 
planting apple [18]. The altered microbiome is also char-
acterized by a diminished ability to protect the plant root 
system from pathogen attack [18]. An intensive research 
program resulted in establishing protocols for using par-
ticular Brassicaceous seed meal (SM) formulations as a 
soil amendment for effective replant disease manage-
ment [6, 19, 20]. The SM amendment induces long-term 
changes in the soil/rhizosphere microbiome that lead to 
the suppression of specific apple root pathogens [6, 21]. 
SM formulations had a more long-term persistent effect 
on the composition of the soil microbiome and corre-
sponding pathogen suppression compared to indiscrimi-
nate management approaches such as soil fumigation 
[6]. The SM-modified microbiome possessed microbial 
groups with a capacity to metabolize specific compounds, 
including those present in high concentrations  in SM 
[6]. Despite the apparent advantages of SM-based sus-
tainable disease management approaches, analyses have 
been absent concerning the functional processes that 
ultimately yield the composition of the effective micro-
biome. Systematic explorations of functional changes in 
the microbiome in response to management practices, 
such as those induced in soil amendment treatments, 
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can provide essential knowledge for rehabilitating a func-
tional soil microbiome predictably and effectively. The 
development of more fundamental knowledge concern-
ing metabolite-driven successional trajectories in the soil 
microbiome leading to pathogen suppression could yield 
practical means to engineer the indigenous soil microbi-
ome toward enhancing plant health. Further, it will allow 
for the predictable transfer of approaches to other loca-
tions and crop systems [22].

The perception of treatment effectiveness, as dictated 
by three sides of a triangle, provides a conceptual frame-
work for the study of microorganism activity in soil sys-
tems: environmental resources (the dominant resources 
in a specific amendment treatment), microbial commu-
nity (species forming possible metabolic conversions 
repertoire), and function (availability and/or utilization 
of altered resources). The application of metagenomic 
sequencing technologies reveals the dynamics of micro-
bial community shifts and enables exploration of their 
functional outcomes [23]. Metabolic network approaches 
provide a new framework for translating discrete data 
from ecological samples into a structured view of bio-
logical functions. The subsequent conductance of simula-
tions enables the exploration of associations between the 
environment and the metabolic potential of the commu-
nity [24–26].

Similar to genomic approaches, where species-specific 
metabolic networks are constructed based on the content 
of enzyme coding genes [27, 28], community networks 
can be constructed based on the functional annotations 
of metagenomic data [29]. Network-based simulations 
allow one to address the influence of changing environ-
mental inputs (e.g., root-specific secreted metabolome, 
seed meal composition) or the functional repertoire of 
the community (genomic content in the sample) on the 
network structure and composition. Iterative simula-
tions can be applied for delineating functional divisions 
between community members, such as co-dependen-
cies on utilization or generation of specific metabolites 
and hierarchical cross-feeding interactions [30–34]. 
For example, in a previous study, we applied a network 
approach for analyzing metagenomic data from rhizo-
sphere soil vs bulk soil, the latter not under the direct 
influence of plant roots [29]. Root-specific effects linked 
the utilization of distinct root exudates (e.g., flavonoids, 
organic acids) with particular taxonomic groups. Many 
of these associations are well supported in the literature, 
evidencing the impact of such compounds on microbial 
community structure. Such simulations of community-
level metabolic activity enable the prediction of niche 
modifications that encourage a desired function (e.g., the 
potential to suppress disease progression) [22].

In this study, we applied a network-based metagen-
omic analysis of community metabolism to understand 
the processes shaping the causal microbiology of apple 
replant disease and the metabolic mechanisms supplied 
or induced by the SM amendment, which function to 
yield successful disease suppression. Here, we provide 
an example of the workflow that is used in this analysis 
(Fig.  1). Reproducibility of effective disease control in 
response to the application of biologically-based non-
fumigant approaches has been a consistent limitation 
to adopting sustainable strategies in commercial agri-
cultural systems. Although Brassicaceous SM amend-
ments have repeatedly shown replant disease control 
across diverse orchard systems employing various apple 
rootstock genotypes [5, 6, 19, 20], optimal disease sup-
pression is attained when an appropriate rootstock is 
employed [35]. Plant genotype-specific differences in 
rhizosphere-related traits, including metabolic profiles of 
root exudates [36], may have a positive or negative effect 
on the composition and function of the microbiome 
[37]. We hypothesize that the success of a soil amend-
ment treatment is determined by the direct-supply and 
induced-generation of metabolites that are beneficial 
to functional-organisms contributing to disease con-
trol or deleterious to organisms contributing to disease 
progression.

Methods
Experimental design: SM treatments, phenotyping, 
and preparation of libraries
Experimental design is as described in Somera et  al., 
2021 [38]: briefly, experiments were conducted in a 
greenhouse using replant orchard soil collected on 11 
October 2017 from the GC commercial orchard located 
near Manson, Washington, USA (latitude 47° 53′ 05″ 
N, longitude 120° 09′ 30″ W). In this experiment, we 
evaluated the effects of Brassicaceous SM amendments, 
including Brassica napus (canola) and a 1:1 formulation 
of Brassica juncea (brown mustard) and Sinapis alba 
(white mustard) (BjSa SM) applied at a rate of 4.4 t  ha−1, 
on the apple rootstock rhizosphere soil metagenome. 
The experiment included a no-treatment control (NTC). 
Soils were planted with a susceptible (M26) and tolerant 
(G210) apple rootstock with five replicates for each soil 
treatment/rootstock combination (Table  1). Pots were 
arranged in a complete randomized block design with 10 
pots per block (5 replicates × 2 genotypes). At harvest, 
4  months post-planting, a rhizosphere soil sample was 
collected from each rootstock. Plants were removed from 
pots and shaken to remove soil that was loosely adher-
ing to root surfaces. Soil firmly attached to the roots was 
collected from multiple locations along the root system 
using sterile tweezers and a scoopula. DNA was extracted 
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Fig. 1 Workflow of the data analysis. Full details of the process described in panel (D) (prediction of treatment specific environmental resources) is 
detailed in Additional file 2: Figure S2
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according to the manufacturer’s instructions from 0.25 g 
of rhizosphere soil per plant using the DNeasy PowerSoil 
Kit (Qiagen). The metagenomes analyzed in this study 
were created using the same DNA samples as in Somera 
et al. 2021 [38]. Paired-end libraries were prepared by the 
sequencing facility using the Illumina DNA Prep work-
flow (formerly named Nextera DNA Flex) with 50  ng 
DNA as input. The experiment consisted of five replicates 
for each rootstock genotype/soil treatment combination 
with a total of 30 DNA samples.

Metagenomic data processing: sequencing, assembly, 
annotation, differential abundance analysis, 
and identifying functions that are dominated by specific 
taxonomic groups
Shotgun metagenomic sequencing was conducted at 
the University of Illinois-Roy J. Carver Biotechnology 
Center using the Illumina NovaSeq 6000 sequencing 
system. 11.5 billion quality reads at a length of 150  bp 
were sequenced (an average of ~ 383 million reads per 
sample; Additional file  1). Raw reads were filtered and 
cleaned using Trimmomatic [39] for removing adapters 
and the FASTX-Toolkit (version 0.0.13.2) for (1) trim-
ming read-end nucleotides with quality scores < 30 using 
fastq_quality_trimmer and (2) removing reads with < 70% 
base pairs with quality score ≤ 30 using fastq_quality_fil-
ter. Following filtration, clean reads were assembled using 
MEGAHIT program (version v1.1.3) [40]. Each of the six 
treatments was assembled independently (Additional 
file 2: Table S1). Prodigal software (version 2.6.2) [41] was 
used for detection of ORFs (Additional file 2: Table S2). 
To assign taxonomic and functional annotations, all 
detected ORFs were searched against the non-redundant 
NCBI protein database using the diamond algorithm 
v0.9.24 [42]. Results were then uploaded to MEGAN 
software (version 6.13.4) [43]. The LCA algorithm was 
applied (parameters used with a minimum bit-score of 
150, minimum support of 1% top percent threshold, and 
maximal expected 1 ×  10−5) to compute the assignment 
of CDSs to specific taxa and to the KEGG [44] functional 

scheme including assignment of KO and EC accessions 
for enzyme coding genes (Additional file  2: Table  S2). 
Contig-level taxonomic assignments were inferred 
from the gene-level annotations. In 94% and 97% of the 
contigs, all genes were consistent in their taxonomic 
assignments in the genus and order level, respectively 
(Additional file  2: Table  S3). Ambiguities were resolved 
by assigning the contig with the most frequent annota-
tion of its associated genes. For each assembly (experi-
ment), a count table was constructed by mapping all five 
libraries in each assembly to the contigs using BWA mem 
[45] apping software (v0.7.17) with default parameters. 
Based on the MEGAN annotations, a unique conversion 
count table was constructed for each annotation scheme 
used by binning contigs according to the annotation key 
used (taxonomic and various functional schemes such 
as EC and KOs). Next, all treatments were merged into 
joint count tables, based on either functional or taxo-
nomic keys. Next, for each annotation key, count tables 
from each experiment were merged into a single count 
table for all 30 samples sequenced (6 treatments × 5 
replicates). Significance of differential abundance (DA) 
of the reads associated with the respective contigs (e.g., 
all contigs assigned to a specific genus) in each experi-
ment across the respective replicates was determined 
using edgeR function implemented in R, requiring FDR 
adapted P value < 0.05. DA taxonomic groups are listed 
in Additional file 3; DA functions are listed in Additional 
file 4.

To associate enzymatic functions (accessions associated 
with EC assignments) with specific microbial groups, we 
retrieved  for each EC accession  the taxonomic anno-
tations of all its associated reads. The Simpson index 
[46], typically used to determine species dominance 
in ecological surveys, was applied here to determine 
the dominance of specific taxonomic groups in regard 
to a function, as described in [29]. To this end, instead 
of looking at the frequencies of species in a sample (as 
in ecological surveys), for each enzyme (equivalent to a 
sample), we looked at the distribution of the taxonomic 

Table 1 Summary of variations in plant health and microbiome composition for the experimental samples used in this study as 
described in [38]

± Assessment of disease suppression was based on plant growth performance as well as the occurrence of causal agents in root tissue
* Relative to control treatment

Treatment/root stock M26 G210

No treatment control (NTC) Sick (no disease suppression) ± Sick (no disease suppression) ± 

Brassica napus SM Partial disease suppression ± /shift in community 
structure*

Partial disease suppression ± /
shift in community structure*

Brassica juncea/Sinapis alba (BjSa) SM Maximal disease suppression ± /shift in community 
structure*

Maximal disease suppres‑
sion ± /shift in community 
structure*
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affiliations of its associated reads (equivalent to a spe-
cies). Simpson Indices were calculated for each enzyme 
in the dataset for each of the original samples. Then, a 
treatment-specific Simpson index value was determined 
for each enzyme by calculating mean values across cor-
responding samples. Finally, within each treatment, we 
described a function to be dominated by a taxonomic 
group if (i) the mean Simpson index across all samples 
value was greater than 0.4; and (ii) the same taxonomic 
group was dominant in all replicate samples. Hence, 
associations between taxonomy and function are repre-
sentative of a treatment and are consistent between rep-
licates. Lists of taxa-dominated enzymes at the order and 
genus levels from the G210 rootstock across three treat-
ments (NTC, BjSa and B. napus) are provided in Addi-
tional file  5. When the sets of taxa-dominated enzymes 
were correlated with the corresponding sets of differen-
tially abundant enzymes from the same treatment (e.g., 
taxa-dominated enzymes in BjSa SM correlated with 
DA enzymes in BjSa SM), there was a significant overlap 
between sets (Additional file 2: Figure S1). In comparison, 
reciprocal crosses (e.g., taxa-dominated enzymes in BjSa 
SM correlated with DA enzymes in NTC samples) did 
not show such overlaps, suggesting that taxa-dominated 
enzymes have a functional impact in the corresponding 
samples. Network distribution of the taxa-dominated 
enzymes exhibited similar topological patterns to com-
mon, non-dominated functions and taxonomic diversity 
scores did not significantly correlate with enzymes’ con-
nectivity (number of neighbors) (Additional file 6).

A detailed reproducible bioinformatics workflow for 
processing metagenomics data, differential abundance 
analysis, and identification of functions that are domi-
nated by specific taxonomic groups is available at https:// 
github. com/ ot483/ NetCo m2 (steps 1–8).

Network construction, prediction of treatment‑specific 
environmental resources, and simulation of metabolic 
activity
A meta-network was constructed, containing all enzy-
matic functions annotated across all samples follow-
ing the procedure outlined in [27–29]. The network was 
constructed by mapping enzymes to metabolic reactions 
based on a scheme downloaded from the KEGG database 
[44] in June 2016. Directional edges represent reactions 
connected by common metabolites (nodes, Fig. 1C). The 
set of metabolic reactions and its organization in the 
metabolic network it forms reflect nutritional dependen-
cies on the environment [47]. Topological analysis of the 
metabolic networks with the graph theory-based strongly 
connected components (SCC) algorithm was applied to 
predict the set of environmental resources (the dominant 
resources/metabolites in a specific treatment  acquired 

from the environment) [48]. An environmental proxy 
was generated for three networks: the full meta-network 
and two sub-networks of differentially abundant reac-
tions. The environmental proxy is a list of metabolites 
that are predicted to be externally consumed from the 
environment (‘environmental resources’, Fig.  1D). Pre-
dictions are based on the implantation of Tarjan’s SCC 
[25] through its implantation in NetCom [28]. Since 
the treatment-specific sub-networks were constructed 
based on differentially abundant enzymes only, they are 
highly fragmented, leading to a prediction of artificial 
source-metabolites [29]. Hence, metabolites represent-
ing environmental resources that were identified for 
treatment-specific sub-networks were compared to those 
identified for the full meta-network (Additional file  2: 
Figure  S2). Only metabolites present in both sets were 
further considered within the environment proxy list.

These environmental resource lists were then used to 
further explore the metabolic activities in each treatment 
by applying the Expansion algorithm [27, 49]. Briefly, the 
algorithm can be used to predict feasible reactions in a 
metabolic network (expanded) given a pre-defined set 
of substrates and reactions. The algorithm starts with a 
set of source-metabolites acting as substrates (i.e., the 
environmental resource list); it scans the reaction bank 
for feasible enzymatic reactions for which all the pos-
sible substrates exist; all feasible reactions are added to 
the network, their products being the substrates for the 
next set of reactions. The network stops expanding when 
no feasible reactions are found. Thus, the full expansion 
of the network reflects both the reaction repertoire and 
the primary set of compounds (predicted source metabo-
lites). Here, simulations of metabolic activity were car-
ried out by expanding the full set of reactions detected 
across all samples (meta-network) while using treatment-
specific sets of environmental resources (source metabo-
lites). That is, expansion iterations were carried out using 
sets of predicted environmental resources represent-
ing the treated samples vs control samples (Fig. 1F). The 
treatment-specific expanded networks are provided in 
Additional file 7.

The expanded network from the BjSa X G210 treatment 
(Additional file 7) was used as a reference for community 
‘knock outs’ simulations in which selected taxonomic 
groups were removed (Fig.  1G). In each of the removal 
iterations, all edges (enzymes representing metabolic 
functions) specifically dominated by a taxonomic group 
(i.e., taxa-dominated enzymes) were removed from the 
original enzyme set. The impact of the removal of each 
such group was estimated according to differences in the 
metabolite content (number of metabolites) between the 
network expanded from the truncated enzyme set, and 
the reference meta-network. The removed metabolite 

https://github.com/ot483/NetCom2
https://github.com/ot483/NetCom2
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vectors (Additional file 8), created for each iteration, were 
mapped to KEGG pathways. Enrichment of treatment-
specific networks in components (nodes, edges) associ-
ated with particular pathways was determined using the 
enricher function in R requiring a p value <  = 0.05. P 
values were adjusted for multiple comparisons using the 
“fdr” adjustment method available in the P.adjust func-
tion in R.

A detailed reproducible bioinformatics workflow for 
network construction, prediction of treatment-specific 
environmental resources, simulation of metabolic activ-
ity, and network visualization is available at https:// 
github. com/ ot483/ NetCo m2 (steps 9–11).

Visualizations
Principal coordinate analysis (PCoA) was performed 
using R prcomp function in R stats package, version 3.6.3. 
Data for PCoA were analyzed within the R environment 
(R Version 4.0.3 in RStudio Version 1.4.1103). Count 
tables were filtered to at least 50 counts per feature, and 
rarefied (with vegan 2.5–7 package), to correct for differ-
ences in sampling depth (library size) between samples. 
PCoA plots were based on Bray–Curtis dissimilarity 
(beta diversity) and were computed using labdsv 2.0–1 

package. PCoA plots were made using the ggplot2 pack-
age version 3.3.2. Meandist function in vegan was used to 
summarize the Bray–Curtis distance matrix, and create 
tree plots of the treatments (Additional file 2: Figure S3). 
Table  2 was created using package gt version 0.2.1. All 
network visualizations were made using Python 3.6 Net-
workX 2.5 and Matplotlib 3.3.2 packages.

Evaluation of specific metabolites as biostimulants/
biosuppressors of beneficial taxonomic groups
Metabolite enrichment experiments were carried out 
using the same SM amendment protocol and the same 
orchard soil as in the original experiment [38]. The com-
pounds tested were dopamine and vitamin B12. Soil 
treatments included BjSa SM, BjSa SM + compound, 
NTC, and NTC + compound. For soil enrichment experi-
ments with dopamine, the compound was applied to the 
soil 1 week after SM amendment (5 weeks prior to plant-
ing). In the vitamin B12 experiment, however, the soil 
was conditioned closer to the time of planting (5 weeks 
post-SM amendment and 1 week prior to planting). This 
adjustment was made in order to try to minimize deple-
tion of the compound over time in the bulk soil and 
maximize shifts to the rhizosphere microbiome. For 

Table 2 Biological processes significantly enriched with treatment versus control entities

Left: KEGG modules enriched with differentially abundant KO accessions

Right: KEGG pathways significantly enriched with treatment-specific environmental resources. Processes that are enriched in NTC (control) entities are colored 
in orange; processes that are enriched in Brassica juncea/Sinapis alba (BjSa) seed meal (SM) treatment entities are colored in green; processes that are enriched 
in Brassica napus SM treatment entities are colored in blue. Dark coloring indicates significance (FDR adjusted P value <  = 0.05); bright coloring indicates the 
experimental conditions with which the majority of entities are associated (thought below significance threshold). Only pathways with at least six entities with clear 
dominance (≥ 85%) of one of the treatments and exhibiting significance in at least one of the comparisons tested are shown. NA denotes pathways with less than six 
entities assigned

https://github.com/ot483/NetCom2
https://github.com/ot483/NetCom2
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soil enrichment with dopamine, a final concentration of 
30 µg   ml−1 was obtained by dissolving 0.075 g of dopa-
mine hydrochloride (Sigma-Aldrich, Inc., St. Louis, MO, 
USA) into 50 ml of sterile DI water. The entire 50 ml vol-
ume was then applied to 2.5 L of soil using a chromatog-
raphy sprayer while continuously mixing by hand. The 
concentration of dopamine applied to soil was largely 
based on studies in which catecholamines added to liquid 
growth media stimulated or promoted the growth of bac-
terial cultures [50, 51]. Similarly, the amount of vitamin 
B12 applied to soil was based on concentrations of vita-
min B12 produced by Rhizobiales isolates when grown 
in pure culture [52, 53]. For soil enrichment with vitamin 
B12, a final concentration of 10 mg per gram of soil was 
obtained by dissolving 25 mg of vitamin B12 (Cyanoco-
balamin; Sigma-Aldrich, Inc., St. Louis, MO, USA) into 
50  ml of sterile DI water. The entire 50  ml volume was 
then applied to 2.5 L of soil as described above. Each soil 
treatment was represented by 10 replicates.

Treated soils were dispensed into large plastic con-
tainers (cell diameter of 6.35 cm and a depth of 25.4 cm) 
and placed in a standing rack in a randomized complete 
block design. The soils were then placed in growth cham-
bers for a period of weeks with temperature maintained 
at 18–22  °C. Apple seed germination and preparation 
of Gala apple seedlings were conducted as previously 
described [54]. A single 8-week-old apple seedling was 
planted into each individual soil cell at 6 weeks post-SM 
treatment (5  weeks post-dopamine application/1  week 
post-vitamin B12 application). This time frame was nec-
essary to allow for degradation/aeration of herbicidal 
chemistries that are generated in response to seed meal 
incorporation into moist soil. Upon harvest, growth 
measurements of apple seedlings were made for root 
biomass, shoot biomass, and total plant biomass (fresh 
weight).

Rhizosphere soil samples were collected as described 
above at 4 weeks post-planting and at harvest (8 weeks 
post-planting). DNA was immediately extracted from 
these soil samples (0.25  g) using the Qiagen DNEasy 
PowerSoil Kit. Bacterial amplicon libraries were gen-
erated and analyzed as described in Somera et al. 2021 
[38]. In summary, the DNA extracted from rhizos-
phere soil was sent directly to the sequencing facility 
(Molecular Research, Shallowater TX, USA). DNA was 
PCR-amplified prior to library preparation. Bacterial 
16S rRNA regions were sequenced on an Ion Torrent 
S5 XL (20,000 reads per sample) using the bacterial 
tag-encoded FLX amplicon pyrosequencing (bTEFAP®) 
method (Dowd et  al. 2008). Following removal of bar-
codes, primers, sequences < 150  bp, those containing 
ambiguous base calls and those with homopolymer 

runs exceeding 6  bp, sequences were quality filtered 
using a maximum expected error threshold of 1.0, 
dereplicated and denoised. This was followed by the 
removal of chimeric reads. Processed sequences were 
clustered into OTUs at the 97% similarity level. As 
part of the sequencing service, the taxonomic classifi-
cation of OTUs was performed using a curated data-
base derived from RDP-II (https:// rdp. cme. msu. edu/) 
and NCBI (https:// www. ncbi. nlm. nih. gov). Analysis of 
16SrRNA amplicon sequence data was performed as 
described in Somera et  al. 2021 [38]. In short, micro-
bial community profiles as influenced by soil treatment 
were evaluated using Explicet software package version 
2.10.5 [55]. Before the OTU read counts analysis, data 
were edited to remove singletons and doubletons as 
well as all eukaryotic and archaeal OTUs.

In order to estimate the absolute abundance of taxo-
nomic groups, 0.25  g of rhizosphere soil was weighed 
out for each sample (n = 5 per treatment) and DNA 
was extracted using the DNeasy PowerSoilPro Kit 
(Qiagen) according to the manufacturer’s instructions. 
The concentration of DNA extracted (ng/ul) was nor-
mally distributed within each experimental treatment 
according to Shapiro–Wilk and Kolmogorov–Smirnov 
normality tests, so ordinary one-way ANOVA was 
used to test for significant differences among treatment 
means. No significant differences in DNA concentra-
tion were identified between any of the 4 treatments 
(p = 0.38). Therefore, we assumed DNA extraction effi-
ciency was similar between treatments. The primer pair 
799F/1193R was then used to amplify the bacterial 16S 
rRNA region [56]. Quantification of total bacteria was 
conducted using the StepOnePlus Real-Time PCR Sys-
tem, with the following run conditions: 10 min at 95 °C 
followed by (30 s at 95 °C, 1 min at 58 °C) × 40 cycles. 
PCR reactions contained 1  µL DNA extract diluted 
1:100, 3  µL SYBR Green PCR Master Mix (Applied 
Biosystems, Warrington, UK), 0.05  µL of each primer 
[100 µM] and 5.9 µL nanopure water. Purified genomic 
DNA from Pseudomonas florescence (isolate # SS101) 
was used to generate the standard curve with a dilu-
tion range from 0.01 to 100 pg µL−1. Each set of qPCR 
reactions included a no template control; all reactions 
were performed in triplicate. Absolute values of total 
bacterial DNA (16S rRNA gene DNA) obtained via 
quantitative PCR (qPCR) were used to transform the 
relative abundances of selected bacterial genera within 
the Orders Xanthomonadales and Nevskiales to abso-
lute values. Significant differences in the absolute abun-
dance of 16S rRNA gene DNA were identified between 
treatments using the Kruskal–Wallis test followed by 
Dunn’s multiple comparisons test.

https://rdp.cme.msu.edu/
https://www.ncbi.nlm.nih.gov
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Results and discussion
Characterization of ‘sick’ vs ‘healthy/recovered’ 
microbiomes
The current research was designed as a comparative 
study of rhizobiome communities from ‘sick’ vs ‘healthy/
recovered’ apple rootstocks. Rhizobiome communities 
obtained from rootstocks grown in orchard soil with 
a documented history of replant disease were termed 
‘sick’ while those obtained from plants grown in replant 
soil amended with established SM treatments known to 
suppress the disease were termed ‘healthy/recovered’. 
Susceptible and tolerant rootstocks (M26 and G210, 
respectively) were grown in orchard soil amended with 
either Brassica juncea/Sinapis alba (BjSa) or Brassica 
napus seed meal. BjSa and B. napus SM are known to 
induce highly effective and less effective/variable levels 
of replant disease control, respectively. Overall, the data 
includes the six treatments summarized in Table  1. For 
each treatment × rootstock combination, disease sup-
pression and growth performance were assessed at the 
end of the study. Microbial community structure and 
function were previously assessed based upon bacte-
rial 16S rRNA and fungal/oomycete ITS sequences as 
described in [38]. In general, BjSa SM was superior to B. 
napus SM in terms of suppressing soilborne pathogens. 
Both SM treatments significantly affected the taxonomic 
composition of the soil microbiome [38]. Here, we report 
the analysis of deep shotgun metagenomic sequenc-
ing from the same rhizosphere soil samples. A total of 
1.7  Tbp were sequenced from 30 samples, including 6 
treatments with 5 replicates each. Each of the six treat-
ments was assembled independently. Between 61 and 
73% of the reads were mapped to 9717277 contigs longer 
than 2 Kbp with N50 and average contig length ranging 
from 4742 to 5272 bp and 4458 to 4756 bp, respectively 
(Additional file  2: Table  S1). The mapping of a signifi-
cant part of the data to long fragments, longer than the 
average bacterial gene, supported gene identification and 
conductance of gene-centric functional analysis. Overall 
the total number of basepairs sequenced, the number of 
contigs and their average length pose this assembly as 
one of the most comprehensive soil metagenomes cur-
rently available, considering relevant depositories such as 
https:// webapp. ufz. de/ tmdb/ [57]. Approximately eight 
million metagenes (per assembly) were predicted from 
this set of long contigs (Additional file 2: Table S1). Taxo-
nomic annotations were assigned to 57% of the genes 
(Additional file  2: Table  S2). Estimates of community 
composition made from amplicon [38] and metagenomic 
sequences (Additional file  9) were highly concordant at 
the phylum level (Additional file  2: Figure  S4). Beyond 
the similarity in the relative abundance of key phyla, deep 
sequencing led to approximately a five-fold increase in 

the number of groups identified at the phyla level com-
pared to amplicon sequencing and approximately a 
three-fold increase at the genus level (Additional file  2: 
Table  S4). Multidimensional scaling (PCoA analyses) 
of metagenomic abundance data at the genus (Fig.  2A) 
and order (Additional file 2: Figure S5) levels confirmed 
that both SM amendments induced a shift in microbial 
community structure and showed co-clustering patterns 
that concurred with the respective phenotypic classi-
fication (severity of disease symptoms, Table  1). In the 
BjSa SM and NTC samples, clustering patterns reflected 
a stronger amendment effect than rootstock effect, in 
which all replicates from the same treatment (and dif-
ferent rootstocks) were co-clustered. In the B. napus SM 
treatment, however, there was a strong rootstock effect 
on the taxonomic composition of the rhizobiome.

Next, we screened for microbial groups that were sig-
nificantly enriched or depleted under different experi-
mental conditions. Considering the high diversity of 
the soil community, the introduction of chimeric con-
tigs constructed from different strains of the same spe-
cies is common in metagenomics assemblies [58]. To 
avoid false classifications associated with high resolu-
tion annotations, we conducted an analysis at the genus 
level and higher. Overall, 669 and 434 genera were iden-
tified as being enriched in BjSa or B. napus SM treat-
ments relative to NTC, respectively (Additional file  3). 
Most genera enriched by SM were representatives of 
the phylum Actinobacteria (Additional file 2: Figure S6), 
which concurs with previous reports on significant dif-
ferences in abundance of microbial taxa associated with 
replant vs non-replant soil [59] and SM treated vs. non-
treated replant soil [6, 60]. Treatment-enriched genera 
matched many of the groups also detected by the 16S 
rRNA survey of the same samples [38]. Many of these 
groups have documented activity against ARD patho-
gens. Both SM-treated samples were enriched with 
sulfide-oxidizing genera (e.g., Thiomicrospira) whereas 
NTC samples were enriched in many sulfur-reducing 
groups including Desulfobacteracea and Desulfobulbus. 
Taxa that were highly abundant in SM-treated samples 
also included reported plant growth-promoting bacteria 
such as Variovorax, Azospirillum, Klebsiella, Enterobac-
ter, Alcaligenes, Arthrobacter, Burkholderia, and Bacil-
lus as well as nitrogen-fixing bacteria including Frankia, 
Bradyrhizobium, Mesorhizobium, and Sinorhizobium 
[61–63]. Finally, according to our amplicon data, the 
fungal groups Arthrobotrys (nematode-trapping fun-
gus) and Trichoderma were highly abundant in the 
SM-treated samples. Notably, Brassica SM treatments 
are not equally suppressive to all pathogens. In this 
analysis, and consistent with the results from amplicon 
sequencing, high levels of Pythium, previously reported 

https://webapp.ufz.de/tmdb/
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to be stimulated by B. napus [20, 38, 60], were detected 
in the B. napus but not BjSa SM treatment, relative to 
non-amended controls. Also, the amplicon data shows 
that arbuscular mycorrhizal fungi (AMF) of the Phylum 
Glomeromycota were significantly more abundant in 
SM amended soil, with members of the order Paraglom-
erales enriched in BjSa but not in B. napus SM treat-
ments relative to the NTC (Additional file 3).

Associating specific functions with ‘sick’ vs ‘healthy/
recovered’ microbiome
Microbiome-mediated plant recovery is thought to rely 
on the increased abundance of species with particular 
functional characteristics [6, 38]. Beyond confirming 
the identity of previously reported taxonomic groups 
as differentially abundant in SM-induced microbiomes 
[5, 6, 38], we aimed to delineate the unique functional 
contributions of these groups leading to recovery from 
replant disease. Out of ~ 48,000,000 genes, 39 to 82% 
were assigned to a functional category, considering dif-
ferent annotation schemes (Additional file  2: Table  S2). 
The functional profile was consistent with the taxonomic 
profile (Fig.  2B), pointing to seed meal-induced shifts 
in microbiome performances. As in Fig.  2A, the root-
stock effect on microbial community function is most 

observable for the B. napus SM treatment in comparison 
to BjSa SM and NTC treatments.

In order to characterize key functional differences 
between ‘sick’ and ‘recovered’ samples, we first focused 
on BjSa SM and NTC treatments, with the weaker 
rootstock effect, and identified KEGG modules that 
were enriched in differentially abundant KO accessions 
(Fig.  2B, Additional file  4). In parallel, in the B. napus 
treated samples, each rootstock was compared to the 
respective NTC samples. Functional modules enriched in 
differentially abundant (DA) KOs are listed in Table 2. In 
accordance with Fig. 2B, a highly similar set of KO mod-
ules was enriched in NTC treatments relative to BjSa 
and B. napus × G210. By comparison, fewer KO modules 
were significantly enriched in the NTC treatment relative 
to B. napus × M26, indicating a greater degree of func-
tional similarity between these two treatments.

Many of the functional modules enriched in NTC 
treatments included pathways for nitrogen cycling and 
sulfur assimilation (thiosulfate oxidation by SOX com-
plex, sulfate-sulfur assimilation, and assimilatory sulfate 
reduction). Reduced representation of pathways involved 
in the cycling of inorganic compounds in treated sam-
ples might be explained by the high availability of organic 
forms in the seed meal. A number of modules enriched 
in DA KOs in NTC samples were also enriched in B. 

Fig. 2 Principal coordinates analysis (PCoA) plots of Bray–Curtis dissimilarities in the taxonomic (A) and functional (B) groups in root bacterial 
communities based on count tables derived from the metagenome analysis. A Genus level taxonomy—overall 2630 genera were detected 
across all 30 samples; similar pattern was observed when using order level as a key for merging the table (Additional file 2: Figure S5). B Functional 
annotations. Several schemes were used for functional annotation including NOG and SEED and KEGG EC (Additional file 2: Figure S5). Here, we 
show ordination pattern based on KO annotations. Overall 7741 unique KO categories were identified across all 30 samples. Percentage of variance 
are indicated in brackets. The treatments were additives (Brassica juncea/Sinapis alba seed meal (BjSa), Brassica napus seed meal and non‑treated 
control‑NTC), with two apple rootstocks (M26, G210). Both databases were filtered to at least 50 counts per feature and rarefied
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napus × M26 relative to BjSa (Additional file 2: Table S5). 
For example, Cobalamin (vitamin B12) biosynthesis was 
associated with both NTC and B. napus × M26 treat-
ments, possibly pointing to a deficiency of this essential 
vitamin in the rhizosphere under these conditions.

KO accessions that were found to be more abundant in 
BjSa SM included such involved in the degradation and 
biosynthesis of the aromatic compounds toluene and 
dihydrokalafungin, respectively. It has been shown that 
bacteria containing toluene-degradative pathways can 
utilize a broad range of structurally similar substrates, 
including phenols [64]. Sinalbin (4-hyroxybenzyl glu-
cosinolate), the main glucosinolate present in S.alba (a 
component of BjSa but not of B. napus SM), contains a 
phenol side-chain. Thus, it is likely that bacteria with the 
ability to degrade Toluene could potentially utilize sinal-
bin and Dihydrokalafungin as carbon substrates. These 
results point to unique biodegradative/bioremediative 
abilities specifically linked to S. alba SM. Beyond this 
specific example, functional capacities in many cases 
reflect unique environmental adaptations, in which the 
organic seed meal amendments can induce differences 
between the SM-treated and untreated control samples.

To interpret potential significance of specific DA func-
tions beyond the identification of enriched pathways/
modules, we focused on the characterization of the envi-
ronmental resources that are associated with these reac-
tions. Based on the metabolic networks formed by the 
sets of DA enzymes (enzymes that are DA in BjSa SM 
treated vs control samples, Fig.  1B), we applied compu-
tational approaches that predict externally sourced com-
pounds representing a proxy of the relevant metabolic 
environment. Such compounds could potentially be 
derived from several sources, including SM, microbial 
secretion and plant exudates. We followed the process 
outlined in [29] for constructing metabolic networks and 
predicting environmental inputs that were unique to SM 
treated vs control samples (Fig. 1D). Reassuringly, path-
ways enriched in predicted source metabolites unique 
to the SM treated-samples (BjSa and B. napus × G210) 
included glucosinolates (Table  2, Additional file  2: 
Table  S6), key components of the Brassicaceous SM 
mixtures [65]. Glucosinolates are sulfur and nitrogen-
containing glycosides derived from amino acids that are 
found at high concentrations in Brassicaceous plants, 
particularly in the seeds [66, 67]. The presence of glucosi-
nolates can be related to the prediction of excess sulfur 

and nitrogen in the SM-treated samples. Other unique 
environmental inputs enriched in SM-treatments were 
related to terpenoid metabolism, including many phy-
tochemicals that can be found at high levels in Brassica-
ceous plants [67]. Overall, the network-based predictions 
of environmental inputs pointed at multiple compounds 
and phytochemicals associated with the source treat-
ments (seeds of Brassicaceous plants) in the SM-treated 
samples but not in the control treatment. Predicted 
environmental resources enriched in NTC and/or 
B.napus × M26 treatments included a broad spectrum 
of compounds related to plant defense (e.g., phenylpro-
panoids, indole diterpene alkaloids and alkaloids derived 
from shikimate pathway). These types of compounds are 
likely to be elevated in root exudates of plants experienc-
ing pathogenic pressure that can be expected in soil sys-
tems conducive to replant disease.

Unlike the set of enzyme coding genes—reflecting 
the full functional potential of species in soil, actual 
metabolic performances are environment-dependent 
and reflect available nutritional sources. The predicted 
source-metabolites (environmental resources), together 
with the metabolic potential (the enzymes), allowed 
us to simulate metabolic activity in SM-treated vs con-
trol environments [27, 49] and explore the influence of 
environmental inputs on metabolic capacities in a given 
environment. Simulations generate a set of all possible 
metabolites that can be produced (representing “func-
tion”) given (1) a set of feasible reactions identified in 
the metagenome and (2) sets of compounds representing 
SM/NTC environments (Fig. 1F). The resulting networks 
represent the activity of the community in different sam-
ples (SM-treated vs control) and are composed of shared 
(grey) vs unique (colored) compounds (Fig.  3—SM-
treated; Additional file  2: Figure  S7). The high number 
of common compounds in BjSa SM and NTC samples 
(2004 compounds out of 2493 and 2340, respectively) can 
be expected in natural, robust systems where the major-
ity of primary functions are conserved across multiple 
taxonomic groups and central metabolism is carried out 
despite environmental variations [68]. Visualization illus-
trates that whereas DA enzymes (colored network edges) 
are distributed across the metabolic networks, unique 
compounds (colored network nodes) can in many cases 
be grouped providing a clearer functional signature. 
Many of the pathways enriched in compounds unique to 
the BjSa SM involve the utilization of potential derivates 

Fig. 3 Visualization of the networks representing the metabolic activity in Brassica juncea/Sinapis alba seed meal (BjSa SM)‑treated versus NTC 
(control) samples. Network was produced by simulating metabolic activities given a set of metabolic reactions (3060 enzymatic reactions) in BjSa 
SM‑treated samples. Pathways that are enriched (FDR adjusted P value <  = 0.05) with network components (nodes) that are unique to the treated 
samples are indicated with nodes’ background color. A reciprocal image, visualizing the metabolic activity in NTC (control) versus BjSa SM‑treated 
samples is provided in Additional file 2: Figure S7

(See figure on next page.)
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Fig. 3 (See legend on previous page.)
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of Brassica SM including glucosinolates and other poten-
tial components of oil-sourced seeds such as limonene 
[67], a volatile with antifungal activity [69], and geraniol 
with antimicrobial activity [70]. Finally, the enrichment 
patterns for these simulation-based metabolic networks 
(Additional file  2: Table  S7) are in agreement with the 
enriched pathway profiles of DA enzymes and environ-
mental resources (Table 2) in which functional pathways 
and metabolites unique to BjSa and B. napus × G210 vs. 
NTC largely differed from the enrichment profile of B. 
napus × M26 vs. NTC.

Metagenomic stratification of microbial function: teasing 
out distinct taxa‑function relationships
In addition to highlighting rhizosphere functions asso-
ciated with recovery from replant disease, we further 
aimed to associate these functions with differentially 
abundant microbial groups (Fig.  1G). Enzymes were 
scored according to the taxonomic diversity of their 
associated reads (see “Methods” section). Taxa-dom-
inance was determined for each enzyme according to 
the distribution of reads in specific samples and hence 
is treatment-specific rather than a constant attribute 
of the enzymes. For example, out of 3060 enzymes, 
942, 904, and 814 were paired with a dominant taxa 
at the order-level and 661, 641, and 577 at the genus-
level for BjSa SM × G210, B. napus SM × G210, and 
NTC × G210 treatments, respectively (Additional 
file  3). In accordance with the conservative nature of 
metabolism [71], the majority of enzymatic functions 
were found to be carried by most community mem-
bers. Nonetheless, our analysis suggested that specific 
enzymatic functions are dominantly carried (accord-
ing to approximation) by distinct taxonomic groups 
(Fig.  4A). In some cases, taxonomic groups that were 
differentially abundant in SM treatment (green) vs NTC 
(orange) had a higher number of signature enzymes in 
the respective sample (e.g., Bacillus and Glomerales in 
BjSa and Candidatus Nitrosolenus in NTC samples; 
Fig. 4A). The taxa-dominated enzymes mostly mapped 
to multiple metabolic pathways with no clear taxo-
nomic signature across specific functions (Additional 
file 2: Table S8).

In order to boost the signal for potential functional 
roles of key (e.g., differentially abundant) taxonomic 
groups in the treated samples (highlighted in Fig. 4), we 
carried out iterative simulations of ‘knock out’ microbi-
omes considering the environmental resources charac-
teristic of the treatment. Simulations were carried out 
using the predicted environmental resources and set 
of reactions used to describe activity in the treatment/
control samples, while conducting iterative eliminations 
of groups of taxa-dominated enzymes, one group at a 

time (illustrated in Fig.  1G). The impact of the removal 
of each key taxonomic group was estimated accord-
ing to differences in the metabolite content between the 
original meta-network, expanded from the full enzymatic 
set (Fig.  3), and the network expanded from the trun-
cated enzyme set (Fig.  5). The key difference between 
network-based activity simulations (as shown in Figs.  3 
and 5) vs static functional characterization such as path-
way completeness (as carried out in many genome cen-
tric metagenomics analyses [72]) is that the simulations 
reflect the robustness of the network to function/enzyme 
removal and the effect of the environment. That is, path-
way completeness analysis cannot reflect the hierarchical 
positioning of a reaction in a pathway and its redundancy 
(the prospects of finding alternative routes for produc-
ing the corresponding metabolites). For example, an 
enzyme converting a predicted source-metabolite into 
a compound accessible by multiple groups in the com-
munity will have a high impact in network-based simula-
tions, particularly if there are no alternative biosynthetic 
pathways, but not in pathway-completeness analysis. In 
addition, simulations are environment-specific; hence, 
as in natural ecosystems, the functional impact of each 
taxonomic group is environment-dependent. Despite the 
robustness of the expanded metabolic networks, remov-
ing all enzymes dominated by taxonomic groups at the 
genus and order level led to 21% and 31% reduction in 
network size, respectively, when omitting all of the taxa-
dominated enzymes together.

The number of taxa-dominated enzymes (Fig. 4A) was 
in general agreement with the number of taxa-dependent 
compounds, defined as compounds that were eliminated 
from the network following the knock-out of correspond-
ing groups in the simulation (Fig. 4B, Additional file 9). 
Pathway distribution of taxa-dependent compounds 
suggested unique functional signatures of key groups 
(Fig. 4C, Additional file 2: Table S8), possibly associated 
with a direct or indirect effect on the ‘recovery’ pheno-
type of the orchard. For example, antibiotics such as 
Albaflavenone (KEGG accession C17954) and its precur-
sor Epi-isoizaene (C16269) were predicted as Streptomy-
cetales taxa-dependent compounds in accordance with 
biochemical reports [73]. Streptomycetales were highly 
abundant in SM-treated samples and their unique pro-
file of antibiotics might lead to the specific suppression 
of some of the under-represented groups. Myxococcales 
(highly abundant in the B. napus SM treated samples), 
another order associated with unique contribution to the 
biosynthesis of antibiotics, are also known to be suppres-
sors of root microbial pathogens with antibacterial and 
antifungal activities [74, 75]. Other literature supported 
examples included the contribution of Sphingomonadales 
to carotenoid metabolism [76] and of Xanthomonadales 
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Fig. 4 Distribution of order‑level taxa‑associated functions detected in the rhizosphere of G210 apple rootstock. Colored labels of taxonomic 
groups indicate significant abundance in the Brassica juncea/Sinapis alba seed meal (BjSa)SM treated (green) or control (orange) samples. Pathways 
with at least four taxa‑dependent compounds are detailed. The distribution of genus‑level taxa‑associated functions is provided in Additional file 2: 
Figure S10
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to linoleic acid metabolism [77]. Linoleic acids are natu-
ral inhibitors of nitrification in soil, and were shown to 
act as suppressors of Nitrosomonas [78], a genus that was 
under-represented in the BjSa SM amended samples in 
comparison to the control (Additional file  3). Mycobac-
terium, predicted to have a unique contribution in ster-
oid hormone metabolism, are known to have the capacity 
of utilizing sterols as a carbon source [79]. Some of the 
functional categories associated with the SM treatment 
(Fig. 3) can be related to specific groups that are differen-
tially abundant in these samples (Fig. 5): Bradyrhizobium 
were associated with Limonene and pinene metabo-
lism; Rhodospirillales (mainly its genus Reyranella) were 
associated with geraniol degradation; Acidobacteriales 
(mainly Candidatus Koribacter) have unique contribu-
tion to glucosinolate metabolism, possibly reflecting the 
ability of this taxon to exploit organic sulfur molecules 
for energy conversion [80, 81].

Prediction and testing of the effect of specific metabolites 
as biostimulants/biosuppressors of beneficial taxonomic 
groups
The ultimate goal of the simulations described above was 
to highlight specific compounds that may be beneficial to 
organisms contributing to disease control, or deleterious 
to organisms contributing to disease progression. To this 
end, we screened for (i) compounds whose utilization 
depends on specific microbial groups, hence can act as 
taxa-specific biostimulants or (ii) compounds that serve 
as essential metabolites for many taxa through exchange 
interactions, but whose production depends on specific 
microbial groups [82, 83]. Dominance in producing an 
essential metabolite may convey a fitness advantage to 
the producer if the compound is in limited supply; an 
advantage may be lost when the compound is in excess. 
Hence, such compounds may act as taxa-specific biosu-
pressors. Adding such compounds to soil could lead to a 
predicted effect on community structure associated with 
the disease recovery phenotype.

For the design of experimental validation, the lim-
ited collection of treatment-specific, taxa-dependent 
compounds (Fig. 4), was scrutinized via a review of the 
literature (Additional file  2: Table  S9). A short list of 
potential biostimulants and biosupressors was further 
limited by considering only those metabolites that can 
be added to soil in view of regulatory and commercial 
aspects. The selected metabolites included dopamine 

and vitamin B12 as potential biostimulants (scenario 
i) and biosuppressors (scenario ii) of beneficial taxa, 
respectively. Dopamine is a non-toxic catecholamine, a 
group of compounds detected in many Brassica plants 
[84] and was shown to enhance the growth of a vari-
ety of Proteobacteria [51, 85]. In the BjSa SM-treated 
samples (and not NTC), metabolism of catecholamine 
derivatives (included in the KEGG pathway of tyros-
ine metabolism) was predicted to depend on bacte-
rial taxa within the order Xanthomonadales (Fig.  5). 
This proteobacterial group was highly-abundant in the 
treated samples and is likely to contain beneficial mem-
bers associated with suppression of replant fungal and 
oomycete pathogens [86, 87]. We hypothesized that the 
addition of dopamine to BjSa SM-amended soil would 
increase the relative abundance of Xanthomonadales 
groups which can metabolize catecholamine. In both 
SM-treated samples, synthesis of the co-factor vitamin 
B12 (included in the KEGG category of Porphyrin and 
Chlorophyll metabolism) was predicted to be depend-
ent on bacteria within the orders Rhizobiales and Strep-
tomycetales (Fig. 5). Both of these groups were recently 
identified as key producers of vitamin B12 in soil [53, 
88–90]. We hypothesized that the addition of vitamin 
B12 to the BjSa SM soil system would reduce the pro-
ducers’ competitive advantage in the rhizosphere com-
pared to soil treated with BjSa SM alone.

The predicted effects of the potential biostimulant 
(dopamine) and biosuppressor (vitamin B12) metabo-
lites were tested in a four-condition experimental pot 
system, adhering to the methods utilized in the original 
experiment: BjSa SM treatment, BjSa SM treatment with 
supplement (dopamine or vitamin B12), control (NTC), 
control with supplement. As expected from the network-
based predictions, the relative abundance of several 
OTUs belonging to the Xanthomonadales were signifi-
cantly higher in the BjSa + dopamine treatment relative 
to both BjSa SM alone and NTC + dopamine (Fig.  6A; 
p = 0.0018 and p = 0.0164, respectively), including two 
taxa (Dokdonella spp. and Thermomonas dokdonen-
sis) which were positively correlated with root biomass 
(Additional file 2: Table S10).

In terms of tree performance, seedling biomass was 
greatest in BjSa SM + dopamine treated soils, though 
a significant difference in biomass was detected only 
between BjSa SM + dopamine and NTC + Dopamine 
treatments (highest and lowest, respectively, Fig.  6C; 

Fig. 5 Taxonomic stratification of microbial functions. Visualization of order‑level dominated functions (enzymes and compounds) in a network 
representing the overall metabolic activity in Brassica juncea/Sinapis alba seed meal (BjSa) treated soil. Colored edges and nodes in the network 
represent taxa‑dominated enzymes and taxa‑dependent compounds in BjSa X G210, respectively, shown here at the order level and in Additional 
file 2: Figure S8 and Additional file 2: Table S10 at the genus level. The nodes’ background color indicate the compounds associated with the 
pathways presented in Fig. 4

(See figure on next page.)
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Fig. 5 (See legend on previous page.)
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p = 0.025). The opposing effects of dopamine on BjSa 
SM-amended vs. NTC treatments can be explained by 
the impact of the SM on the taxonomic composition 
and metabolic activity of the soil microbiome before 
dopamine addition. In addition to enrichment of the 
Xanthomonadales groups, a significant increase in the 
relative abundance of species from the Nevskiales order, 
primarily belonging to the Sinobacteraceae family, was 
observed in BjSa SM + dopamine relative to BjSa (Fig. 6B; 
p = 0.0048). The Nevskiales, particularly the Sinobacte-
raceae family, is closely related and taxonomically-tan-
gled with Xanthomonadales [91]. In the G210 samples, 
the network-based analysis pointed at dominance of the 
order Xanthomonadales in metabolizing catecholamine, 
whereas the Nevskiales were identified as the dominant 
group carrying out the same function in M26 samples 
(Additional file 2: Figure S8).

Unlike our hypothesis, adding Vitamin B12 to BjSa SM-
amended soil did not result in a reduction of groups from 
either Rhizobiales or Streptomycetales orders. In accord-
ance with no significant change in the relative abun-
dance of these beneficial taxa, plant performances were 
not affected by the B12 treatment (Additional file 2: Fig-
ure S10). One possible reason for the lack of differences 
in the response of predicted producer taxa to vitamin 
B12 addition may be related to the complexity and high 
costs of its production. Thus, when cobalamin is abun-
dant, producers may switch from synthesis to salvage 
pathways providing them a competitive advantage.

Conclusions
The primary goal of the study reported here was to gar-
ner an understanding of metabolites instrumental in 
directing the assembly of a disease-suppressive microbi-
ome (either directly from the SM amendment or through 
the induction of specific taxa that secrete those com-
pounds). Considering the network complexity of the 
rhizosphere microbiome, the art of strategically engi-
neering microbial communities to optimize functions of 
interest is extremely challenging and has not yet achieved 
a reliable predictability. However, the use of integrated 
approaches relying on genomics/metagenomics-based 
documentation of community structure and dynamics, 
together with metabolic modeling approaches, is rapidly 
paving the way for the systematic description of ecosys-
tem architecture. The development of this knowledge 
base can then be used to promote the design of effective 
resource management schemes to harness the potential 
of the indigenous microbiome towards pre-defined func-
tions [22, 25, 31, 32, 92]. This work demonstrates the 
formulation of model-based predictions from network 
analyses of metagenomics data and the subsequent test-
ing performed to validate those predictions. The gene-
centric approach taken here is inclusive in the sense that 
unlike many recent studies that focus on fully recovered 
genomes, it allows for the representation of less abundant 
species, with almost 70% of the reads being included—a 
critical aspect for the study of a the highly diverse eco-
system such as soil. This gene-centric approach for data 

Fig. 6 Testing of the effect of dopamine as a biostimulant of beneficial taxonomic groups. Box‑and‑whiskers plots show the abundance of 
select bacterial genera within the orders Xanthomonadales (A) and Nevskiales (B), predicted by network analysis to be linked to the utilization of 
dopamine and seedling biomass measured upon harvest (8 weeks post‑planting; n = 10) (C). 16S rRNA gene sequence data was obtained from 
DNA extracted from rhizosphere soil collected 4 weeks post‑planting into the respective treatments (n = 5). Values plotted represent the 25th 
percentile, the median, the 75th percentile; whiskers extend to the minimum and maximum. In A and B, multiple comparisons were carried out 
with Dunn’s test following the Kruskal–Wallis non‑parametric test. In C, multiple comparisons were performed using Tukey’s test following ordinary 
one‑way ANOVA. Unlike the original experiment, seedling biomass was similar between BjSa SM and NTC
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analysis resulted in a three-fold increase in the number 
of identified genera in comparison to those identified by 
amplicon sequencing. The projection of taxa-dominated 
functions over the meta-network, representing a com-
posite collection of the complement set of enzymes in 
soil, provides an overview of core vs specialized func-
tions. This community view of metabolism reflects the 
recognition that metabolic exchanges serve as pivotal 
determinants of the structure and function of ecosys-
tems in general and of microbial communities in par-
ticular [26, 82, 93, 94]. Using this gene-centric approach, 
we were able to formulate hypotheses for compounds 
that serve as modulators of microbial composition in the 
rhizosphere. As a case study, experimental validation of 
the compound dopamine corroborated its predicted role 
as modulator of specific plant-beneficial taxa. However, 
the development of conclusive protocols for the active 
manipulation of plant microbiomes will require more 
detailed exploration of the predictions as well as careful 
calibration of application rates and timing. Moreover, 
the differential effects of dopamine on the abundance 
of Xanthomonadales in BjSa SM and NTC treatments 
highlights the impact of the intricate network of inter-
actions in soil where multiple factors determine species’ 
abundance. Hence, future development of a more robust 
validation system will likely rely on a combination of cul-
ture-dependent and independent methods. For example, 
recovery of metagenome-assembled genomes (MAGs) or 
even strain-resolved genomes [58] could be used to pre-
dict growth conditions which would allow for selective 
cultivation of biologically functional strains. In addition, 
sequence data could be used to develop qPCR method-
ologies that specifically target the suspected organism(s) 
and/or functional gene(s) in order to quantify the relative 
occurrence in the roots and/or soil.

The generation of testable predictions based on the inter-
pretation of genomic data is a first step towards untangling 
the intricate and dynamic web of microbial interactions 
in soil. To date, few soil amendment-based protocols have 
demonstrated the consistent and effective performance 
required to supplant conventional disease control prac-
tices, such as soil fumigation. The application of data-
driven predictions targets trial-and-error protocols which 
enable development of optimal solutions for disease con-
trol (in this case, the use of organic amendments to recruit 
indigenous microorganisms possessing diverse functions 
including the capacity to suppress high pathogen loads). 
The framework used here for generating predictions for the 
selective targeting of microbial groups based on processing 
assembled and annotated metagenomics data is available as 
a pipeline at https:// github. com/ ot483/ NetCo m2.

Future metagenomic analyses may integrate additional 
data layers, including metabolomics, transcriptomics, 

and the recovery of complete genomes. The applications 
of these analytical tools in experimental design go well 
beyond the specific model suggested in this study and 
can be easily applied to many other cropping systems. In 
fact, such a platform is broadly applicable to harnessing 
plant—microorganism and microorganism—microor-
ganism interactions in many different environmental sce-
narios (e.g., remediation of contaminated sites).

The optimization of predictable outcomes from such a 
strategy has the potential to enable a reduction in agro-
chemical use. Restoring a balance between the needs of 
a constantly growing population and protecting the envi-
ronment for future generations poses a significant chal-
lenge to developing ecologically sustainable solutions. 
In an era of ecosystem degradation and climate change, 
optimization of microbiome function in agroecosystems 
offers one of the few untapped routes to reducing reli-
ance on agrochemicals and restoring the health of the soil 
microbiome [95, 96].
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