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Simple Summary: Lameness, an alteration of the gait due to pain or dysfunction of the locomotor
system, is the most common disease symptom in horses. Yet, it is difficult for veterinarians to correctly
assess by visual inspection. Objective tools that can aid clinical decision making and provide early
disease detection through sensitive lameness measurements are needed. In this study, we describe
how an AI-powered measurement tool on a smartphone can detect lameness in horses without the
need to mount equipment on the horse. We compare it to a state-of-the-art multi-camera motion
capture system by simultaneous, synchronised recordings from both systems. The mean difference
between the systems’ output of lameness metrics was below 2.2 mm. Therefore, we conclude that
the smartphone measurement tool can detect lameness at relevant levels with easy-of-use for the
veterinarian.

Abstract: Computer vision is a subcategory of artificial intelligence focused on extraction of infor-
mation from images and video. It provides a compelling new means for objective orthopaedic gait
assessment in horses using accessible hardware, such as a smartphone, for markerless motion analy-
sis. This study aimed to explore the lameness assessment capacity of a smartphone single camera
(SC) markerless computer vision application by comparing measurements of the vertical motion
of the head and pelvis to an optical motion capture multi-camera (MC) system using skin attached
reflective markers. Twenty-five horses were recorded with a smartphone (60 Hz) and a 13 camera
MC-system (200 Hz) while trotting two times back and forth on a 30 m runway. The smartphone
video was processed using artificial neural networks detecting the horse’s direction, action and
motion of body segments. After filtering, the vertical displacement curves from the head and pelvis
were synchronised between systems using cross-correlation. This rendered 655 and 404 matching
stride segmented curves for the head and pelvis respectively. From the stride segmented vertical
displacement signals, differences between the two minima (MinDiff) and the two maxima (MaxDiff)
respectively per stride were compared between the systems. Trial mean difference between systems
was 2.2 mm (range 0.0–8.7 mm) for head and 2.2 mm (range 0.0–6.5 mm) for pelvis. Within-trial
standard deviations ranged between 3.1–28.1 mm for MC and between 3.6–26.2 mm for SC. The ease
of use and good agreement with MC indicate that the SC application is a promising tool for detecting
clinically relevant levels of asymmetry in horses, enabling frequent and convenient gait monitoring
over time.

Keywords: monocular motion analysis; objective lameness assessment; equine orthopaedics; animal
pose estimation; optical motion capture

Animals 2023, 13, 390. https://doi.org/10.3390/ani13030390 https://www.mdpi.com/journal/animals

https://doi.org/10.3390/ani13030390
https://doi.org/10.3390/ani13030390
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/animals
https://www.mdpi.com
https://orcid.org/0000-0002-2008-8244
https://orcid.org/0000-0003-0575-2765
https://orcid.org/0000-0002-6039-7439
https://orcid.org/0000-0002-5769-3958
https://doi.org/10.3390/ani13030390
https://www.mdpi.com/journal/animals
https://www.mdpi.com/article/10.3390/ani13030390?type=check_update&version=2


Animals 2023, 13, 390 2 of 44

1. Introduction

Objective measurement of a horse’s motion at the trot has become an important part
of the diagnostic procedures performed during clinical lameness investigation. These
measurements, which have been used in clinical practice for more than a decade, trace
the vertical displacement of axial body segments: the head, the pelvis and sometimes
the withers. Using reflective markers or inertial sensors attached to a point on each body
segment, a time series signal is generated. In trot, the vertical displacement signal takes the
shape of a sinusoidal double wave from each stride and it is the position of the two peaks
and valleys of this signal which are used for lameness analysis.

The degree of asymmetry in the vertical displacement signal i.e., the difference be-
tween the two peaks and valleys respectively is known to indicate asymmetric loading of
the left versus right limb during the midstance and the push-off phases of the stride [1–3].
Measurements of these asymmetries provide the veterinarian with high-resolution data
that help overcome the limited time resolution of the human visual system [4,5]. These
objective data seem crucial for quality control of the clinical procedure, since subjec-
tive lameness assessment has been shown to have moderate to low agreement between
veterinarians [6,7] and is affected by expectation bias [8]. The metrics derived from objective
motion analysis show high sensitivity for single-limb lameness, acting as early indicators to
detect asymmetric loading of the limbs [9]. However, the specificity for lameness on a pop-
ulation level is less clear. Motion asymmetries are commonly observed in cross-sectional
studies of different horse populations, such as Warmblood riding horses [10,11], Thor-
oughbred race horses [12], working Polo horses [13], elite eventing horses [14], endurance
horses [15] and young Standardbred trotters [16], with a prevalence ranging between
50–90 percent. Although these asymmetries are of the same magnitude as in horses inves-
tigated for lameness in a clinical setting [17], it is currently unknown if these asymmetry
levels indicate that a large proportion of horses in training are lame or if the asymmetries
can be explained by other factors, such as laterality. A key approach to the further investi-
gation of this issue is to perform longitudinal monitoring of individual horses over time.
For this to be possible, a reliable, ease of use and low-cost measuring system is required.

Several motion analysis systems have been developed for clinical use based on inertial
measurement units (IMUs) [18–20]. Also available is a multi-camera marker-based motion
capture (MC) system [21]. This MC-system, is considered to be the gold standard for
measuring body segment movement for kinematic gait analysis [22]. It relies on reflective
markers attached to a horse’s body. These markers are detected and tracked by a set of
cameras that are geometrically calibrated and temporally synchronized. By using the
synchronized tracks of the marker positions in the camera images, MC-systems reconstruct
the 3D coordinates using multi-view triangulation. It has been shown that under favourable
conditions, the accuracy of the computed estimates of the 3D positions over time is less
than a millimetre for the MC-systems [23]. However, placing markers on the horse are
resource and time-consuming in a clinical situation, and the equipment is a substantial
financial investment for a veterinary practice. This impedes the system’s large-scale clinical
and scientific use.

During the previous decade, the field of computer vision was revolutionized by
methods based on deep neural networks [24–26]. These networks are computer algorithms
that consist of multi-layered (referred to as deep) compositions of parametric functions that
can be trained on large datasets to perform classification and regression tasks. Deep learning
has demonstrated increased robustness to differing scenarios, light conditions, and noise
levels compared to traditional computer vision methods. Estimation of poses of the human
body from images has been enabled by deep learning and as a result of this development,
it has become possible to perform motion analysis from video, e.g., from a smartphone
camera [27]. Recent works on horse lameness classification [28,29] have demonstrated
a progressive movement towards the application of computer vision and deep learning
within objective motion analysis. However, a binary disease classifier of “lame” versus “not
lame” is a difficult approach for clinical use, given that lameness is often not a binary state
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and that the deep learning algorithms act in a black box manner, rendering distrust from
medical professionals [30]. Instead, providing a clinician with computer vision derived
metrics to support medical decision making is a more implementable approach. But until
now, the methodological accuracy of deep neural networks for quantification of clinically
used lameness metrics has not been investigated.

In this work, we validate a new single-camera markerless (SC) system designed for
equine lameness assessment which uses images from a smartphone camera video stream.
To achieve robust detection and tracking, the system employs a series of neural networks.
These networks were trained to detect and track the pelvis, head and hooves in video
streams of trotting horses. The system also detects the trotting direction of the horse,
away from or towards the camera, to determine which parts of the horse are visible for
measuring. The network designs were inspired by previously proposed methods for
object detection [28,31] and segmentation [32,33]. Unlike the MC-system, the deep neural
networks of the SC-system do not require that markers are placed on the horse. Instead,
the networks learn to detect the points of interest on the horse’s body visible in the images
through training on large datasets.

The specific aim of the study was to compare this new markerless smartphone system
to a state-of-the-art multi-camera marker-based system with respect to waveform similarity
of the derived vertical displacement signals and the limits of agreement for their extracted
lameness metrics.

2. Materials and Methods
2.1. Study Protocol

Twenty-five horses were recorded as they underwent motion analysis at the ortho-
pedic gait laboratory situated in the Equine Clinic of the University Animal Hospital in
Uppsala, Sweden. The recordings were performed simultaneously with a multi-camera
marker-based motion capture system and a single smartphone camera markerless system.
The experimental setup is illustrated in Figure 1. The study subjects were a convenience
sample selected from the horses visiting the clinic during the 10-day data collection period,
without any exclusion criteria. The horses were of different breeds, sizes (range 128 to
180 cm to the withers) and colours (black, bay, chestnut, grey). All owners gave their
written informed consent to participate. The study did not in any way alter the clinical
procedures or add physical manipulation of the animals. Hence, no ethical approval was
required according to the national animal ethics legislation.

2.2. Data Collection

During data collection, each horse was guided by a handler (the owner, or a researcher
running at the horse’s left side) to trot at least two times back and forth on a 30 m concrete
runway in a corridor. The horses were jogged at the handler’s preferred speed.

We employed a MC-system with 13 cameras (Qualisys AB, Motion Capture Systems).
The MC cameras were placed ≈ 4 m over the ground and in a manner such that the union
of the field of view of each camera covered as much of the runway as possible while
still maintaining sufficient overlap between neighboring cameras to perform tracking and
triangulation of the marker positions. The recording rate was set to 200 Hz. We attached
spherical reflective markers in the median plane over the poll on the horse’s head and
between the tubera sacrale of the pelvis, allowing the MC-system to detect and track
the markers over time. Additional markers were placed, but not used in this study (see
Figure 2).

The smartphone (iPhone12 Pro Max) was placed ≈ 1.6 m above the ground on a
tripod facing the direction of the horse trot recording 4k video (2160× 3840 pixels) at
60 Hz. The video streams recorded were input to the SC-system. Example frames from the
smartphone camera recordings are shown in Figure 2.



Animals 2023, 13, 390 4 of 44

Figure 1. Illustration of the experimental setup. We recorded horses trotting back and forth in a
corridor with a multi-camera system and a single smartphone camera. The multi-camera system
detected and tracked reflective markers attached to the horse. Marker positions were triangulated
into 3D coordinates from which vertical displacement curves were extracted. The single-camera
system used deep neural networks to predict the vertical displacement curves of the head and pelvis
from the images in the smartphone video stream. We then compared the displacement curves from
the two systems using normalised peak and valley differences.

For each recording, the MC-system and the smartphone camera were triggered at
approximately the same time such that the data streams from both systems would cover
the same sequence of events.

Figure 2. Example images from data set (horse 21) taken from the video recorded by the markerless
single-camera system (SC). Attached to the horse’s skin by double adhesive tape are the spherical
reflective markers used by the multi-camera marker-based system (MC) for tracking head and pelvic
motion. The markers on the poll and between the tubera sacrale were used.

2.3. Signal Extraction

The MC-system software (Qualisys Track Manager—QTM, Qualisys AB) automatically
tracked the reflective markers and generated 3D coordinates corresponding to the positions
of the markers in each frame. The 3D marker coordinates from QTM were exported to .mat
files (MATLAB). From these coordinates, vertical displacements were extracted for each
frame, one for the head marker and one for the pelvis marker. This resulted in two vertical
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displacement signals (VDS), yhead
mc (t) and ypelvis

mc (t) for head and pelvis respectively, where t
is time in seconds.

For the SC-system, deep neural networks were applied (software of Sleip AI AB) on
the input video stream from the smartphone camera. The deep neural networks were
trained to output the pixel coordinates of horse body parts for each frame of the video.
The training material for the deep neural networks contained horses of many different
coat colours and varying conformation, but none had physical markers attached to the
skin. Head (yhead

sc (t)) and pelvis (ypelvis
sc (t)) VDS was calculated from the pixel coordinates.

Additionally, the VDS of all four hooves were extracted from the SC-system for stride
splitting purposes (see Section 2.4). Both the MC-system and the SC-system data were
further processed using custom written python scripts.

Note that the pelvis was visible to the SC-system only when the horse was trotting
away from the camera, while the head was mostly visible in both directions. Consequently,
SC generally produced data from a higher number of strides with head tracking than strides
with pelvic tracking. The following analyses only included strides with data matched from
both systems for the body segment in question (head and pelvis). Horses were removed
from the dataset where less than 10 matching strides were available for either head or
pelvis since we deemed that insufficient for statistical relevance.

2.4. Stride Split and Signal Filtering

The recorded data contained noise, due to measurement errors and because the horses
seldom trot in a consistent manner throughout a trot-up. This noise was present for both
the MC-system and the SC-system data. Thus, the VDS had to be band-pass filtered in
order to remove the noise without affecting the frequency content of the signal that related
to movement asymmetries and lameness [34].

In order to perform the VDS filtering described in [34], the within horse mean stride
frequency of a measurement was needed. This was estimated by extracting strides from the
hoof VDS of the SC-system. Firstly, we performed a pre band-pass filtering of the hoof VDS
to remove trends and high-frequency noise. Specifically, a 7th order Butterworth digital
filter with a lower bound cut-off frequency of 0.6 Hz and an upper bound cut-off frequency
of 2.2 Hz. This allowed us to determine in which time intervals the left hoof was above the
right hoof and vice versa, ultimately enabling the classification of left and right strides.

Next, the lengths of the intervals were used to compute the stride frequency, which
in turn was used to set the bounds of the 10th order Butterworth band-pass filter applied
to the VDS of the pelvis and head. Specifically, we set the lower bound to 0.75 times the
stride frequency, to not alter frequency content related to the movement asymmetry [34].
Similarly, the upper bound was set to 2.42 times the stride frequency to not attenuate the
frequency content related to the symmetric movement, while omitting higher frequency
content and noise.

2.5. Signal Synchronization

Since the MC and SC recordings were triggered manually, the extracted signals were
not adequately synchronized in time. To synchronize the vertical displacement signals we
computed cross-correlations to find the relative time shift tshi f t that solved the following
maximization problem:

tshi f t = arg max
t

(
(ypelvis

mc ? ypelvis
sc )(t) + (yhead

mc ? yhead
sc )(t)

)
. (1)

Here ? denotes the correlation operator. The signals were band-pass filtered according
to Section 2.4 before synchronization.

2.6. Asymmetry Quantification

In this section, we introduce a number of definitions that we use in the remaining parts
of the paper. First, we define a stride segment as a section of the VDS corresponding to a
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time interval of a full stride. To extract the stride segment we utilize the extreme values (see
the illustration in Figure 3). Tracing of the vertical displacement of the horse’s head or pelvis
while it trots yields a sine-shaped signal as depicted in Figure 3. The valleys (local minima)
and peaks (local maxima) of the signal are associated with the vertical forces generated
during impact (the more force, the lower the valley position) and the relative timing of
horizontal and vertical forces during the propulsive phase of the stride respectively (less
push-off rendering a lower peak position). Differences between consecutive peaks or
valleys can be quantified into an asymmetry index [22], which can be used as an indicator
of lameness severity. Depending on the measurement technique and due to variation in
horse size, these values may need to be normalised to be comparable [35,36]. Therefore,
normalisation of these values to the range of motion (R) is used in the SC-system to obtain
values that are more independent of horse size.

p
i

p
i+1

v
i

v
i+1

MaxDiff

MinDiff

i

i

p
i+2

t
p
i

t v
i

t p
i+1

t v
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i+2

t

y(t) y(t)s
i

Figure 3. Example of the vertical displacement signal from head or pelvis, with local minima denoted
with v for valley and local maxima with p for peak. Metrics for lameness quantification are calculated
as the difference between the two minima (MinDiff) and the two maxima (MaxDiff) per stride.
A stride segment yi

s(t) was defined as the section of y(t), starting at tpi and ending at tpi+2 .

2.6.1. Extraction of Valleys and Peaks

To find the extreme values within each stride segment (the VDS from one stride),
consecutive data points were compared to find points at which the derivative of the VDS
was zero. Let y(t) be the VDS value at time t. We defined the peaks pi = y(tpi ), i = 1, 2, . . .,
as the local maximum values and the valleys vj = y(tvj), j = 1, 2, . . ., as the local minimum
values. Further, we assumed that tpi < tpi+1 and tvj < tvj+1 . We extracted a sequence of
consecutive peaks and valleys pi, pi+1, vj, vj+1 such that tpi < tvj < tpi+1 < tvj+1 < tpi+2 .

In horses showing moderate to severe lameness, the changes in motion asymmetry
can cause extreme asymmetries in y(t). In these cases, local extreme values might be
canceled out, interrupting the assumed stride pattern of two peaks and two valleys in
sequence. Instead, a single peak or valley signal pattern occurs. To handle this, we
implemented a robust extreme value extraction method. The reasoning behind this method
is that y(t) contains two dominant harmonics [1]. The first harmonic corresponds to the
stride frequency, thus contributing to the asymmetry of the signal. The second harmonic
corresponds to twice the stride frequency and should dominate y(t) if the horse is healthy.
In our approach, we extracted extreme values based on the curve shape of the second
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harmonic. We first removed the asymmetric component of y(t) by performing high-pass
filtering with a frequency bound higher than the first harmonic. Next, we employed local
extreme value extraction on the high-pass filtered signal. Finally, we refined the selection
by selecting the extreme values from the original y(t) within 50 ms of the estimated value.
As a result, we were able to estimate normalised peak/valley differences at any degree
of lameness.

2.6.2. Normalised Differences for Valleys and Peaks

From the extracted stride peaks we computed local extreme value differences per
stride i, consisting of the following scalars,

MinDiffi = vi+1 − vi (2)

MaxDiffi = pi − pi+1 . (3)

These values provide information about the asymmetries between the right and left
leg impact and push-off. However, since different horses have different amplitudes in their
vertical displacement trajectories, these values are not comparable. In this work, we instead
use the normalised extreme value differences (NEVd), which show more independence
from the scale of the vertical displacement. The NEVd-values were computed using the
following operations,

Vi =
MinDiffi

Ri
(4)

Pi =
MaxDiffi

Ri
(5)

where Ri = max(pi, pi+1)−min(vi, vi+1) .

Here, normalization was performed by division by the range-of-motion Ri. Thus,
the NEVd-values measures asymmetry as a rate of Ri.

2.6.3. Outlier Removal

To remove occasional strides with erroneous measurements from the analysis, we
performed a series of outlier removal steps.

While the noise in the vertical displacement signals is partly suppressed by band-pass
filtering, the signal quality becomes inadequate for asymmetry analysis when the noise is
too prevalent. Therefore, we first removed strides where the stride segments contained a
substantial amount of high-frequency noise. A stride segment was deemed to contain too
much high frequency noise when the majority of the frequency content amplitudes were
found above 10 Hz in at least a quarter of a stride interval.

As a second step, we performed a linear discriminant analysis (LDA). In addition to
MinDiffi and MaxDiffi from Equation (4), we used the peak valley differences pi − vi and
pi+1 − vi+1 to represent each stride as features. We then removed NEVd-values from the
analysis that corresponded to strides that were considered outliers in the LDA.

2.7. System Comparisons

We compared the MC and SC systems on the data set of trotting horses described in
Section 2.2. For each recorded sample, we used MC and SC to generate vertical displace-
ment signals. From these, we extracted and compared stride segments and NEVd-values
between the two systems. The following sections detail the implementation and setup of
the comparison.
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2.7.1. Comparison Metrics

To compare the extracted asymmetry indices between the MC and SC systems the
following deviations were calculated from the synchronized NEVd-vales,

∆Vi = MinDiffsc
i −MinDiffmc

i (6)

∆Pi = MaxDiffsc
i −MaxDiffmc

i . (7)

To recover an estimate of geometric deviation, we multiplied ∆Vi and ∆Pi with the
range of motion Ri,mc computed from the NEVd-values of the MC signal.

In practice, lameness indication is deduced from the trial mean of the NEVd-values
V̄ = 1/N ∑N

i MinDiffi and P̄ = 1/N ∑N
i MaxDiffi, where N is the number of strides in the

trial after the outlier removal in Section 2.6.3. We computed the trial mean deviations as,

∆V̄ = V̄sc − V̄mc (8)

∆P̄ = P̄sc − P̄mc . (9)

We further scaled ∆V̄ and ∆P̄ with the mean range of motion R̄mc = 1/N ∑N
i Ri,mc to

estimate the geometric deviation.

2.7.2. Statistical Analysis

Bland-Altman analysis [37] was used to evaluate the statistical agreement between the
MC and SC-systems for head and pelvis NEVd-values. The Bland-Altman analysis was
subdivided into deviations for MinDiff and MaxDiff and was performed both on trial and
stride level.

In addition to the comparison of the NEVd-values, we compared the shapes of the
band pass filtered vertical displacement signals using the root mean square deviations
(RMSD),

RMSD =

√√√√∑Mi
m=1

(
Rmc

i,sc · ysc(ti
m,sc)− ymc(ti

m,mc)
)2

Mi
(10)

where Rmc
i,sc =

Ri,mc

Ri,sc
.

Here, M = 23 is the number of trials, i.e number of horses in the dataset. ti
m,sc and

ti
m,mc are equally spaced points in time for sampling the vertical displacement signals

corresponding to the ith synchronized stride, i.e ti
1,sc = pi,sc, ti

M,sc = pi+2,sc, ti
1,mc = pi,mc

and ti
Mi ,mc = pi+2,mc. Note that we scaled the ysc samples to the geometric scale of ymc.

Further, since ysc and ymc have different frame rates, we aligned and re-sampled the signals
with linear interpolation before applying (10).

3. Results

In this section, we outline the results from the experiments described in Section 2.7.
In total, the results below were generated from 23 of the 25 horses in the initial data set,
after the exclusion of two horses with less than 10 synchronized strides. From the included
horses we extracted a total of 655 stride observations of the head motion and 404 stride
observations of the pelvic motion. Descriptive statistics of the head measurements from
the 23 trials can be found in Table 1 and the pelvis measurement in Table 2.
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Table 1. Descriptive statistics for head measurements from the 23 included horses showing number
of matched strides per trial (N) and the mean trial deviations between the two systems for the valley
values ∆V̄ (MinDiff) and peak values ∆P̄ (MaxDiff). Also, the actual trial means for the V̄ (MinDiff)
and the P̄ are presented per trial for the multi-camera marker-based (mc) and the single-camera
markerless (sc) systems, followed by their within trial standard deviation (σV and σP). From the mc,
the trial mean range of motion of the vertical displacement signal is presented.

Horse N ∆V̄ ∆P̄ V̄sc V̄mc P̄sc P̄mc σVsc σVmc σPsc σPmc R̄mc

1 16 −0.4 −4.8 −1.5 −1.1 13.1 17.9 15.2 15.4 18.1 16.5 66.6
2 23 −2.1 8.7 −9.4 −7.3 43.0 34.3 12.3 10.4 19.7 20.8 82.2
3 29 2.3 −1.9 −1.6 −3.9 9.5 11.4 17.7 15.0 13.6 14.1 70.4
4 38 4.1 3.4 −39.8 −44.0 −0.8 −4.2 14.3 15.7 14.8 16.8 71.2
5 28 −0.3 2.2 70.0 70.3 −17.5 −19.8 17.4 15.2 17.2 14.5 109.6
6 26 4.4 5.7 −39.2 −43.6 −3.9 −9.6 16.8 19.1 15.8 15.8 68.5
7 19 3.3 −3.1 5.4 2.1 3.3 6.3 13.5 14.2 19.9 21.1 77.5
8 22 −0.6 −3.7 7.1 7.7 8.8 12.5 15.7 11.9 11.0 10.4 73.6
9 29 1.0 −5.0 −39.7 −40.7 15.7 20.6 9.1 10.6 9.5 10.0 70.8
10 36 −0.6 0.6 1.8 2.4 −19.1 −19.8 22.3 22.0 20.7 21.4 95.2
11 27 0.0 0.4 −57.8 −57.9 13.0 12.5 11.5 13.1 16.4 15.2 90.1
12 28 −2.5 1.9 −11.7 −9.2 −18.5 −20.4 14.3 13.5 17.5 14.9 71.0
13 22 −0.0 1.6 62.8 62.8 −3.7 −5.3 8.9 8.2 10.8 10.3 79.8
14 22 0.3 −0.9 −1.6 −1.9 8.7 9.6 9.7 13.8 6.1 10.6 39.0
15 29 1.5 −1.8 27.0 25.5 −14.1 −12.4 13.8 13.1 11.2 11.6 75.2
16 19 −6.8 0.2 22.8 29.6 10.9 10.7 19.1 26.2 18.6 28.1 75.5
17 34 −0.2 −3.7 3.7 3.9 −4.2 −0.5 18.9 17.5 19.6 18.7 95.0
18 24 1.8 −3.1 14.9 13.1 −13.1 −10.1 8.3 7.9 13.6 11.4 57.9
19 35 −0.4 −2.1 0.2 0.6 24.2 26.3 6.9 6.4 8.6 6.0 51.0
20 41 −0.5 1.7 −21.6 −21.0 7.0 5.3 11.9 12.6 9.1 8.5 71.4
21 16 −0.4 1.2 −23.5 −23.0 5.8 4.6 8.4 7.7 6.7 7.4 43.0
22 36 2.2 −1.8 −13.0 −15.2 −1.5 0.3 8.5 8.2 12.3 10.5 50.9
23 56 −4.2 −0.1 −18.2 −14.0 −16.3 −16.2 18.7 17.6 18.8 18.9 74.7
mean 28.5 1.7 2.6 21.5 21.8 12.0 12.6 13.6 13.7 14.3 14.5 72.2

Table 2. Descriptive statistics for pelvic measurements from the 23 included horses showing the
number of matched strides per trial (N) and the mean trial deviations between the two systems for
the valley values ∆V̄ (MinDiff) and peak values ∆P̄ (MaxDiff). Also, the actual trial means for the V̄
(MinDiff) and the P̄ are presented per trial for the multi camera marker based (mc) and the single
camera markerless system (sc), followed by their within trial standard deviation (σV and σP). From
the mc, the trial mean range of motion of the vertical displacement signal is presented.

Horse N ∆V̄ ∆P̄ V̄sc V̄mc P̄sc P̄mc σVsc σVmc σPsc σPmc R̄mc

1 13 1.0 −0.1 −0.1 −1.1 6.6 6.6 8.4 6.1 8.2 8.3 83.4
2 15 1.7 4.3 −0.4 −2.1 0.6 −3.8 11.0 8.6 10.0 8.6 82.3
3 16 −1.8 2.1 −0.6 1.2 −2.7 −4.8 6.5 4.0 8.9 5.6 82.6
4 24 4.3 6.5 −15.8 −20.1 21.0 14.5 9.3 7.9 9.6 8.1 92.5
5 17 5.5 −0.5 5.7 0.2 4.3 4.8 5.1 4.3 10.3 11.3 79.3
6 15 4.8 5.9 −12.8 −17.6 27.2 21.3 11.0 7.5 8.9 6.3 92.8
7 17 1.5 0.0 −0.1 −1.5 −5.2 −5.2 6.8 6.9 10.5 8.5 74.8
8 13 1.1 3.1 2.1 1.0 −8.6 −11.6 8.0 8.1 9.2 4.7 76.7
9 15 −0.8 2.2 −13.0 −12.2 −4.3 −6.5 7.1 4.6 6.0 6.0 67.5
10 22 4.6 2.1 9.0 4.4 2.2 0.1 6.5 7.7 15.8 16.0 77.7
11 15 −1.7 0.7 −7.0 −5.3 −11.9 −12.6 6.4 8.3 10.2 9.6 88.0
12 14 −0.9 1.1 −4.5 −3.6 2.6 1.5 6.4 4.8 7.3 7.9 64.7
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Table 2. Cont.

Horse N ∆V̄ ∆P̄ V̄sc V̄mc P̄sc P̄mc σVsc σVmc σPsc σPmc R̄mc

13 11 3.9 2.4 −12.6 −16.5 9.0 6.6 9.7 6.9 8.1 8.5 70.8
14 14 1.3 0.9 −5.1 −6.4 13.0 12.0 5.8 6.7 9.0 8.6 74.8
15 14 −2.3 −3.0 5.8 8.1 −16.9 −13.9 5.7 3.1 6.0 3.3 75.3
16 13 4.2 −1.1 11.8 7.7 −25.8 −24.7 10.5 13.0 13.8 8.7 75.7
17 18 −1.4 −0.8 −10.6 −9.3 −1.4 −0.6 12.2 11.2 11.4 11.5 103.7
18 15 −3.2 −0.3 −2.8 0.4 −13.1 −12.8 5.6 4.6 7.1 3.3 85.5
19 26 1.2 −1.2 −9.6 −10.8 4.4 5.6 3.6 3.4 4.3 4.6 39.6
20 21 −4.9 1.3 −7.2 −2.3 0.1 −1.2 6.5 6.6 11.6 9.0 87.8
21 21 0.8 2.6 −38.0 −38.9 48.5 46.0 7.1 6.8 12.7 8.6 97.7
22 25 −1.5 2.8 −10.2 −8.7 −1.4 −4.2 6.6 5.1 5.5 6.1 67.0
23 30 1.0 0.4 −21.5 −22.6 12.5 12.1 8.9 9.8 8.8 8.0 72.6
mean 17.6 2.4 2.0 9.0 8.8 10.6 10.1 7.6 6.8 9.3 7.9 78.8

We split the comparisons into per-stride and per-trial comparisons. In the per-stride
comparisons, we treated each stride as a sample and performed statistical analysis on the
stride-based deviations ∆Vi and ∆Pi. In the per-trial comparison, we treated each horse as
a sample and performed statistical analysis on deviations computed from the mean NEVd
values ∆V̄i and ∆P̄i.

3.1. Per-Stride Comparisons

An example of the time-domain curves from the MC and SC for all strides in a recorded
trial (horse 11) are displayed in Figure 4. The displayed stride segments of the two systems
show high resemblance, resulting in similar conclusions on lameness diagnosis. We provide
more examples from the experiment in Appendix A.

The Bland-Altman analysis for head and pelvis lameness metrics is illustrated in
Figures 5 and 6 respectively. The deviations are similar for both valley and peak differences
and generally higher for head than for pelvis signals. Moreover, the correlations between
the NEVd-values are high and the deviations are generally small, rarely exceeding 21 mm
for the head signals and 14 mm for pelvis.

We further provide histograms over the deviations for head and pelvis in Figure 7.
The histograms include both V and P-values. In addition, these plots show the empirical
estimates of normal distributions computed from the stride samples. The distributions of
the absolute values for stride mean residuals are presented in Figure 8.

Finally, we provide mean RMSD values in Table 3 to give an estimate of curve sim-
ilarity. Note that RMSD, as computed in Table 3, is sensitive to small time shifts. As the
synchronization between signals ysc(t) and ymc(t) is approximate, the RMSD does not only
reflect curve similarity but also errors in the synchronization.
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Figure 4. Example of the vertical displacement signal per stride for the head and pelvis for horse 11.
Each subplot contains the matched stride segments for the markerless single-camera system (SC) in
green and the multi-camera marker-based motion capture system (MC) in red. The y-axis shows the
vertical displacement in millimetres. The four dots on each curve indicate the positions of the two
peaks and two valleys extracted using the approach in Section 2.6.2. We observe that despite the high
variability in curve shape between strides, there is a notable resemblance between the two systems.
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Figure 5. Scatter plots of the head metrics obtained per stride (n = 655) observed by the multi-camera
marker-based motion capture system (MC) plotted against the observation by the single-camera
markerless system (SC) are shown in the left sub-panels. Agreements between the systems, with limits
of agreement (LoA) displayed as orange horizontal lines, are presented in the Bland-Altman plots
in the right sub-panels. In the top row, we show the ∆V (MinDiff) and in the bottom row, we show
∆P (MaxDiff) defined in Section 2.7.1. For the purpose of visibility, we have fixed the range of the
y-axis, causing a few samples with large residuals to be out of range. In the left plot, we have out
of range residuals at 97.0 and −55.2, and in the right plot out of range residuals are at −48.9, −81.5,
70.9, 56.0, −47.1 −71.5, −44.4. While these samples have large errors they have little impact on the
overall statistics.
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Figure 6. Scatter plots of the pelvic metrics obtained per stride (n = 404) observed by the multi-camera
marker-based motion capture system (MC) plotted against the observation by the single-camera
markerless system (SC) are shown in the left sub-panels. Agreements between the systems with
limits of agreement (LoA) displayed as orange horizontal lines are presented in the Bland-Altman
plots (right sub-panels). In the top row, we show the ∆V (MinDiff) and the bottom row we show ∆P
(MaxDiff) defined in Section 2.7.1.
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Figure 7. Distributions of the per-stride deviations for head (left) and pelvis (right). Here we
have combined both peak and valley deviations defined in Section 2.7.1 (∆V and ∆P). The dashed
line displays the normal distribution estimated from the means and standard deviations of the
between-systems deviations.
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Figure 8. Distributions of the absolute values for stride mean residuals for head (left) and
pelvis (right).

Table 3. Results summary for the measurement deviations between the systems over the entire
dataset. In the top 6 rows we provide combined per-trial deviations (D̄) using both deviations for
the normalised MinDiff (∆V̄) and MaxDiff (∆P̄). For both head and pelvis, we compute the overall
absolute mean, maximum and minimum deviations. In the bottom two rows we provide mean root
mean square deviations (RMSD) as a comparison of the shape of the vertical displacement signals.

Per Trial

head D̄ 2.2 mm
pelvis D̄ 2.2 mm
head max D 8.7 mm
pelvis max D 6.5 mm
head min D 0.0 mm
pelvis min D 0.0 mm

Per Stride

head mean RMSD 5.0 mm
pelvis mean RMSD 3.5 mm

3.2. Per-Trial Comparisons

In this section, we provide the results from the per-trial comparison between MC and
SC. In Table 3 we present statistics over the entire dataset from the per-trial mean NEVd-
values. In this case, we combine V̄ and P̄. Thus, each stride contributes with two deviation
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values. For these, we compute the overall absolute mean, maximum and minimum absolute
deviations as,

D̄ =
∑M

m=1 |∆V̄m|+ ∑M
m=1 |∆P̄m|

2M
(11)

max D = max({|∆V̄m|}M
m=1 ∪ {|∆P̄m|}M

m=1) (12)

min D = min({|∆V̄m|}M
m=1 ∪ {|∆P̄m|}M

m=1) , (13)

where M = 23 is the number of trials, i.e number of horses in the dataset, and ∪ denotes
the union of the sets of {|∆V̄m|}M

m=1 and {|∆P̄m|}M
m=1.

Similar to the per-stride comparison in Section 3.1, we use Bland-Altman plots [37] to
inspect the statistical agreements. The plots for head and pelvis are shown in Figures 9 and 10,
respectively. Not unexpectedly, the deviations between systems are smaller for the per-trial
mean NEVd-values than for the per-stride comparison in Section 3.1, rarely exceeding
6.4 ms. Similar to the per-stride comparison, the differences between V̄ and P̄ are small.
However, the per-trial deviations show similar values for pelvis and head, which could be
due to the fact that the two systems jointly observed more strides for the head signal than
the pelvis.

Head V̄

60 40 20 0 20 40 60
SC

80

60

40

20

0

20

40

60

80

M
C

MC vs SC

60 40 20 0 20 40 60
(SC+MC)/2

7.5

5.0

2.5

0.0

2.5

5.0

7.5

M
C 

- S
C

: -0.09

+LoA* :4.75

-LoA* :-4.92

mean-residual
Horse number

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23

Head bottom mean

Head P̄

20 10 0 10 20 30 40
SC

30

20

10

0

10

20

30

40

50

M
C

MC vs SC

20 10 0 10 20 30 40
(SC+MC)/2

10

5

0

5

10

M
C 

- S
C : 0.17

+LoA* :6.56

-LoA* :-6.21

mean-residual
Horse number

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23

Head top mean

Figure 9. Trial-level scatter plots of the head metrics from the 23 included horses measured by
the marker-based motion capture system (MC) versus the single-camera markerless system (SC)
are presented in the left panel. Agreements between the systems, with limits of agreement (LoA)
displayed as orange horizontal lines, are presented in the Bland-Altman plots in the right sub-panels.
In the top row, we show ∆V̄ (trial mean MinDiff) and in the bottom row, we show ∆P̄ (trial mean
MaxDiff) defined in Section 2.7.1.
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In addition, we provide histograms over all the deviations (both V̄ and P̄ ) for head and
pelvis in Figure 11. These plots also show the empirical estimates of normal distributions
computed from the stride samples.
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Figure 10. Trial-level scatter plots of the pelvic metrics from the 23 included horses measured by
the marker-based motion capture system (MC) versus the single-camera markerless system (SC)
are presented in the left panel. Agreements between the systems, with limits of agreement (LoA)
displayed as orange horizontal lines, are presented in the Bland-Altman plots in the right sub-
panels.In the top, we show ∆V̄ (trial mean MinDiff) and in the bottom row, we show ∆P̄ (trial mean
MaxDiff) defined in Section 2.7.1.
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Figure 11. Distributions of the per-trial deviations for head (left) and pelvis (right). Here we have
combined both peak and valley deviations defined in Section 2.7.1 (∆V̄ and ∆P̄). The dashed line
shows the normal distribution estimated from the means and standard deviations of the deviations.

4. Discussion

In this work, we demonstrated that deep neural networks and computer vision can be
applied to reliably perform orthopaedic gait analysis for horses when trotted in hand on
the straight during lameness assessment. The recorded average per-trial errors of 2.17 mm
(head) and 2.19 mm (pelvis) are well below the previously recorded between-measurement-
variation, of 18 mm (head) and 6 mm (pelvis) of horses trotting in a MC-system with several
repetitions over two consecutive days and a one-month follow-up [21]. The results thus
indicate that the average per-trial errors of the SC-extracted variables compared to the
MC-extracted variables were small enough to not be a major hindrance when used for
objective lameness assessment.

From a clinical perspective, the ease-of-use of the SC-system studied has a clear benefit
since it allows affordable, repeated observations of equine patients, which can help to
understand the considerable between trial variations observed in gait asymmetry [21].

When comparing the results of this study to another validation study performed on
an IMU-based system (compared to a MC-system), it was found that stride-by-stride limits
of agreement for the pelvic variables were approximately twice the magnitude for the
SC-system described in this work [20]. It has to be acknowledged that comparing results
from different samples can be a confounding factor in this case, but it still presents a general
indication of how a computer vision based solution may compare to an IMU-based solution.
Unfortunately, limits of agreement for the IMU-system in the Bosch et al. study [20] versus
our SC-system can not be compared for the head variables since these were not presented
in the IMU-system validation study.

The reported accuracy of the SC-system could also be compared to a previous test-
retest repeatability study of an IMU-system, where the 95% confidence interval was re-
ported as approximately 6 mm for head asymmetries and 3 mm for pelvic asymmetries [38].
However, a later study comparing that IMU-system to a different IMU-system, also de-
veloped for detecting equine lameness, found that the limits of agreement between the
two systems were in this same range [36]. Further, it was found that the system used
by [38] consistently underestimated the amount of movement asymmetry compared to the
other IMU-system, which had previously been shown to give values comparable to optical
motion capture. It has been suggested that the confidence intervals reported by Keegan et
al [38] should be adjusted to 8 and 4 mm [13] for the other IMU-system, and this is likely a
suitable adjustment also for an MC-system.

There were two outlier trials with a recorded per-trial mean deviation of 8.71 mm
(head) and 6.54 mm (pelvis). Notably, these outliers occurred for horses with large asym-
metries (see horse 2 in Table 1 and horse 4 in Table 2), and did not change the sign of the
calculated variables or the clinical interpretation of the gait data. Hence, these deviations
would not confuse which limb was affected by the asymmetry. We hypothesized that these
errors might be due to difficulties in detecting and tracking the head and pelvis when they
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were occluded e.g., the horse lowering its head and hiding it behind the trunk, or lifting
the tail obscuring the pelvic region.

Another SC-system utilizing deep neural networks to detect and track trotting horses
for the purpose of lameness assessment has been previously described [39]. Although their
approach was similar to the method presented in this study, the authors did not quantify
movement symmetry metrics directly. Instead, they focused on lame limb classification. It
is also worthwhile noting that a SC-system has been developed and shown to be able to
perform reliable gait analysis of human subjects [27]. The level of precision described is
said to open up for several potential applications in human medicine.

Is markerless more or less? A dichotomous answer cannot be given here. There
are technical drawbacks related to using computer vision techniques implemented in a
SC-system aimed towards objective equine lameness assessment, lower accuracy and lack
of 3D motion to name two. However, these drawbacks have to be weighed against the
benefit of having a lightweight, portable and low-cost system available for data collection,
that allows repeatable observations of the horse. Other systems, such as IMUs and MC are
typically more expensive, are sometimes limited to laboratory environments and require
more interaction in terms of placing markers and sensors on the horse. Inevitably, this
leads to fewer measurements being done and it is well known that low sample sizes of
horses are the standard in many equine biomechanics studies. This study has shown that
a simple application on a smartphone can be a tool for flexible and reliable collection of
kinematic asymmetry data from horses. By extension, this opens up opportunities for
larger-scale biomechanics research studies in non-laboratory environments. Coupling this
with current advances in machine learning, where computers efficiently learn from data to
perform predictions, we suggest that SC can be used to accelerate our understanding of
horse locomotion and horse welfare.

Limitations

In the current study, all measurements were performed in the same clinical indoor
environment on a limited number of horses (n = 23). The SC-system would likely be
more challenged if there was a severe lack of light or if for example heavy rain obscured
the visibility of the horse in the video. However, testing under such conditions was not
within the scope of this study and would have been impossible to perform given that
the state-of-the-art MC-system is a permanent indoor installation. The smartphone was
placed on a tripod during the data collection, as handheld recordings would demand a
stabilisation algorithm to be applied to the video. As such, further research is required to
evaluate the SC-system under handheld conditions. Also, the length of the runway was
30 m, hence a greater distance between the camera and the horse has not been investigated.
We did, however, analyse the error per stride index and did not find increasing deviations
of the lameness metrics studied.

There are today several iPhone models with different camera specifications, such as
image resolution and sampling rate. This study was limited to the use of an iPhone12
Pro Max where the resolution was set to 2160 × 3840 pixels and the frame rate to 60 Hz.
Newer iPhone models come with even better camera specifications. Further research
should investigate whether these models would improve the output from the SC-system
even further.

The neural networks used in the SC-system were trained on image data of horses that
did not have markers attached to the skin. Therefore, the skin-attached reflective markers
used in this validation study could be suspected to partly obscure the anatomical region
of interest and potentially present a problem to the SC-system. Visual inspection of the
tracking from the SC-system, did however show very stable detection of the anatomical
segments. This is confirmed by the comparison to the output of the MC-system.

This study only investigated vertical movement asymmetry of head and pelvis in
a straight line. 3D motion comparisons would be of interest in the future, in order to
provide a more detailed analysis of horse locomotion e.g., limb retraction and protraction
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angles studied from lateral view or on a circle. However, 3D lifting from a 2D image is an
inherently complicated computer vision task where more advanced methods would be
required, and so these kinematic variables were not investigated in this preliminary study.

5. Conclusions

We conclude that objective gait analysis for lameness assessment in horses can be
reliably performed using a smartphone and computer vision analysis built on deep neural
networks. The measurement deviation, when compared to a state-of-the-art motion capture
system, is larger compared to IMU-based systems [20], but the error is clearly lower than
observed levels of “between trial variation” from earlier studies [21]. The ease-of-use of
the system makes repeated observations of a horse’s lameness more feasible, which can
provide more objective data points for treatment evaluation.
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Abbreviations
The following abbreviations are used in this manuscript:

SC Single-camera markerless system
MC Multi-camera marker-based system
VDS Vertical displacement signal
NEVd Normalised extreme value differences
MaxDiff Difference between local maxima values within a stride
MinDiff Difference between local minima within a stride
P Normalised difference between local maxima values of the VDS per stride
V Normalised difference between local minima values of the VDS per stride
P̄ Trial mean P
V̄ Trial mean V
σP Trial standard deviation of P
σV Trial standard deviation of V
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∆P Deviation between two corresponding P’s from different systems
∆V Deviation between two corresponding V’s from different systems
∆P̄ Deviation between two corresponding P̄’s from different systems
∆V̄ Deviation between two corresponding V̄’s from different systems
D̄ Mean absolute deviation over dataset
max D Maximum absolute deviation over dataset
min D Minimum absolute deviation over dataset
R Range of motion of the VDS per stride
LDA Linear Discriminant Analysis
LoA Limit of Agreement

Appendix A. All Stride Curves
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Figure A1. Vertical displacement signals per stride for the head and pelvis for horse 1. Each subplot
contains the matched stride segments for the single-camera markerless system (SC) in green and
the multi-camera marker-based system (MC) in red. The y-axis shows the vertical displacement in
millimeters. The four dots on each curve indicate the positions of the two peaks and two valleys
extracted using the approach in Section 2.6.2.
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Figure A2. Vertical displacement signals per stride for the head and pelvis for horse 2. Each subplot
contains the matched stride segments the single-camera markerless system (SC) in green and the
multi-camera marker-based system (MC) in red. The y-axis shows the vertical displacement in
millimeters. The four dots on each curve indicate the positions of the two peaks and two valleys
extracted using the approach in Section 2.6.2.
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Figure A3. Vertical displacement signals per stride for the head and pelvis for horse 3. Each subplot
contains the matched stride segments for the single-camera markerless system (SC) in green and
the multi-camera marker-based system (MC) in red. The y-axis shows the vertical displacement in
millimeters. The four dots on each curve indicate the positions of the two peaks and two valleys
extracted using the approach in Section 2.6.2.
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Figure A4. Vertical displacement signals per stride for the head and pelvis for horse 4. Each subplot
contains the matched stride segments forthe single-camera markerless system (SC) in green and
the multi-camera marker-based system (MC) in red. The y-axis shows the vertical displacement in
millimeters. The four dots on each curve indicate the positions of the two peaks and two valleys
extracted using the approach in Section 2.6.2.
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Figure A5. Vertical displacement signals per stride for the head and pelvis for horse 5. Each subplot
contains the matched stride segments for the single-camera markerless system (SC) in green and
the multi-camera marker-based system (MC) in red. The y-axis shows the vertical displacement in
millimeters. The four dots on each curve indicate the positions of the two peaks and two valleys
extracted using the approach in Section 2.6.2.
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Figure A6. Vertical displacement signals per stride for the head and pelvis for horse 6. Each subplot
contains the matched stride segments for the single-camera markerless system (SC) in green and
the multi-camera marker-based system (MC) in red. The y-axis shows the vertical displacement in
millimeters. The four dots on each curve indicate the positions of the two peaks and two valleys
extracted using the approach in Section 2.6.2.
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Figure A7. Vertical displacement signals per stride for the head and pelvis for horse 7. Each subplot
contains the matched stride segments for the single-camera markerless system (SC) in green and
the multi-camera marker-based system (MC) in red. The y-axis shows the vertical displacement in
millimeters. The four dots on each curve indicate the positions of the two peaks and two valleys
extracted using the approach in Section 2.6.2.
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Figure A8. Vertical displacement signals per stride for the head and pelvis for horse 9. Each subplot
contains the matched stride segments for the single-camera markerless system (SC) in green and
the multi-camera marker-based system (MC) in red. The y-axis shows the vertical displacement in
millimeters. The four dots on each curve indicate the positions of the two peaks and two valleys
extracted using the approach in Section 2.6.2.
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Figure A9. Vertical displacement signals per stride for the head and pelvis for horse 10. Each subplot
contains the matched stride segments for the single-camera markerless system (SC) in green and
the multi-camera marker-based system (MC) in red. The y-axis shows the vertical displacement in
millimeters. The four dots on each curve indicate the positions of the two peaks and two valleys
extracted using the approach in Section 2.6.2.
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Figure A10. Vertical displacement signals per stride for the head and pelvis for horse 11. Each subplot
contains the matched stride segments for the single-camera markerless system (SC) in green and
the multi-camera marker-based system (MC) in red. The y-axis shows the vertical displacement in
millimeters. The four dots on each curve indicate the positions of the two peaks and two valleys
extracted using the approach in Section 2.6.2.
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Figure A11. Vertical displacement signals per stride for the head and pelvis for horse 12. Each subplot
contains the matched stride segments for the single-camera markerless system (SC) in green and
the multi-camera marker-based system (MC) in red. The y-axis shows the vertical displacement in
millimeters. The four dots on each curve indicate the positions of the two peaks and two valleys
extracted using the approach in Section 2.6.2.
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Figure A12. Vertical displacement signals per stride for the head and pelvis for horse 13. Each subplot
contains the matched stride segments for the single-camera markerless system (SC) in green and
the multi-camera marker-based system (MC) in red. The y-axis shows the vertical displacement in
millimeters. The four dots on each curve indicate the positions of the two peaks and two valleys
extracted using the approach in Section 2.6.2.
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Figure A13. Vertical displacement signals per stride for the head and pelvis for horse 14. Each subplot
contains the matched stride segments for the single-camera markerless system (SC) in green and
the multi-camera marker-based system (MC) in red. The y-axis shows the vertical displacement in
millimeters. The four dots on each curve indicate the positions of the two peaks and two valleys
extracted using the approach in Section 2.6.2.
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Figure A14. Vertical displacement signals per stride for the head and pelvis for horse 15. Each subplot
contains the matched stride segments for the single-camera markerless system (SC) in green and
the multi-camera marker-based system (MC) in red. The y-axis shows the vertical displacement in
millimeters. The four dots on each curve indicate the positions of the two peaks and two valleys
extracted using the approach in Section 2.6.2.
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Figure A15. Vertical displacement signals per stride for the head and pelvis for horse 16. Each subplot
contains the matched stride segments for the single-camera markerless system (SC) in green and
the multi-camera marker-based system (MC) in red. The y-axis shows the vertical displacement in
millimeters. The four dots on each curve indicate the positions of the two peaks and two valleys
extracted using the approach in Section 2.6.2.
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Figure A16. Vertical displacement signals per stride for the head and pelvis for horse 17. Each subplot
contains the matched stride segments for the single-camera markerless system (SC) in green and
the multi-camera marker-based system (MC) in red. The y-axis shows the vertical displacement in
millimeters. The four dots on each curve indicate the positions of the two peaks and two valleys
extracted using the approach in Section 2.6.2.
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Figure A17. Vertical displacement signals per stride for the head and pelvis for horse 18. Each subplot
contains the matched stride segments for the single-camera markerless system (SC) in green and
the multi-camera marker-based system (MC) in red. The y-axis shows the vertical displacement in
millimeters. The four dots on each curve indicate the positions of the two peaks and two valleys
extracted using the approach in Section 2.6.2.
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Figure A18. Vertical displacement signals per stride for the head and pelvis for horse 19. Each subplot
contains the matched stride segments for the single-camera markerless system (SC) in green and
the multi-camera marker-based system (MC) in red. The y-axis shows the vertical displacement in
millimeters. The four dots on each curve indicate the positions of the two peaks and two valleys
extracted using the approach in Section 2.6.2.
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Figure A19. Vertical displacement signals per stride for the head and pelvis for horse 20. Each subplot
contains the matched stride segments for the single-camera markerless system (SC) in green and
the multi-camera marker-based system (MC) in red. The y-axis shows the vertical displacement in
millimeters. The four dots on each curve indicate the positions of the two peaks and two valleys
extracted using the approach in Section 2.6.2.
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Figure A20. Vertical displacement signals per stride for the head and pelvis for horse 21. Each subplot
contains the matched stride segments for the single-camera markerless system (SC) in green and
the multi-camera marker-based system (MC) in red. The y-axis shows the vertical displacement in
millimeters. The four dots on each curve indicate the positions of the two peaks and two valleys
extracted using the approach in Section 2.6.2.
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Figure A21. Vertical displacement signals per stride for the head and pelvis for horse 22. Each subplot
contains the matched stride segments for the single-camera markerless system (SC) in green and
the multi-camera marker-based system (MC) in red. The y-axis shows the vertical displacement in
millimeters. The four dots on each curve indicate the positions of the two peaks and two valleys
extracted using the approach in Section 2.6.2.
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Figure A22. Vertical displacement signals per stride for the head and pelvis for horse 23. Each subplot
contains the matched stride segments for the single-camera markerless system (SC) in green and
the multi-camera marker-based system (MC) in red. The y-axis shows the vertical displacement in
millimeters. The four dots on each curve indicate the positions of the two peaks and two valleys
extracted using the approach in Section 2.6.2.
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Figure A23. Vertical displacement signals per stride for the head and pelvis for horse 24. Each subplot
contains the matched stride segments for the single-camera markerless system (SC) in green and
the multi-camera marker-based system (MC) in red. The y-axis shows the vertical displacement in
millimeters. The four dots on each curve indicate the positions of the two peaks and two valleys
extracted using the approach in Section 2.6.2.
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Figure A24. Vertical displacement signals per stride for the head and pelvis for horse 25. Each subplot
contains the matched stride segments for the single-camera markerless system (SC) in green and
the multi-camera marker-based system (MC) in red). The y-axis shows the vertical displacement in
millimeters. The four dots on each curve indicate the positions of the two peaks and two valleys
extracted using the approach in Section 2.6.2.
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