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A B S T R A C T   

In this study, we investigate how households’ choice of energy source is influenced by the status of the local 
forest resource. We assume that households choose between clean fuels (e.g., kerosene, LPG, solar, and elec-
tricity), dirty biobased fuels (e.g., firewood, animal dung, crop residues, and charcoal), and mixed fuels. We 
integrate socioeconomic data with high-resolution satellite data on forest conditions from the Uganda National 
Panel Survey. The findings from a random-effects multinomial logit model indicate that households in vegetated 
areas are 6–7% less likely to rely solely on dirty biobased fuels, and 6–8% more likely to use mixed fuels, 
compared to those in non-vegetated areas. A larger forest stock is more strongly associated with lower use of 
firewood than charcoal. A possible explanation for the findings is the presence of policies for forest conservation 
and enhanced forest property rights, which improve forest conditions and limit opportunities to collect firewood. 
Given households’ dependence on forest-based fuels, such policies could need to be modified to secure house-
holds’ access to these fuels.   

1. Introduction 

In developing countries, dirty biobased1 energy practices (e.g., fire-
wood, animal dung, crop residues, and charcoal) have both negative and 
positive effects. On one hand, the use of biobased fuels is dangerous to 
human health and excessive use of forest fuel can undermine the sus-
tainability of forest ecosystems (Chen and Kuo, 2001; Herington et al., 
2016; Shankar et al., 2020). The health impacts comprise respiratory 
infections for children (Edwards and Langpap, 2012; Heltberg, 2005; 
Jagger and Shively, 2014), a considerable physical burden associated 
with firewood collection (Foell et al., 2011), and exposure to air pollu-
tion among women involved in cooking (Muller and Yan, 2018). 
Excessive forest fuel extraction has the potential to degrade forests 
(Manning and Taylor, 2014) and may over time worsen fuel scarcity 
(Amacher et al., 1993; Baland et al., 2017; Burke and Dundas, 2015; 
Manning and Taylor, 2014). On the other hand, firewood collection 
facilitates income generation (Ektvedt, 2011; Kamanga et al., 2009; Kim 
et al., 2017), and the collection and use of biobased fuels is an important 

part of culture and daily life (Mazzone et al., 2021). 
Compared to dirty biobased fuels, so-called clean energy sources like 

kerosene, LPG,2 solar energy, and electricity, have a wider range of 
applications,3 are less hazardous to human health, and are easier to use 
(Stern, 2010). Utilizing such energy sources also lessens the strain on 
forest health status (Garland et al., 2015; Government of Uganda, 2015). 
Therefore, it is frequently suggested that initiatives aimed at promoting 
the transition to clean energy should be encouraged (Lee, 2013; Smith, 
2002). Different policy instruments, such as information campaigns 
advocating improved and more efficient biomass stoves, or subsidy 
schemes to cover the expenses of the poor for adopting new technology 
in order to stimulate a fuel switching process, could be used (Heltberg, 
2005). Such a transition is argued to be particularly important where 
fuelwood is an important fuel (Edmonds, 2002; Fisher, 2004; Heltberg 
et al., 2000) and forest degradation is a serious problem. For any policy 
program intending to achieve conversion towards clean fuels, or 
enhanced forest status, it is important to understand how households 
respond to changes in forest condition (Bandyopadhyay et al., 2011). 

* Corresponding author. Swedish University of Agricultural Sciences, Department of Economics, Sweden. 
E-mail address: bahre.kiros@slu.se (B. Gebru).   

1 Dirty fuels are also called traditional or inferior fuels in the literature.  
2 Liquefied Petroleum Gas.  
3 For instance, solar energy can be utilized for a variety of tasks, including lighting, cooking, and charging mobile devices. Batteries in mobile phones, however, 

cannot be charged with firewood. 
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Knowledge about these responses is valuable because it improves the 
understanding of the magnitude of policy interventions required, and 
how policies could affect forest conditions in different localities. 

Evidence on the links between forest degradation, firewood collec-
tion, and fuel choice is scant (Heltberg et al., 2000; Pattanayak et al., 
2004). Relatively few studies examine the effect of firewood scarcity on 
fuel choice. These studies measure firewood scarcity in different ways. 
Some studies make use of economically related scarcity indicators, such 
as the price of firewood (Alem et al., 2016), the total firewood collection 
time (Guta, 2012, 2014; Lee et al., 2015; Palmer and MacGregor, 2009), 
and the average firewood collection time (Heltberg et al., 2000), where 
the latter two are used as indicators of opportunity costs of firewood. 
These measures have limitations. For example, the market price of 
firewood does not fully reflect firewood scarcity because the energy 
input market is not well-functioning in Africa (Cooke et al., 2008). 
Heltberg (2005) uses a physical measure, the distance to forests, that 
indicates households’ potential access to collectable firewood. Heltberg 
et al. (2000) consider both average fetching time, forest access, and 
forest stock. They measure forest stock as the ratio of the village popu-
lation number to forest area. A lower ratio then indicates a greater 
incentive to substitute non-forest fuels, such as animal dung and crop 
residues, for forest firewood. The other forest related variable, forest 
access, is measured by the village population number relative to the total 
area of the village, where higher ratio is expected to induce a larger use 
of non-forest fuels. 

Common to the mentioned studies is that the proxies for firewood 
scarcity are almost always obtained from self-reported data. Such self- 
reported data have drawbacks (Burivalova et al., 2015) because they 
could include measurement errors. When household heads report, for 
example, the time spent gathering firewood or the distance travelled by 
each household member, recording and recalling issues may arise. In 
contrast, Jagger and Kittner (2017) use a different approach, examining 
the connection between household energy preferences and biomass 
availability as measured by a satellite-based measurement of land cover 
change. However, their study is limited to agriculture-driven defores-
tation in west central Uganda and contains few observations (902 
households). 

The purpose of this study is to examine the role of forest status in 
households’ fuel choice. We assume that households choose between 
clean and dirty fuels, or a mix thereof, and hypothesize that households 
in areas with more forest vegetation use more biobased dirty fuels, in 
particular firewood and charcoal. To avoid the above mentioned prob-
lems associated with self-reported data on firewood scarcity, we use the 
Enhanced Vegetation Index (EVI)4 as an indicator of forest status. The 
EVI is a satellite based measurement of surface vegetation greenness 
used to reflect variations in forest availability and biomass richness of a 
forest (Ishtiaque et al., 2016). It is a global-based and widely used index 
for monitoring vegetation activity (Boles et al., 2004; Soudani et al., 
2006; Xiao et al., 2004). Admittedly, measurement errors could still be a 
potential pitfall associated with remote sensing data (Donaldson and 
Storeygard, 2016). For example, classification of forest status into 
non-vegetated, sparsely vegetated, and densely vegetated areas based on 
such data (Hasanah and Indrawan, 2020) could involve a subjective 
component. We address this problem by using a continuous measure of 
the forest status variable as a robustness check. 

The analysis is applied to Uganda. This choice is motivated by the 
country’s strong dependence on firewood, in combination with political 
ambitions to rapidly transit towards cleaner energy. Moreover, dis-
aggregated data on energy utilization is available, and extrapolation of 
the results to other Sub-Saharan Africa (SSA) countries is relevant 
because uptake of clean energy and reliability of electricity supply, in 
particular, is a serious problem in the region at large (Blimpo and 

Cosgrove-Davies, 2019). The household socioeconomic characteristics 
and satellite data on forest status are obtained from a three-round panel 
dataset from the Uganda National Panel Survey (UNPS) collected during 
2009/10, 2010/11, and 2011/12 and made available by the Uganda 
Bureau of Statistics (Uganda Bureau of Statistics, 2009/10, 2010/11, 
2011/12). We model households’ fuel choice using the random-effects 
multinomial logit model (REMNLM) under Generalized Structural 
Equation Modeling (GSEM) that addresses selectivity bias (Baum et al., 
2017). 

Our paper makes at least two contributions to the literature. First, it 
employs a spatio-temporally robust measure of firewood scarcity at 
household level, thereby improving on earlier studies. Also, the use of 
remote sensing data, which can be linked to field-based household data, 
allows us to obtain data with high spatial resolution. Second, unlike 
most previous research on similar topics that typically relies on cross- 
sectional data (Alem et al., 2016), we use panel data that takes into 
account socioeconomic, housing, environmental, and weather variables 
that are not commonly controlled for in earlier studies. 

The remainder of the paper is organized as follows. Section 2 pro-
vides the context of the study. Section 3 describes the data, and section 4 
presents the econometric methods. Section 5 discusses the results, and 
section 6 concludes. 

2. Case study background 

This section briefly presents the background regarding the socio-
economic situation, forest status, fuel use, and energy policy targets in 
Uganda. 

2.1. Socioeconomic context 

Uganda has a population of about 42 million. Above 15% of the 
population is between the ages of 0 and 14. Over the period 2009/10 to 
2011/12, the percentage of female-headed households is 44%, see 
Table A.1 in the Appendix. In Uganda, migration is common. Young 
individuals between 15 and 34 years make up 55% of the movers. 
Migration could affect landscapes in protected areas. For example, 
Hartter et al. (2015) document that areas surrounding Kibale National 
Park in western Uganda have changed from being sparsely settled 
bushland to a heavily settled subsistence farming landscape due to 
migration. 

The UNPS shows that close to 70% of the working age (14–64 years) 
group are self-employed in the country. More women than men are 
unemployed. The majority of men work in paid jobs, whereas the ma-
jority of women are self-employed. Most people work within the agri-
culture and service sectors. Poverty is a persistent problem, and about 
10% of the population remained chronically poor during the studied 
time period (Uganda Bureau of Statistics, 2011/12).5 

Farming households typically receive land as an inheritance or gift. 
Of the agricultural households, 34% are involved in crop production, 
11% are engaged in livestock rearing, and 10% practice mixed farming. 
Other households are involved in, e.g., mining and quarrying, 
manufacturing, and construction. The main crops are bananas, sweet 
potatoes, and beans and maize. The percentage of farmers raising cattle, 
goats, sheep, and pigs decreased over the study period, while the per-
centage of households engaged in poultry farming increased. The latter 
can be linked to a growing market for local birds and new breeds of 
chicken. Likewise, the percentage of households rearing small animals 
increased (Uganda Bureau of Statistics, 2011/12). 

Uganda is a diverse country in terms of ethnicity (or tribes), culture 
and religion. The dominant tribes are Baganda (18.61%), Banyakole 

4 The EVI data is measured based on household locations by enumeration 
areas in Uganda. 

5 These households are female-headed, polygamous married, and/or led by 
household heads having no formal education. Geographically speaking, they 
are mostly located in the country’s North. 
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(9.21%), Langi (8.43%), Basoga (7.18%), Bakiga (6.95%), and Iteso 
(6.92%). There are 42 indigenous languages, with English and Swahili 
being official languages (Hamilton et al., 2016), and Christianity and 
Islam account for about 82% and 14% of the population, respectively 
(International Religious Freedom Report, 2019). 

2.2. Forest status 

Uganda’s forests include alpine, tropical high- and medium-altitude 
forests, woodlands, wetland and riparian forests, plantations and trees 
(Obua et al., 2010). Private and customary land comprise about 70% of 
the forest, while local governments administer some public forests. 
Forest reserves are available on public land, and are protected by law. 
The woodlands are mostly privately owned. Natural forests and shrubs 
dominate Uganda’s vegetation (Bamwesigye et al., 2020). Forest struc-
ture and composition varys across the country due to differences in 
altitude, soil type, drainage, and human activities (Hamilton, 1984). 
Langdale-Brown et al. (1964) grouped the Ugandan forests into medium 
altitude–moist-evergreen forest, medium altitude–moist-semi-decid-
uous forest, and high-altitude forest. The first type of forest is structur-
ally complex and rich in species, including Peptadeniastrum-Uapaca (in 
Ssese islands), Peptadeniastrum-Albizia-Celtis (in drier lake shores), and 
Parinari excelsa (in western rift valley). Representative plant species for 
the medium altitude–moist-semi-deciduous forests are Celtis-Chryso-
phyllum (north of Lake Victoria), Cynometra-Celtis (along the western 
rift), Albizia-Milicia excelsa (to the north of Lake Victoria), and Albi-
zia-Markhamia (mid-west). The high-altitude forests have fewer species, 
e.g. Prunus moist sub-type, and typically a broken and irregular canopy. 
These forests are found in south-west Uganda. 

Forest degradation is a problem. High population growth leading to 
increased demand for forest products, and weak governance of settle-
ments and forests contribute to this (Obua et al., 2010). Private and 
publicly owned forests are both important sources of firewood and 
charcoal (Khundi et al., 2011), and therefore affected by this demand. In 
an effort to enhance forest management, Uganda is undergoing a tran-
sition to a more decentralized system, where about 70% of the forests 
are managed by the country’s District Forestry Service,6 while the 
remaining area falls equally under the National Forestry Authority7 and 
the National Wildlife Authority.8 

2.3. Fuel use 

In Uganda, biomass accounts for over 90% of the energy supply 
(Okello et al., 2013; Turyareeba, 2001), and firewood serves as a pri-
mary source of energy in about 89% of the households (Government of 
Uganda, 2015). Animal dung and crop residues account for 4.8% of the 
country’s primary energy consumption (Okello et al., 2013). Low forest 
biomass availability in west central Uganda forces households to instead 
rely on crop residues for cooking, or to collect non-forest based firewood 
which has a lower quality than forest-based firewood. Based on observed 
collection time, firewood scarcity in Uganda seems to be increasing over 
time (Jagger and Kittner, 2017). 

Clean energy sources account for less than 10% of total energy 
consumption: of this, petroleum fuels (e.g., gasoline, diesel fuel, kero-
sene, fuel oil, aviation fuel, and LPG) make up 7.4%, and electricity 
1.1%. Thus, Uganda is one of the countries with the lowest access to 
electricity in Africa (Okello et al., 2013). It is argued that the national 
electricity supply has serious reliability problems, which is a challenge 

to the adoption of new technologies (Blimpo and Cosgrove-Davies, 
2019). 

2.4. Energy policy targets 

The Ugandan government has set a target to reduce national wood 
consumption by 40% by 2030. In accordance with the UN Sustainable 
Energy for All initiative, it also aspires to promote access to clean energy 
services, including access to electricity and modern cooking solutions for 
all in the same target year (Ministry of Energy and Mineral Develop-
ment, 2017). In order to achieve these targets, millions of households 
must acquire LPG stoves, or improved wood and charcoal stoves. 
Achieving this will be a challenge given the country’s annual production 
capacity of 300,000 clean stoves, their short lifespan, inadequate stove 
distribution centers, and LPG companies being concentrated in the 
capital city Kampala (Government of Uganda, 2015). 

3. Data and measurements of forest status 

The UNPS includes seven survey rounds that span from 2009/10 to 
2019/20. The present study makes use of data from three survey rounds: 
2009/10, 2010/11, and 2011/12 (Uganda Bureau of Statistics, 
2009/10, 2010/11, 2011/12). The inclusion of more recent survey 
rounds is not possible because data on our chosen indicator for forest 
status is not publicly available for more recent survey rounds. 

The UNPS is suitable for fuel choice analysis in the African context 
because the survey contains a detailed energy use section. From this 
section, we use the question “Do you use [list of fuels] for cooking, 
lighting, and heating?”. We elicit whether or not a particular household 
is using clean energy sources (e.g., kerosene, LPG, solar, and electricity), 
dirty biobased energy sources (e.g., firewood, animal dung, crop resi-
dues, and charcoal), or a mix of those. The UNPS questionnaire asks if 
households use a specific fuel and the amount consumed in different, 
relevant units (e.g., kg, liter, or bundle, where the latter applies to 
firewood). However, the fuel quantities and measurement units are 
largely missing in the data, and it is not clear how the measurements 
should be converted into a single uniform unit. Therefore, we do not use 
such quantitative data in our econometric analysis. 

The classification of fuels as being clean or dirty used in this study is 
based on their effects on health and natural resource conditions 
(Pachauri and Jiang, 2008). Kerosene, however, is classified as clean in 
some studies (Alem et al., 2016; Foell et al., 2011; Viswanathan and Kavi 
Kumar, 2005), and dirty in others (Rahut et al., 2014). In this paper, we 
place it in the clean category, motivated by the low local environmental 
impact (Kavi Kumar and Viswanathan, 2007), despite its global impact 
on climate change. 

Throughout the paper, a household is defined as using clean energy if 
it uses at least one clean energy input but not any dirty fuel. Corre-
spondingly, households defined as using dirty energy use at least one 
dirty fuel, but not any clean source. Households are categorized as using 
mixed energy if they use at least one clean and at least one dirty source. 
Biobased fuels from forests and agricultural land are all included in the 
dirty energy category. However, as our main purpose is to investigate 
the effect of forest status on fuel choice, it is also necessary to specifically 
focus on forest fuels. We therefore also carry out analysis where forest 
fuels are treated separately from the other dirty fuels, and separately 
from each other, which is further explained in Section 4 below. The 
UNPS includes areas from the 2005/06 Uganda National Household 
Survey (UNHS).9 There were 34 enumeration areas (EAs) in Kampala 
District and 72 others10 in the Central, Eastern, Western, and Northern 
regions. All UNPS rounds attempt to keep the same households across 6 A local government unit responsible to mange land and forest resources 

outside of national parks.  
7 The National Forestry Authority administers central and local forest 

reserves.  
8 National Wildlife Authority advises on matters pertinent to land use in and 

off national parks, enforcement of use rights within parks being the major task. 

9 Before UNPS, UNHS surveyed households to measure national poverty in 
Uganda. Since 1999, it has collected data on 17,450 households in 112 districts.  
10 58 rural and 14 urban EAs. 
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survey rounds. The inclusion of Kampala, other urban, and rural areas of 
all regions ensure representation in the UNPS strata. UNPS randomly 
selects EAs and households from each EA. 

To identify the role of forest status in households’ decisions on en-
ergy use, we need an indicator of forest viability. Forest biomass is such 
an indicator. The concept ‘biomass’ broadly includes both above-ground 
and below-ground living mass, but most studies focus on above-ground 
biomass due to the difficulty in collecting data on below-ground biomass 
(Lu, 2006). Remotely sensed data uses vegetation indices (VIs) to mea-
sure forest biomass. The VIs are calculated based on vegetation prop-
erties and variations of structural canopy (Huete et al., 2002b; Shen 
et al., 2010), and can be used for vegetation classification (Huete et al., 
1999). The most commonly used VIs are the EVI and the Normalized 
Difference Vegetation Index, NDVI. The present paper is based on the 
EVI. The EVI is introduced as an improvement over NDVI by optimizing 
the vegetation signal where NDVI saturates (Huete et al., 2002a). The 
EVI removes both atmospheric and background noises simultaneously 
(Wang et al., 2003), and has proved to perform better than NDVI in 
many empirical applications (Huete et al., 1999; Liu and Huete, 1995). 
The value of the EVI falls between 0 (bare ground) and 1 (healthy 
vegetation). A detailed technical presentation of EVI is provided by Liu 
and Huete (1995), Huete et al. (1994) and Huete et al. (1997). Forest 
scientists also use NDVI to differentiate vegetated regions from 
non-vegetated ones, with an index falling between − 1 and +1 (Tucker, 
1979). The higher the NDVI value, the greater the density of the forest. 
While lower values indicate sparse vegetation, negative values 
commensurate to waterbodies. However, the NDVI estimation is less 
effective for our purpose since it is very sensitive to fluctuating atmo-
spheric and canopy background conditions (Gao, 1996; Liu and Huete, 
1995). 

Finally, there is a connection between the socioeconomic data (such 
as household roster, education, housing conditions, and energy use) and 
the satellite data on forests from UNPS. These datasets have unique 
household ID numbers in common. This unique identifier matches the 
datasets together and makes them ready for analysis. The household- 
level analysis has an unbalanced panel with 6270 observations in the 
full sample. The regions, sample households, and forest conditions in 
Uganda are shown in Fig. 1. 

4. Econometric methods 

On an aggregate level, the use of forest fuels can lead to a decline in 
forest status. This should be taken into account by a social planner when 
deciding on the optimal level of fuelwood extraction. However, for an 
individual household the same feedback effect from their private fuel-
wood collection decision is likely to be small or negligible when there 
are many neighbouring households also collecting fuelwood. In our 
analysis, we therefore assume that the forest status is exogenous to in-
dividual households. In our regressions, the dependent variable is 
whether the fuel sources of household i at time t are clean (j = 1), dirty (j 
= 2) or mixed (j = 3). The utility of the ith household from any fuel 
source category is modeled as: 

Choiceijt = θjForestit + X′

itβj+εijt (1)  

where Choiceijt is the category of the chosen fuel by household i at time t 
into j = 1, 2,3. The variable Forestit is an EVI-based indicator of forest 
status in the neighbourhood of household i at time t, and θj is the co-
efficient of interest. Following Hasanah and Indrawan (2020), we chose 
to classify EVI into 3 groups, reflecting the extent of forest status: 
non-vegetated if 0 ≤ EVI ≤ 0.35 (yes = 1), sparsely vegetated if 0.36 ≤

EVI ≤ 0.5 (yes = 2), and densely vegetated if 0.51 ≤ EVI ≤ 1.0 (yes =

3). 
The variable X′ is a vector of other explanatory variables with βj as 

the associated vector of coefficients. These are household variables (e.g., 
education of the household head, age, gender, and family size), eco-
nomic variables (e.g., land size, livestock size, and wealth measured in 
terms of consumption spending), housing variables (e.g., number of 
rooms, independent, shared residence, and other), environmental vari-
ables (plain, plateau, and mountainous areas), and weather variables (e. 
g., mean rainfall and temperature). The inclusion of these variables is 
motivated by the literature on household fuel choices, and ensures that 
we minimize estimation bias in θj. 

We hypothesize that more educated household heads tend to shift 
from dirty to clean fuels. Higher income is expected to have a similar 
effect, in accordance with the energy ladder hypothesis (Guta, 2012; 
Heltberg, 2005). Households with higher expenditures are hypothesized 
to use more clean or mixed fuels, but less of dirty energy 

Fig. 1. UNPS regions, sample households, and forest status in Uganda.  
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(Gebreegziabher et al., 2012; Guta, 2012). The literature reports that 
larger families use more firewood (Cruz et al., 2020; Ouedraogo, 2006), 
and less clean fuels and charcoal (Ouedraogo, 2006). Female-headed 
households will rely more on dirty biobased fuels (Guta, 2012; Oue-
draogo, 2006). In addition, households with larger land and livestock 
holdings could use more dirty biobased fuels (Guta, 2012). Housing 
factors may affect fuel choice. Heltberg (2005) reports that the number 
of rooms is positively related to the use of LPG. As observed in Burkina 
Faso the type of dwelling matters, for example, tenants that share a yard 
have more limited space for firewood storage facilities (Ouedraogo, 
2006). We use environmental landscape factors as control variables in 
the econometric specifications because they affect the level of infra-
structural investments (Yamada and Yamada, 2021), and thus installa-
tion of electricity. Weather conditions can also affect energy choice 
(Auffhammer and Mansur, 2014; Ektvedt, 2011; Mazzone et al., 2021). 
For example, most firewood in Peru is collected during dry seasons, 
when agricultural activity is less intense (Ektvedt, 2011). Finally, the 
variable εijt is the random error term, assumed to be independently and 
identically distributed, and follows type I extreme value distribution. 

In spite of the inclusion of control variables, some situations could 
still result in wrong θj estimates in Eq. (1). First, there could be a po-
tential endogeneity problem due to omitted variables bias. We follow 
the literature and address the problem through the inclusion of a latent 
variable, L it, in our model (Baum et al., 2017; Nkegbe et al., 2018). L it 
is included in each energy equation, and its variance is constrained to 
one to allow estimation of its magnitude in the equations. Second, the 
coefficient θj could be biased if there are regional characterstics that 
affect the outcome variables differently across regions. For example, 
Himbara (1994) shows that investors channel their investment projects 
towards areas where their ethnic groups are located. There can also be 
cultural and behavioral differences in fuel use across locations (Cruz 
et al., 2020; Farsi et al., 2007; Heltberg, 2005; Kim et al., 2017), dif-
ferences in population density, infrastructural development, resource 
availability and accessibility, and plants species suitable for firewood 
use (Jiménez-Escobar et al., 2021) that affect fuel choice. We address 
these concerns by controlling for region fixed-effects (шR). The year 
fixed-effects (шt) address variations in fuel choice across survey rounds. 

Third, Eq. (1) overlooks the unobserved heterogeneity between units 
entailing within-unit dependence and ignores the independence of 
irrelevant alternatives (Alem et al., 2016; Skrondal and Rabe-Hesketh, 
2014). With the exception of Alem et al. (2016), previous studies that 
make use of a panel multinomial logit model, such as Guta (2012), do 
not take these concerns into account. The estimates based on such 
studies are therefore inconsistent and inefficient (Malchow-Møller and 
Svarer, 2003). In our study, we use REMNLM (Chen and Kuo, 2001; 
Malchow-Møller and Svarer, 2003; Rabe-Hesketh et al., 2004) in the 
GSEM setup to specifically address these issues. This approach allows for 
a correlation among the residuals for the clean, dirty, and mixed energy 
equations within the same household, and assumes independent re-
siduals across households. The REMNLM considers survey round (t) at 
level 1 and household (i) at level 2 to account for the time-invariant 
unobserved household heterogeneity, αij. 

Addressing the aforementioned problems, Eq. (2) presents the 
REMNLM equation: 

Choiceijt = θjForestit + X′

itβj + L it + шt + шR+αij + εijt (2) 

The multinomial model is given by: 

P(j|Forestit,Xit, αi)=
exp

(
θjForestit + X′

itβj + αij
)

∑J

z=1
exp

(
θjForestit + X′

itβz + αiz
)

(3) 

After calculation of the sample likelihood for the random-effects 
model by integrating over the distribution of the unobserved heteroge-
neity, the Full-Information Maximum Likelihood Estimator (FIMLE) is 
used. 

The precise effect of forest status could differ across different types of 
dirty fuels. We expect larger availability of forest biomass to be posi-
tively associated with the use of wood fuels such as firewood and 
charcoal. Moreover, charcoal can be potentially transported between 
regions. The market is well integrated (Branch and Martiniello, 2018) 
and charcoal is highly traded compared to firewood. We therefore 
expect the effect of local forest status on firewood to be higher than that 
on charcoal. We address these differences among dirty biobased fuels by 
using three alternative definitions of dirty energy, summarized in 
Table 1. The baseline model, which is reported in panel A of Table 3, and 
Tables A.3 and A.4 in the Appendix, includes all biobased fuels in the 
dirty category, below referred to as Dirty-I. In the second case, house-
holds are defined as using dirty fuels if they use firewood and, poten-
tially, also other dirty fuels. In the third case, households are defined as 
using dirty fuels if they use charcoal and, potentially, also other dirty 
fuels. The last two alternative dirty fuel categories are labeled as Dirty-II 
and Dirty-III in Table 1. Using these alternative definitions, we are able 
to specifically identify the role of forest status in firewood and charcoal 
use. Combinations of clean and dirty fuels are referred to as mixed fuels, 
and the definition of Mixed-I to III follows from that of Dirty-I to III. 
Thus, Mixed-I implies that a combination of clean fuels, and fuels 
included in Dirty-I, are used. The definitions of Mixed-II and III follow 
the same logic. The non-wood dirty fuels (i.e., crop residues and animal 
dung) are not directly dependent on forest conditions. However, it could 
also be relevant to study the specific impact on these fuels because forest 
policy could lead to switch away from using forest fuels (Heltberg et al., 
2000). These estimations are presented in panel C of Table A7. 

Some variables in the X′

it vector need to be transformed into loga-
rithms to ensure a normal distribution. However, the log is sometimes 
undefined for the variables land size, number of rooms, tropical live-
stock unit (TLU), and household head’s years of education, which 
contain cases with zero values. We solve this problem and retain the 
zero-value observations by applying the inverse hyperbolic sine trans-
formation approach (IHSTA). For any random variable x, the IHSTA 
becomes ln(x+

̅̅̅̅̅̅̅̅̅̅̅̅̅̅
x2 + 1

√
) (Bellemare and Wichman, 2020; Burbidge 

et al., 1988; Ravallion, 2017). 

Table 1 
Different definitions of dirty and mixed energy sources used in Table 3, and A.3 
and A.4.  

Panels Cases Any 
clean 
used 

Any 
dirty 
used 

Firewood 
(+other dirty) 
used 

Charcoal 
(+other dirty) 
used 

Panel 
A 

Clean X    
Dirty-I  X   
Mixed- 
I 

X X   

Panel 
B 

Clean X    
Dirty-II   X  
Mixed- 
II 

X  X  

Panel 
C 

Clean X    
Dirty- 
III    

X 

Mixed- 
III 

X   X 

Note: The energy utilization ‘cases’ are defined as follows. Clean shows the 
household completely depends on at least one of the clean energy sources in all 
panels (Any clean used). Dirty-I implies the dirty fuels consisting of both wood 
fuels (firewood and charcoal) and non-wood fuels (crop residue and animal 
dung), labeled as ‘Any dirty used’. Dirty-II means the household uses firewood or 
combines it with other dirty fuels (Firewood (+other dirty) used). Finally, Dirty- 
III indicates the household uses charcoal alone or in combination with other 
dirty sources (Charcoal (+other dirty used). The definitions of Mixed-I, Mixed-II, 
and Mixed-III directly follows the definitions of Dirty-I, Dirty-II, and Dirty-III 
together with clean in each panel, respectively. 
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Table 2 
Summary statistics.  

Variable Panel A: EVI (%) 

Year 2009/10 Year 2010/11 Year 2011/12 Pooled 

Mean N Mean N Mean N Mean N 

EVI 0.484 1955 0.515 2077 0.509 2238 0.503 6270  

Variables Panel B: Households location based on forest status (%) 

Year 2009/10 Year 2010/11 Year 2011/12 Pooled 

Forest status Mean N Mean N Mean N Mean N 

Non-vegetated 11.71 1955 6.40 2077 6.03 2238 7.93 6270 
Sparsely vegetated 44.65 1955 26.53 2077 36.77 2238 35.84 6270 
Densely vegetated 43.63 1955 67.07 2077 57.19 2238 56.23 6270  

Fuel usage Panel C: Households consuming different fuel inputs (%) 

Year 2009/10 Year 2010/11 Year 2011/12 Pooled 

Mean N Mean N Mean N Mean N 

Dirty energy 
Firewood .789 1955 .809 2077 .83 2238 .81 6270 
Animal dung 0 1955 0 2077 .004 2238 .001 6270 
Crop residue .09 1955 .089 2077 .09 2238 .089 6270 
Charcoal .298 1955 .266 2077 .252 2238 .271 6270 
Clean energy 
Kerosene .884 1955 .842 2077 .805 2238 .842 6270 
LPG .006 1955 .003 2077 .005 2238 .005 6270 
Solar .009 1952 .018 2077 .019 2238 .015 6267 
Electricity .13 1951 .095 2073 .083 2237 .102 6261  

Energy categories (%) Panel D: Percentage of households in different energy categories 

Year 2009/10 Year 2010/11 Year 2011/12 Pooled 

Mean N Mean N Mean N Mean N 

Clean energy sources 2.61 1955 2.21 2077 1.70 2238 2.15 6270 
Dirty energy sources 6.91 1955 10.35 2077 14.83 2238 10.88 6270 
Mixed energy sources 90.49 1955 87.43 2077 83.47 2238 86.97 6270  

Fuel channels (%) Panel E: Percentage of households using different channels for obtaining fuels 

Year 2009/10 Year 2010/11 Year 2011/12 Pooled 

Mean N Mean N Mean N Mean N 

Market purchase 25.53 1892 24.64 2029 22.29 2198 24.07 6119 
Self-collection 67.65 1892 68.90 2029 71.97 2198 69.62 6119 
Purchase and collection 6.82 1892 6.46 2029 5.73 2198 6.31 6119  

Table 3 
Marginal effects: the role of forest status in fuel choice (non-vegetated being the base category).  

Variables Dependent variable: fuel choice 

Panel A: Basket of dirty fuels Panel B: Firewood used Panel C: Charcoal used 

Clean (1) Dirty-I (2) Mixed-I (3) Clean (4) Dirty-II (5) Mixed-II (6) Clean (7) Dirty-III (8) Mixed-III (9) 

Sparsely vegetated − 0.000 − 0.061*** 0.061*** − 0.015** − 0.072*** 0.087*** − 0.005 − 0.040* 0.045* 
(0.005) (0.012) (0.014) (0.006) (0.015) (0.017) (0.017) (0.021) (0.025) 

Densely vegetated − 0.006 − 0.074*** 0.080*** − 0.020*** − 0.090*** 0.110*** − 0.023 − 0.021 0.044** 
(0.005) (0.013) (0.014) (0.006) (0.017) (0.018) (0.014) (0.015) (0.020) 

Latent variable, L  − 2.56e-15** − 2.56e-15**  − 5.40e-15** − 5.40e-15**  1.21e-11* 1.21e-11*  
(1.07e-15) (1.07e-15)  (1.17e-15) (1.17e-15)  (7.15e-12) (7.15e-12) 

Other controls Yes Yes Yes Yes Yes Yes Yes Yes Yes 
Year fixed-effects Yes Yes Yes Yes Yes Yes Yes Yes Yes 
Region fixed-effects Yes Yes Yes Yes Yes Yes Yes Yes Yes 
Heterogeneity indicators 
Variance (L)  1(constrained)   1(constrained)   1(constrained)  
Variance (equations) 1.18e-07***   4.75e-08**     14.251*** 

(7.20e-09)   (3.18e-09)     (4.641) 
Observations 6270 6270 6270 5215 5215 5215 1834 1834 1834 

Note: The dependent variable is whether or not the household chooses (a) at least one of the clean energy sources but not any dirty fuel inputs in columns 1, 4, and 7; (b) 
at least one of the dirty energy sources excluding any clean energy in column 2; (c) firewood as a dirty energy but not any other clean energy in column 5, and (d) 
charcoal as a dirty energy distinct from all clean energy sources in column 8 for cooking, lighting, and/or heating purposes. The definitions of mixed energy I to III in 
columns 3, 6, and 9 varies depending on the definitions of dirty energy I to III in each panel. The answers are coded as 1 if yes and 0 otherwise for each column in panels 
A to C. Other controls appear in Table A.2 in the Appendix. Columns 1–9 are REMNLM fitted with GSEM. Robust standard errors clustered at the household level are 
reported in parentheses. ***p < 0.01, **p < 0.05, *p < 0.1. 
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5. Results and discussion 

This section provides the results. It begins with the descriptive 
analysis, followed by the empirical results. 

5.1. Data description: the EVI, energy utilization and energy sources 

This sub-section provides a description of the data on EVI and 
household energy utilization across years, with summary statistics re-
ported in Table 2. The average EVI is 0.5 for the pooled sample with 
improvements in forest biomass availability between the survey rounds 
2009/10 to 2010/11. The average EVI slightly falls during 2011/12 as 
opposed to the preceeding year. About 56% of the households are 
located in densely vegetated areas followed by another 36% and 8% 
being in sparsely and non-vegetated areas, respectively. Households rely 
on different energy inputs. Close to 84% of the households report using 
kerosene as a source of energy. Kerosene is commonly used for cooking 
and lighting in SSA (Karekezi and Kithyoma, 2002). Firewood is used for 
cooking, heating, and/or lighting purposes by about 79%, 81% and 83% 
of the households over the three survey rounds. About 27% of the pooled 
sample households also use charcoal, while the proportion of house-
holds using the remaining energy sources is fairly limited, see panel C of 
Table 2. The huge majority, close to 87%, of the households use mixed 
fuels. This is followed by about 11% and 2% of the households solely 
relying on dirty and clean energy sources, respectively (panel D of 
Table 2). 

The number of households self-collecting fuel, mainly in terms of 
firewood from own land and their villages increases from 68% in 2009/ 
10 to 72% in 2011/12. At the same time, there is a consistent decline 
over the years in the proportion of households purchasing energy inputs 
on the market, or combining market purchases and self-collection (panel 
E of Table 2). The summary statistics of other control variables can be 
found in Table A.1 in the Appendix. One can note from Table A.1 that 
the average land size, including both own land and land with user rights, 
is 4.5 acres for the pooled sample. The presence of own land helps 
households to grow different biomass fuels and firewood-targeting trees 
(Cooke et al., 2008). Also, larger land and livestock sizes may provide 
households with crop residues and animal dung. 

5.2. Empirical results 

The main empirical results and robustness checks are presented 
below. 

5.2.1. The role of forest status in fuel choice 
This sub-section reports the econometric analysis on the role of forest 

status in households’ fuel choice decisions. Table 3 provides the main 
results in terms of marginal effects11 estimated by FIMLE.12 Robust 
standard errors clustered at the household level are reported. Results for 
the baseline definition of dirty fuels (Dirty-I) are shown in panel A of 
Table 3. Columns 2 and 3 show that households switch from dirty to 
mixed fuels when the forest stock improves. More specifically, 

households in areas with sparse and dense vegetation are 6–7% less 
likely to use dirty energy compared to households in non-vegetated 
areas (see column 2, panel A of Table 3). This is associated with a cor-
responding increase in the probability of selecting mixed energy sources, 
as shown in column 3, panel A of Table 3. 

As mentioned in section 4, we explore the specific role of forest status 
in wood fuel choice by using firewood (Dirty-II) and charcoal (Dirty-III) 
as necessary components in the dirty energy basket. The associated re-
sults are presented in panels B and C of Table 3 for firewood and char-
coal, respectively. We find that households’ use of firewood is likely to 
be 7–9% lower with sparse and dense vegetation relative to the non- 
vegetated localities (column 5, panel B of Table 3). Moreover, there is 
a simultaneous 1.5–2% reduction in the likelihood of exclusively using 
clean sources (column 4, panel B of Table 3). Together, this leads to a 
corresponding increase by 9–11% in the probability of using mixed fuels 
(column 6, panel B of Table 3). 

We also look at how forest status affects the use of charcoal. Ac-
cording to the findings, households in sparse vegetation areas have a 
lower likelihood of using charcoal compared to those in non-vegetated 
areas (column 8, panel C of Table 3). The use of charcoal is not 
affected by dense vegetation. The fact that charcoal is more mobile than 
firewood may account for the weak statistical effect on charcoal use. In 
addition, charcoal traders commonly give bribes to forest officials 
(Jagger and Shively, 2015), fostering the mobility of this fuel across 
localities.The descriptive analysis supports this: we find that 1247 
households rely on purchased charcoal, while only 440 households in 
the entire sample buy firewood. Column 9 shows the impacts of 
changing forest conditions on using mixed energy are comparable to 
those available in panels A and B of Table 3. 

The negative effect of forest status on choosing firewood as a fuel 
source is contrary to expectations. It indicates that forest status is not an 
exclusive determinant of firewood use. There are at least two potential 
explanations. First, legal or property rights issues affect forest manage-
ment and use. Obua et al. (1998) show that local communities in 
Budongo forest reserve in Uganda dislike strict forest management rules. 
Locals are not provided with licenses to access non-timber forest prod-
ucts and are deprived of the advantages of the timber industry. As a 
result, people distrust the forest department. Heltberg et al. (2000) also 
report restrictions on animal and motor-powered firewood trans-
portation in the Sariska Tiger Reserve in northwest India, and note that 
well-equipped forest guards can reduce locals’ ability to gather fire-
wood. Active forest protection therefore reduces dependence on fuel-
wood. Second, policymakers lack knowledge on causes of forest 
degradation in Africa (Fairhead and Scoones, 2005; Reenberg, 2012; 
Rohde et al., 2006). There is a risk that tougher forest resource man-
agement regulations will be introduced to improve forest status, such as 
prohibitions on collecting even dry and fallen woods from forest areas, 
affecting locals’ livelihoods (Barrett et al., 2013; Edstedt and Carton, 
2018; Lyons and Westoby, 2014; Reddy and Chakravarty, 1999; Rohde 
et al., 2006). 

Households’ possibilities for adaptation to enhanced private prop-
erty rights and forest conservation policies vary depending on the eco-
nomic, environmental, and cultural context. One mechanism is to 
substitute the non-wood dirty fuels for the wood fuels when access to 
forests is limited,13 which eases the pressure on natural forests (Heltberg 
et al., 2000). Households could also opt for new fuelwood species as 
suggested by the diversification hypothesis (de Albuquerque, 2006). 
One alternative is exotic species, for which the acceptance could vary 
depending on the cultural context (Jiménez-Escobar et al., 2021). Food 
preferences can be flexible and affect the demand for firewood (Mazzone 
et al., 2021). For example, native species can be preferred for their 
specific characteristics, e.g., hot flame, less smoke, long-lasting flame 
and embers, and ease of splitting and lighting (Cruz et al., 2020; Kim 

11 It is important to note that the marginal effects in each panel would always 
sum up to zero whenever the REMNLM is used. This is so because a higher 
coeffficent value of a variable in one of the categories of the dependent variable 
would imply a reduction in the estimates for the other alternatives.  
12 We use separate but correlated random-effects among different energy 

categories. The estimated variances of the random-effects are statistically sig-
nificant and highlight the potential importance of common shocks across the 
fuel choice and forest status circle. These results reveal that the unobserved 
household heterogeneity component is statistically significant. The coefficient 
of L is significantly different from zero in all panels. This confirms that omitted 
variables would have affected fuel choice if left unaddressed via L in Eq. (2). 
The clean energy is a base category when we estimate the effect of L . 13 Panel C of Table A7 in the Appendix supports this idea. 
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et al., 2017). Evidence from Kenya demonstrates that households pre-
pare composite meals14 and have dishes that need less time in response 
to a lack of firewood (Waswa et al., 2020). There are also different 
cultural preferences in relation to firewood gathering. The majority of 
rural Vietnamese households, for example, prefer green branches and 
whole living trees for firewood purposes compared to dry or dead trees 
(Kim et al., 2017). Also, households may adapt by collecting firewood 
from new places, including woodlots, bushes, and gardens, and could 
receive firewood through welfare programs (Jiménez-Escobar et al., 
2021; Kim et al., 2017; Waswa et al., 2020). 

Regardless of the variations in the definition of dirty energy 
depending on the panels, our results consistently show an increase in the 
use of mixed fuels in the presence of a more viable forest stock. This 
finding suggests that households show fuel stacking behavior (Burke and 
Dundas, 2015; Shankar et al., 2020). Such behavior is often found when 
no single fuel can wholly meet every type of energy need by a particular 
household (Pillarisetti et al., 2019; Troncoso et al., 2019). We only find 
that fuel stacking behavior significantly reduces the probability of solely 
relying on clean energy (column 4, panel B of Table 3) for households 
that use firewood and are exposed to a higher forest stock. This finding is 
in line with Choumert-Nkolo et al. (2019), who document that house-
holds’ probability of connecting to the electricity grid decreases with 
increasing fuel stacking in Tanzania. Investment costs related to the use 
of clean energy might explain this. 

Table A.2 in the appendix shows the effects of other control variables 
in the main regression. More educated household heads use more clean 
energy, but the response is small: a 10% increase in education increases 
the likelihood of clean fuel consumption by 1% (column 1) to 2% (col-
umn 4). Previous research also points to a similar conclusion 
(Gebreegziabher et al., 2012; Heltberg, 2005). This is so because 
educated families have a high opportunity cost of time when using dirty 
energy (Heltberg, 2005). Education has a negative, albeit insignificant, 
impact on dirty fuel consumption, while earlier literature has shown a 
significant negative association between education and consumption of 
firewood (Gebreegziabher et al., 2012; Heltberg, 2005). 

Higher wealth encourages mixed fuel use, see columns 3, 6, and 9 of 
Table A2, while clean fuel use is largely unaffected. In Uganda, the 
support for fuel stacking behavior therefore seems stronger than for the 
energy ladder hypothesis. Economic and sociocultural factors explain 
fuel stacking. Clean fuels have high initial investment costs, such as an 
electrical installation and purchase of its accessories (Choumert-Nkolo 
et al., 2019; Mazzone et al., 2021; Muller and Yan, 2018), high trans-
action costs (Masera et al., 2000) and limited accessibility and reliability 
(Blimpo and Cosgrove-Davies, 2019; Guta, 2014; Kowsari and Zerriffi, 
2011; Shankar et al., 2020). This motivates households to use mixed 
fuels as an insurance strategy (Louw et al., 2008). Culture (e.g., pref-
erences, cooking patterns, food tastes, feeding habits, and firewood 
collection traditions) also drive fuel stacking. Households have different 
preferences for various fuels. For example, kerosene is the least 
preferred fuel in Ghana since it is time-consuming to use and has less 
power than firewood (Akpalu et al., 2011). Kenyan households cook 
firewood saving foods, such as tea and porridge, and githeri – a popular 
and nutritious food that ideally reduces eating frequency (Waswa et al., 
2020). Also, food taste depends on fuel types used to cook it (Akpalu 
et al., 2011; Masera et al., 2000; Shankar et al., 2020; Winther, 2007). 
Finally, fuel stacking, including firewood, prevails because firewood 
resources are mostly available (Cruz et al., 2020) and its collection is 
seen as an integral part of social life (Louw et al., 2008; Mazzone et al., 
2021). The likelihood that mixed fuels could be adopted is significantly 
associated with female headship (Guta, 2012), family size, the number 
of rooms (Heltberg, 2005), the size of the land, and rainfall. However, 
the majority of these factors hinder the adoption of clean fuels. 

5.2.2. Robustness checks 
Our results are robust to a series of sensitivity checks. First, we 

conduct the same analysis as in Table 3 without using the terrain cate-
gories, mean temperature, mean rainfall, and region fixed-effects in Eq. 
(2). The resulting marginal effects of the estimates of forest status, re-
ported in panels A to C of Appendix Table A.3, are almost similar in both 
magnitude and statistical significance to those reported in Table 3. 
Table S1 in the online supplementary material provides the results for 
other controls. Second, the EVI is treated as a continuous variable, 
different to the discrete variable levels used above. The EVI has a 
negative and weakly significant effect on using clean energy. The other 
magnitudes and statistical significances are otherwise similar to those in 
Table 3. The results indicate that increases in forest stock decrease the 
probability of using dirty energy according to the baseline definition 
(panel A of Table A.4) and firewood (panel B of Table A.4). The prob-
ability of choosing mixed fuels increases as shown in panels A to C of 
Table A.4. Results for additional controls can be found in Table S2 in the 
online supplementary material. 

Third, we use separate random-effect probit models (REPM) for 
different fuel categories to evaluate the relationship between forest 
status and fuel choice. Table A.5 depicts the marginal effects estimated 
by FIMLE. The estimates are comparable to the main results reported in 
Table 3. The other controls for these models appear in Table S3 in the 
supplementary material. Fourth, we use the linear probability models 
(LPM) to show that the effect of forest conditions on energy choices is 
robust to the main results. Table A.6 presents these results, which are 
consistent with results reported above. The estimates for other controls 
can be found in Table S4 in the supplementary material. We finally 
analyze whether the role of forest stock (continuous form) in fuel choice 
varies between the rural and urban households, using separate re-
gressions for the rural and urban sample as a fifth robustness check. The 
results are shown in panels A and B of Table A.7 for rural and urban 
households, respectively. The conclusions remain unchanged. 

6. Conclusions and policy implications 

Rural livelihoods depend on forests as a source of energy. Forests are 
also a key source of income, carbon sequestration and land protection, 
and are an integral part of day-to-day activities in many communities. 
This paper investigates the impact of forest status on households’ fuel 
choice after controlling for other covariates. We use the Enhanced 
Vegetation Index (EVI) as an objective measure of forest status, and 
combine it with socioeconomic data from the Uganda National Panel 
Survey (UNPS) collected during 2009/10, 2010/11, and 2011/12. 
Households are assumed to choose between clean fuels (e.g., kerosene, 
LPG, solar energy, and electricity), and biobased dirty fuels (e.g., fire-
wood, animal dung, crop residues, and charcoal), or a mix thereof. 

The empirical results highlight some major findings. Compared to 
households in non-vegetated areas, households in sparsely and densely 
vegetated areas are substantially less likely to utilize dirty biobased fuels 
in general, and firewood and charcoal in particular. The effect on the use 
of firewood is bigger and more significant than the effect on the use of 
charcoal. The fact that charcoal is more commonly transported across 
regions and supplied on the market than firewood explains this result. 
The charcoal market is well integrated and more easier to purchase from 
the market compared to firewood. For example, charcoal traders often 
come from distant areas and employ agents in small trading centers to 
buy charcoal on their behalf (Tabuti et al., 2003). 

The negative association between increases in forest stock and fire-
wood use could potentially be explained by forest conservation efforts, 
implemented through legal restrictions, or stronger property rights, 
where both could support more viable forests while simultaneously 
reducing possibilities for firewood collection. Given the importance of 
firewood for households, this raises a concern that firewood collection in 
forests is overly restricted because of misguided forest protection pol-
icies, which might not achieve a sustainable balance between protection 14 These meals are intended to lower the daily cooking frequency. 
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and use of the forest resources. On the other hand, when access to forests 
is restricted, non-wood fuels (such as animal dung and crop residue) 
could replace firewood and even charcoal. Alternatively, households 
could adapt by increasing the use of exotic woody plants for firewood 
consumption. The potential for adaptation depends on the cultural and 
household level preferences for firewood plant characteristics and har-
vesting practices. 

Improvements in forest biomass are associated with a higher likeli-
hood of using mixed energy sources, i.e., increased fuel stacking 
behavior. The conclusion holds both when we treat all dirty fuels as a 
single basket, and for firewood and charcoal separately. Higher house-
hold wealth also increases the tendency to use mixed fuels. The litera-
ture provides multiple explanations for fuel stacking. For example, clean 
fuels are generally expensive and their supply is unreliable. Meles 
(2020) shows that there are frequent power disruptions, which reduces 
the benefits of having an electricity connection in Ethiopia. LPG cylinder 
deliveries are frequently late in Mexico, forcing households to wait until 
the next one or go to town to pick up a full cylinder (Masera et al., 2000). 
This makes the use of mixed fuels inevitable as a way of ensuring a 
constant supply of fuels at the household level. Cultural practices and 
behavioral factors could also motivate fuel stacking. Households use 
different fuels for cooking different foods because it is generally 
perceived that food tastes depend on the fuel used to cook the food. 
People may, for example, have preferences for foods cooked with fire-
wood. In addition, attitudes towards the environment and intergenera-
tional knowledge (e.g., the way someones’ relatives cook food) affect 
fuel choice. These factors make fuel stacking, particularly with firewood 
use included, appealing. In contrast, the wealth coefficients do not 
provide strong statistical evidence for the energy ladder concept, i.e., the 
hypothesis that rising household income leads to a conversion from dirty 
to clean fuels. Higher wealth does significantly lower the use of dirty 
fuels, but it does not guarantee the switch to cleaner fuels. 

Our results further show that household head education is positively 
associated with clean fuel adoption, while household head age, female- 
headed households, and family size are negatively correlated with clean 
fuel use. Larger livestock herds support the use of dirty fuels since it 
enhances access to animal dung. The use of mixed fuels is higher in 
female-headed households, households with more family members, and 
households with a larger number of rooms, while it is negatively related 
to the size of livestock. All results are on the overall robust to alternative 
model specifications and estimation strategies. 

Our results have several policy implications. First, the lower possi-
bilities for gathering firewood from protected and private forest areas 
underscores the necessity for alternative firewood supply, given that 
many people are still highly dependent on firewood. In this regard, 
encouraging households to grow early maturing trees could be useful as 
it would enhance the available firewood resources and ease the strain on 
the forest stock. Second, provision of modern cookstoves to households 
in sparsely and densely vegetated areas seems necessary to achieve the 
targeted access to clean energy sources and the targeted 40% decrease in 
wood usage aimed for by 2030. Policy makers should acknowledge the 
benefits associated with fuel stacking at the household level, as long as 
supply shortages temporarily constrain the use of different fuels. Third, 
increased access to education for household heads may be crucial for 
Uganda to reach its energy policy targets. This could be combined with 
campaigns to raise awareness about the importance of using clean fuels 
and managing forest resources sustainably. Fourth, policies that increase 
household wealth, e.g., through income diversification opportunities 

and the provision of energy subsidies for the poor, can help in financing 
households’ investments in clean energy. Fifth, the increased use of dirty 
fuels in response to larger livestock holdings could also be counteracted 
if households are encouraged to produce biogas using zero-grazing 
techniques. Such a transition is likely to require policies that take into 
account also local cultural practices related to livestock management. 
Sixth, when reliance on forest charcoal decreases due to restricted access 
to forests, policies need to secure a reliable supply of charcoal via proper 
trading routes and better functioning markets. The creation of charcoal 
cooperatives with local inhabitants serving on board membership might 
be beneficial. 

Our study has several limitations that should be kept in mind. One is 
the lack of data on forest property rights, which prohibits us from 
identifying the role of these rights in forest status and energy choices. 
For example, using data from Thailand, Chankrajang (2019) reports that 
extensive community forestry leads to better forest cover. Moreover, our 
paper does not address the role of institutions, such as the level of de-
mocracy, and political accountability of forest authorities and commu-
nity representatives, in forest status and the use of firewood and 
charcoal production, as argued by Nygren (2005) to be important for the 
relationship between the studied outcomes. In addition, the UNPS data 
on fuel expenditure, fuel quantities, and units for those, are mostly 
missing. The lack of such data prevent us from assessing the relation-
ships between forest status, fuel choice, and households’ energy in-
tensity. Future surveys that include this information could help address 
these issues and thus provide more complete welfare estimates related to 
our research question. 
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Appendix  

Table A.1 
Summary statistics of other controls.   

Year 2009/10 Year 2010/11 Year 2011/12 Pooled 

Mean N Mean N Mean N Mean N 

Urban (=1 if yes) .262 1955 .226 2077 .206 2238 .23 6270 
Head age, years 45.927 1955 47.244 2077 47.396 2238 46.888 6270 
Female head (=1 if yes) .51 1955 .529 2077 .296 2238 .44 6270 
Family size 6.554 1955 7.258 2077 7.78 2238 7.225 6270 
Head education, years 5.52 1955 5.779 2077 5.467 2238 5.587 6270 
Number of rooms 2.923 1955 8.733 2077 3.03 2238 4.886 6270 
Land size, acres 4.672 1955 5.235 2077 3.571 2238 4.466 6270 
Livestock size, TLU 359.651 1955 .844 2077 .781 2238 112.698 6270 
Monthly consumption expenditure 286000 1955 235000 2077 227000 2238 248000 6270 
Independent residence (=1 if yes) 0.293 1955 0.307 2077 0.316 2238 0.306 6270 
Shared residence (=1 if yes) 0.570 1955 0.559 2077 0.552 2238 0.560 6270 
Other residence (=1 if yes) 0.137 1955 0.134 2077 0.132 2238 0.134 6270 
Plains (=1 if yes) 0.673 1955 0.695 2077 0.705 2238 0.691 6270 
Plateaus (=1 if yes) 0.148 1955 0.125 2077 0.114 2238 0.128 6270 
Mountains (=1 if yes) 0.179 1955 0.181 2077 0.181 2238 0.180 6270 
Mean annual rainfall (mm) 1131.125 1955 1132.657 2077 1128.674 2238 1130.757 6270 
Mean annual temperature (mm) 218.352 1955 219.054 2077 219.47 2238 218.983 6270 
Central region (=1 if yes) .332 1955 .303 2077 .282 2238 .304 6270 
Northern region (=1 if yes) .21 1955 .24 2077 .258 2238 .237 6270 
Eastern region (=1 if yes) .219 1955 .247 2077 .239 2238 .235 6270 
Western region (=1 if yes) .239 1955 .211 2077 .221 2238 .223 6270 

Note: The analysis is at household-level. All figures in this table are nationally representative according to the UNPS. Consumption expenditure is monthly household 
expenditure in constant prices after adjusting for regional price variations measured in terms of Ugandan Shilling (UGX). TLU is Tropical Livestock Unit. 1USD 
≈3533.80 UGX on August 2021.1 Acre ≈0.405 ha.  

Table A.2 
Marginal effects: the role of forest status in fuel choice (non-vegetated being the base category): other controls from Table 3.  

Variables Dependent variable: fuel choice 

Panel A: Basket of dirty fuels Panel B: Firewood used Panel C: Charcoal used 

Clean (1) Dirty-I (2) Mixed-I (3) Clean (4) Dirty-II (5) Mixed-II (6) Clean (7) Dirty-III (8) Mixed-III (9) 

Urban − 0.000 − 0.004 0.004 0.007* 0.005 − 0.011 − 0.030*** 0.003 0.027* 
(0.004) (0.010) (0.012) (0.004) (0.012) (0.013) (0.010) (0.012) (0.015) 

Head age − 0.000*** 0.000 0.000 − 0.000*** 0.000 0.000 − 0.000 − 0.001 0.001 
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.001) (0.001) 

Female head − 0.012*** − 0.005 0.017*** − 0.008** 0.002 0.006 − 0.037*** − 0.019* 0.056*** 
(0.003) (0.005) (0.006) (0.003) (0.006) (0.007) (0.010) (0.010) (0.013) 

Family size − 0.024*** − 0.016*** 0.040*** − 0.024*** − 0.022*** 0.046*** − 0.061*** 0.001 0.060*** 
(0.003) (0.006) (0.007) (0.003) (0.007) (0.008) (0.010) (0.010) (0.014) 

Head education 0.001*** − 0.000 − 0.001 0.002*** − 0.000 − 0.002 0.001 − 0.000 − 0.001 
(0.000) (0.001) (0.001) (0.000) (0.001) (0.001) (0.001) (0.001) (0.001) 

Number of rooms − 0.008** − 0.024*** 0.032*** − 0.010*** − 0.017** 0.027*** − 0.017* − 0.009 0.026* 
(0.003) (0.007) (0.008) (0.004) (0.008) (0.009) (0.009) (0.012) (0.014) 

Land size − 0.004** − 0.004 0.008* − 0.006*** − 0.001 0.007 − 0.005 − 0.004 0.009 
(0.002) (0.003) (0.004) (0.002) (0.004) (0.004) (0.004) (0.006) (0.007) 

TLU 0.002 0.010*** − 0.013*** 0.002 0.010** − 0.012*** 0.007 0.001 − 0.008 
(0.002) (0.004) (0.004) (0.002) (0.004) (0.004) (0.007) (0.008) (0.010) 

Consumption expenses − 0.001 − 0.013** 0.013** 0.001 − 0.012** 0.011* − 0.014* − 0.008 0.022** 
(0.002) (0.005) (0.006) (0.002) (0.006) (0.006) (0.007) (0.008) (0.010) 

Shared residence − 0.001 0.001 0.000 0.007* − 0.006 − 0.001 − 0.021* − 0.006 0.027* 
(0.004) (0.010) (0.011) (0.004) (0.016) (0.016) (0.011) (0.012) (0.016) 

Other residence − 0.012*** 0.023*** − 0.011 − 0.014*** 0.025*** − 0.011 − 0.023 − 0.037 0.060** 
(0.004) (0.008) (0.009) (0.005) (0.008) (0.009) (0.017) (0.025) (0.027) 

Plateaus 0.000 0.001 − 0.001 − 0.000 − 0.001 0.001 0.004 0.016 − 0.020 
(0.004) (0.008) (0.010) (0.004) (0.009) (0.010) (0.011) (0.015) (0.016) 

Mountains 0.007 0.004 − 0.011 0.004 0.003 − 0.008 0.030 0.003 − 0.033 
(0.007) (0.014) (0.016) (0.007) (0.014) (0.016) (0.020) (0.026) (0.030) 

Mean rainfall − 0.000 − 0.000*** 0.000*** − 0.000 − 0.000*** 0.000*** 0.000 − 0.000*** 0.000** 
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 

Mean temperature 0.000 0.001*** − 0.001*** 0.000 0.001*** − 0.001*** 0.000 0.001 − 0.001 
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.001) (0.001) (0.001) 

Observations 6270 6270 6270 5215 5215 5215 1834 1834 1834 

Note: The dependent variable is whether or not the household chooses (a) at least one of the clean energy sources but not any dirty fuel inputs in columns 1, 4, and 7; (b) 
at least one of the dirty energy sources excluding any clean energy in column 2; (c) firewood as a dirty energy but not any other clean energy in column 5, and (d) 
charcoal as a dirty energy distinct from all clean energy sources in column 8 for cooking, lighting, and/or heating purposes. The definitions of mixed energy I to III in 
columns 3, 6, and 9 varies depending on the definitions of dirty energy I to III in each panel. The answers are coded as 1 if yes and 0 otherwise for each column in panels 
A to C. The authors apply IHSTA for land size, number of rooms, TLU, and head education. Monthly consumption expenditure and family size are in logarithmic forms. 
Rural, male headship, independent residence, and plain terrains are reference groups through out Table A.2. Columns 1–9 are REMNLM fitted with GSEM. Robust 
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standard errors clustered at the household level are reported in parentheses. ***p < 0.01, **p < 0.05, *p < 0.1. 
Table A.3 
Marginal effects: the role of forest status in fuel choice (non-vegetated being the base category): robustness check 1 excluding some explanatory variables.  

Variables Dependent variable: fuel choice 

Panel A: Basket of dirty fuels Panel B: Firewood used Panel C: Charcoal used 

Clean (1) Dirty-I (2) Mixed-I (3) Clean (4) Dirty-II (5) Mixed-II (6) Clean (7) Dirty-III (8) Mixed-III (9) 

Sparsely vegetated 0.002 − 0.056*** 0.055*** − 0.017*** − 0.084*** 0.102*** 0.002 − 0.027 0.024 
(0.005) (0.012) (0.014) (0.006) (0.016) (0.018) (0.016) (0.016) (0.025) 

Densely vegetated − 0.010* − 0.087*** 0.097*** − 0.028*** − 0.124*** 0.152*** − 0.024 − 0.032** 0.056** 
(0.005) (0.014) (0.016) (0.006) (0.020) (0.022) (0.016) (0.015) (0.023) 

Latent variable, L  3.53e-16 3.53e-16  − 3.19e-07 − 3.19e-07  − 1.37e-14   
(3.26e-16) (3.26e-16)  (9.60e-08 (9.60e-08  (8.98e-15  

Other controls Yes Yes Yes Yes Yes Yes Yes Yes Yes 
Year fixed-effects Yes Yes Yes Yes Yes Yes Yes Yes Yes 
Region fixed-effects No No No No No No No No No 
Heterogeneity indicators 
Variance (L)  1.0 (constrained)   1.0 (constrained)   1.0 (constrained)  
Variance (equations) 0.582   0.430   1.66e-07***   

(0.821)   (0.902)   (1.64e-08)   
Observations 6270 6270 6270 5215 5215 5215 1834 1834 1834 

Note: The dependent variable is whether or not the household chooses (a) at least one of the clean energy sources but not any dirty fuel inputs in columns 1, 4, and 7; (b) 
at least one of the dirty energy sources excluding any clean energy in column 2; (c) firewood as a dirty energy but not any other clean energy in column 5, and (d) 
charcoal as a dirty energy distinct from all clean energy sources in column 8 for cooking, lighting, and/or heating purposes. The definitions of mixed energy I to III in 
columns 3, 6, and 9 varies depending on the definitions of dirty energy I to III in each panel. The answers are coded as 1 if yes and 0 otherwise for each column in panels 
A to C. Other controls appear in Table S1 in the online supplementary material. Columns 1–9 are REMNLM fitted with GSEM. Robust standard errors clustered at the 
household level are reported in parentheses. ***p < 0.01, **p < 0.05, *p < 0.1.  

Table A.4 
Marginal effects: the role of forest status in fuel choice: robustness check 2 using a continuous variable for forest status.  

Variables Dependent variable: fuel choice 

Panel A: Basket of dirty fuels Panel B: Firewood used Panel C: Charcoal used 

Clean (1) Dirty-I (2) Mixed-I (3) Clean (4) Dirty-II (5) Mixed-II (6) Clean (7) Dirty-III (8) Mixed-III (9) 

EVI − 0.034* − 0.376*** 0.410*** − 0.084*** − 0.490*** 0.574*** − 0.104* − 0.106 0.210** 
(0.019) (0.058) (0.063) (0.025) (0.076) (0.082) (0.062) (0.067) (0.085) 

Latent variable, L  5.30e-17 5.30e-17  − 1.18e-15*** − 1.18e- 
15***  

9.34e-07*** 9.34e-07***  

(6.30e-16) (6.30e-16)  (4.44e-16) (4.44e-16)  (5.88e-07) (5.88e-07) 
Other controls Yes Yes Yes Yes Yes Yes Yes Yes Yes 
Year fixed-effects Yes Yes Yes Yes Yes Yes Yes Yes Yes 
Region fixed-effects Yes Yes Yes Yes Yes Yes Yes Yes Yes 
Heterogeneity indicators 
Variance (L)  1.0 (constrained)   1.0 (constrained)   1.0 (constrained)  
Variance 

(equations) 
9.38e- 
08***   

4.28e- 
08***   

13.845***   

(5.60e-09)   (2.88e-09)   (4.428)   
Observations 6270 6270 6270 5215 5215 5215 1834 1834 1834 

Note: The dependent variable is whether or not the household chooses (a) at least one of the clean energy sources but not any dirty fuel inputs in columns 1, 4, and 7; (b) 
at least one of the dirty energy sources excluding any clean energy in column 2; (c) firewood as a dirty energy but not any other clean energy in column 5, and (d) 
charcoal as a dirty energy distinct from all clean energy sources in column 8 for cooking, lighting, and/or heating purposes. The definitions of mixed energy I to III in 
columns 3, 6, and 9 varies depending on the definitions of dirty energy I to III in each panel. The answers are coded as 1 if yes and 0 otherwise for each column in panels 
A to C. Other controls appear in Table S2 in the supplementary material. Columns 1–9 are REMNLM fitted with GSEM. Robust standard errors clustered at the 
household level are reported in parentheses. ***p < 0.01, **p < 0.05, *p < 0.1.  

Table A.5 
Marginal effects: the role of forest status in fuel choice (non-vegetated being the base category): robustness check 3 using random-effect probit models for each fuel 
type.  

Variables Dependent variable: fuel choice 

Clean (1) Dirty (2) Mixed (3) Firewood (4) Charcoal (5) 

Sparsely vegetated 0.002 − 0.092*** 0.087*** − 0.057*** − 0.033 
(0.007) (0.016) (0.018) (0.015) (0.026) 

Densely vegetated − 0.003 − 0.136*** 0.136*** − 0.100*** − 0.020 
(0.007) (0.017) (0.019) (0.016) (0.025) 

Latent variable, L − 0.062** − 0.189*** − 0.065*** − 0.116*** − 0.229*** 
(0.031) (0.458) (0.003) (0.025) (0.009) 

Other controls Yes Yes Yes Yes Yes 
Year fixed-effects Yes Yes Yes Yes Yes 
Region fixed-effects Yes Yes Yes Yes Yes 

(continued on next page) 
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Table A.5 (continued ) 

Variables Dependent variable: fuel choice 

Clean (1) Dirty (2) Mixed (3) Firewood (4) Charcoal (5) 

Heterogeneity indicators 
Variance (L) 1.0 (constrained) 1.0 (constrained) 1.0 (constrained) 1.0 (constrained) 1.0 (constrained) 
Variance (equations) 2.272*** 1.476*** 1.496*** 1.649*** 1.659*** 

(0.623) (0.239) (0.206 (0.256) (0.219) 
Observations 6270 6270 6270 6270 6270 

Note: The dependent variable is whether or not the household purely relies on clean energy sources (column 1), purely chooses dirty fuels (column 2) or depends on the 
mixtures of clean and dirty fuels (column 3) for cooking, lighting, and/or heating purposes. While the dependent variable in column 4 is whether or not the household 
chooses firewood as a dirty energy but not any other clean energy, column 5 asks whether charcoal is used as an energy source in the household. The answers are coded 
as 1 if yes and 0 otherwise. Other controls appear in Table S3 in the supplementary material. Columns 1–5 are REPM fitted with GSEM. Robust standard errors clustered 
at the household level are reported in parentheses. ***p < 0.01, **p < 0.05, *p < 0.1.  

Table A.6 
The role of forest status in fuel choice (non-vegetated being the base category): robustness check 4 using linear probability models for each fuel type.  

Variables Dependent variable: fuel choice 

Clean (1) Dirty (2) Mixed (3) Firewood (4) Charcoal (5) 

Sparsely vegetated 0.002 − 0.108*** 0.105*** − 0.054*** − 0.034 
(0.013) (0.021) (0.024) (0.015) (0.025) 

Densely vegetated − 0.003 − 0.123*** 0.126*** − 0.069*** − 0.018 
(0.013) (0.020) (0.023) (0.012) (0.025) 

Other controls Yes Yes Yes Yes Yes 
Year fixed-effects Yes Yes Yes Yes Yes 
Region fixed-effects Yes Yes Yes Yes Yes 
Observations 6270 6270 6270 6270 6270 
R2 0.095 0.197 0.181 0.229 0.490 

Note: All regressions are linear probability models. The dependent variable is whether or not the household purely relies on clean energy sources (column 1), purely 
chooses dirty fuels (column 2) or depends on the mixtures of clean and dirty fuels (column 3) for cooking, lighting, and/or heating purposes. While the dependent 
variable in column 4 is whether or not the household chooses firewood as a dirty energy but not any other clean energy, column 5 asks whether the household uses 
charcoal as an energy source. The answers are coded as 1 if yes and 0 otherwise. Other controls appear in Table S4 in the supplementary material. Robust standard 
errors clustered at the household level are reported in parentheses. ***p < 0.01, **p < 0.05, *p < 0.1.  

Table A.7 
The effect of forest status on fuel choice: robustness check 5 for rural and urban households, and non-wood fuels.  

Variables Dependent variable: fuel choice   

Clean (1) Dirty (2) Mixed (3) Firewood (4) Charcoal (5) Animal dung (6) Crop resid (7) 

Panel A: Rural households 
EVI − 0.011 − 1.935*** 1.945*** − 1.844*** − 0.035   

(0.044) (0.160) (0.166) (0.158) (0.119)   
Observations 4827 4827 4827 4827 4827   
Panel B: Urban households 
EVI − 0.007 − 0.480*** 0.486*** − 0.228*** − 0.120   

(0.083) (0.120) (0.140) (0.081) (0.160)   
Observations 1443 1443 1443 1443 1443   
Panel C: Non-wood fuels 
Sparsely vegetated      0.003** 0.034***      

(0.002) (0.011) 
Densely vegetated      0.000 0.010      

(0.001) (0.007) 
Common covariates 
Other controls Yes Yes Yes Yes Yes Yes Yes 
Year fixed-effects Yes Yes Yes Yes Yes Yes Yes 
Region fixed-effects Yes Yes Yes Yes Yes Yes Yes 

Note: The dependent variable is whether a household uses the energy source indicated in the column heading in a given year for cooking, lighting, and/or heating 
purposes. All regressions are linear probability models. The forest status is continuous in panels A and B but categorical in panel C with non-vegetated as the reference 
category. The controls (not reported in the Appendix to save spaces) are household head’s age in years, female head, family size, head education in years, number of 
rooms, land size, TLU, and monthly consumption expenses. The authors apply IHSTA for land size, number of rooms, TLU, and head education. Monthly consumption 
expenditure and family size are in logarithmic forms. Male headship is used as a reference category. Robust standard errors clustered at the household level are re-
ported in parentheses. ***p < 0.01, **p < 0.05, *p < 0.1. 

References 

Akpalu, W., Dasmani, I., Aglobitse, P.B., 2011. Demand for cooking fuels in a developing 
country: to what extent do taste and preferences matter? Energy Pol. 39, 6525–6531. 
https://doi.org/10.1016/j.enpol.2011.07.054. 
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