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A B S T R A C T   

Detecting disease- or insect-infested forests as early as possible is a classic application of remote sensing. Under 
conditions of climate change and global warming, outbreaks of the European spruce bark beetle (Ips typographus, 
L.) are threatening spruce forests and the related timber industry across Europe, and early detection of in-
festations is important for damage control. Infested trees without visible discoloration (green attack) have been 
identified using multispectral images, but how early green attacks can be detected is still unknown. This study 
aimed to determine when infested trees start to show an abnormal spectral response compared with healthy 
trees, and to quantify the detectability of infested trees during the infestation process. Pheromone bags were used 
to attract bark beetles in a controlled experiment, and subsequent infestations were assessed in the field on a 
weekly basis. In total, 977 trees were monitored, including 208 attacked trees. Multispectral drone images were 
obtained before and during the insect attacks, representing different periods of infestation. Individual tree 
crowns (ITC) were delineated by marker-controlled watershed segmentation, and the average reflectance of ITCs 
was analyzed based on the duration of infestation. The detectability of green attacks and driving factors were 
examined. We propose new Multiple Ratio Disease–Water Stress Indices (MR-DSWIs) as vegetation indices (VI) 
for detecting infestations. We defined a VI range of 5–95% as a healthy tree, and a VI value outside that range as 
an infested tree. Detection rates using multispectral images were always higher than discoloration rates observed 
in the field, and the newly proposed MR-DSWIs detected more infested trees than the established VIs. Infestations 
were detectable at 5 and 10 weeks after an attack at a rate of 15% and 90%, respectively, from the multispectral 
drone images. Weeks 5–10 of infestation therefore represent a suitable period for using the proposed method-
ology to map infestation at an early stage.   

1. Introduction 

As a form of natural disturbance within a forest, insect damage plays 
an important role in the forest ecosystem. However, climate change and 
the weather extremes of recent decades have intensified insect out-
breaks, causing severe ecological and economic damage. The European 
spruce bark beetle Ips typographus (L.) is an aggressive species across 
Eurasia, and a major threat to Norway spruce Picea abies (L.) forests, a 
major resource for the European timber industry (Hlásny et al., 2021). 
Bark beetle outbreaks have been triggered at an unprecedented intensity 
across Europe since 2015, under conditions of global warming with 
increasing air temperatures, shifting precipitation patterns, and more 
frequent windstorms (Senf et al., 2020; Schuldt et al., 2020). During 
outbreaks in 2018–2019, Sweden reported a 10–11 million m3 timber 
loss (Huo et al., 2021), and in the Czech Republic it has been estimated 

that 260 million EUR of state interventions were needed to compensate 
for decreased timber prices, excessive workloads, and other cascading 
effects (Hlásny et al., 2021). It is projected that, by 2030, climate change 
in Europe will have exacerbated bark beetle disturbances sevenfold 
compared to 1971–1980 (Seidl et al., 2014). Such biotic threats to the 
forest ecosystem and forest industry highlight the urgent need for 
disturbance warning systems, damage control and prevention measures, 
and an understanding of outbreak mechanisms. 

The European spruce bark beetle has a one-year life cycle and usually 
develops several generations in a year, depending on the temperature 
conditions. The first swarming starts in the spring when the average 
temperature exceeds 20 ◦C (Annila, 1969). The male first excavates a 
nuptial chamber in the phloem for the gallery construction and then 
emits aggregation pheromones attracting conspecifics of both sexes to 
the site (Christiansen and Bakke, 1988). After mating, the female lays 
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eggs in niches along the gallery, and once the larvae hatch, they feed and 
pupate under the bark and bore dense tunnels. The developmental time 
from egg to imago is determined by temperature conditions under the 
bark, and higher temperatures generally shorten the time. A study from 
Sweden showed that the filial beetles (new generation) started emerging 
8 weeks after the brood was initiated, and 50% of the filial beetles had 
emerged 11 weeks after the brood was initiated (Öhrn et al., 2014). 
During warm years in northern Europe, the filial beetles usually start a 
second generation. In central Europe, the second generation is usually 
fully developed in the same year and can start the third generation 
during warm years. The adults hibernate and overwinter in the soil or 
under bark in standing trees during cold years (Öhrn et al., 2014). 

While spruce trees can usually fight back, e.g. by releasing resin and 
defensive chemicals, an intense attack resulting in successful coloniza-
tion will cause the water transportation in the host trees to be blocked 
and the trees gradually wither to death within months. At the early 
infestation stage, the crowns of host trees often stay green for some time 
after infestation, with no signs of discoloration, hence the term green 
attack. At this stage, the larvae are still under the bark, therefore, 
identifying attacked trees at this stage, i.e., early detection, is crucial for 
damage control if they can be removed from the forest to control the 
population and reduce attacks by subsequent generations. In the later 
stages of the infestation, the crowns turn yellow, red, and grey with 
associated defoliation, and the infestation stages are usually called 
yellow-attack, red-attack, and grey-attack. Such stages of infestation are 
common among wood-boring pests (WBPs) such as the European spruce 
bark beetle (Ips typographus), mountain pine beetle (Dendroctonus pon-
derosae), Engelmann spruce beetle (Dendroctonus rufipennis), and pine 
wilt nematode (Bursaphelenchus xylophilus) spread by longhorn beetles 
(Monochamus spp.). Identifying attacked trees at the early stage is 
crucial for damage control if they can be removed from the forest with 
the larvae under the bark to control the population and reduce attacks 
by subsequent generations. 

Remote-sensing solutions and applications have been developed for 
monitoring forest pest damage since 1960s (Puritch, 1981). Using 
remote-sensing data, forest mortality caused by diseases and insects can 
be identified rapidly and efficiently (Senf et al., 2017; Fang et al., 2021; 
Zabihi et al., 2021; Atzberger et al., 2020). However, detecting the green 
attack of WBPs has been challenging because of the subtle spectral 
changes. For example, the mountain pine beetle (Dendroctonus ponder-
osae), one of the most destructive insects in North America, has an 
annual life cycle starting in the summer and with the larvae over-
wintering in the tree and completing the development in the following 
summer (Coops et al., 2006a). Many studies have been conducted using 
satellite images to map forest infestations (Coops et al., 2006a; Coops 
et al., 2006b; White et al., 2007; Hermosilla et al., 2019; Coops et al., 
2020). However, detection during the green-attack stage appeared 
almost impossible using satellite or aerial images (Wulder et al., 2009; 
Wulder et al., 2006; Puritch, 1981). Similar challenges have also been 
shown in detecting green attacks of other WBPs, e.g., the Engelmann 
spruce beetle (Anoplophora glabripennis) (Foster et al., 2017) in north 
American and pine wilt nematode (Bursaphelenchus xylophilus) spread by 
longhorn beetles (Monochamus spp.) in Asia (Li et al., 2022a; Zhou et al., 
2022; Li et al., 2022b). In recent years, occasional studies showed some 
potential of using airborne hyperspectral imagery to separate healthy 
trees with green attacks by the mountain pine beetle (Niemann et al., 
2015) and pine wilt nematode (Li et al., 2022c; Yu et al., 2022). In 
general, for the WBPs mentioned above, almost no studies reported 
accurate green-attack detection using satellite images, while new op-
portunities may emerge with very high-resolution images shown by only 
a few studies (Niemann et al., 2015; Li et al., 2022c; Yu et al., 2022). 

For European spruce bark beetle Ips typographus (L.) attacks, an 
increasing number of studies have focused on damage detection and 
mapping with its increasing outbreaks in Europe these years (Luo et al., 
2022; Marvasti-Zadeh et al., 2022). To date, we are not aware of any 
studies that have presented clear evidence of detecting green attacks 

using satellite images, and very few studies detected green attacks using 
high-resolution airborne or drone images (Honkavaara et al., 2020; 
Minařík et al., 2021; Bárta et al., 2022). There are two challenges: (1) 
When using images with too low resolution for the single tree level, e.g., 
satellite images, the abnormal spectra were difficult to attribute only to 
the green attack by excluding other factors such as forest structure and 
vulnerability. (2) Obtaining ground truth on the green-attack stage is 
challenging, thus, many studies conducted early detection (or detecting 
early-stage infestation) instead of confirming the green-attack stage. The 
early detection should be conducted before 8–12 weeks of infestation, 
when the larvae are still inside the bark, while studies often simply it as 
before the red-attack stage and is often assumed according to the season, 
e.g. from May to July (Lausch et al., 2013; Fassnacht et al., 2014; 
Immitzer and Atzberger, 2014; Tanase et al., 2018; Latifi et al., 2014; 
Huo et al., 2021). 

So far, few studies of satellite imagery have presented the abnormal 
spectrum during green attacks by excluding the influences from the 
variation of forest structures and vulnerability. Many studies have pre-
sented the spectral differences between healthy and early-infested trees 
using satellite images of middle to high resolution, such as the Landsat 
series (Abdullah et al., 2019a; Latifi et al., 2014), RapidEye (Abdullah 
et al., 2019c; Ortiz et al., 2013), SPOT series (Latifi et al., 2014; Abdullah 
et al., 2019c), Sentinel-2 (Huo et al., 2021; Bárta et al., 2021; Abdullah 
et al., 2019b; Yang, 2019), and Worldview-2 (Immitzer and Atzberger, 
2014), as well as aerial images (Lausch et al., 2013; Fassnacht et al., 
2014; Einzmann et al., 2021; Hellwig et al., 2021). However, these 
studies could not exclude the possibility that the spectral differences 
existed before the attacks, thus, no conclusion could be made on the 
detectability of the green attack. Previous studies have presented such a 
possibility, for example, in the studies by Huo et al. (2021) and Bárta 
et al. (2021), the spectral differences between the healthy and attacked 
trees already existed before the attacks, and the spectral differences 
maintained but not increased during the green-attack phase. Another 
study also confirmed no abnormal spectrum during the green-attack 
stage using healthy and attacked samples without spectral differences 
before attacks in Sentinel-2 images (Huo et al., 2022). Therefore, the 
spectral differences which existed both before and during green attacks 
in satellite images, either caused by vulnerable forests or variations of 
forest structures, cannot support the conclusion that green attack is 
detectable. 

Ground data availability is another limitation to concluding the 
detectability of the green attack. Some studies have identified attacked 
areas later in the season and made assumptions about the green-attack 
period without sufficient validation by field inventories. For example, 
green attacks were assumed in June and July (Lausch et al., 2013; 
Fassnacht et al., 2014; Immitzer and Atzberger, 2014; Tanase et al., 
2018; Latifi et al., 2014; Huo et al., 2021), or 1–6 months before 
discoloration (Bárta et al., 2021). Such assumptions may lead to a 
misconception of detecting green attacks while detecting trees with 
discoloration attacked from an earlier year or earlier swarming. Other 
studies have conducted one-time data acquisition with combinations of 
green, yellow, red, and grey attacks, resulting in a limited sample size for 
green-attack trees (Hellwig et al., 2021; Klouček et al., 2019; Honka-
vaara et al., 2020). Elsewhere, healthy and declined trees have been 
identified without defining a specific phase (Näsi et al., 2015; Junttila 
et al., 2022; Näsi et al., 2018; Minařík and Langhammer, 2016). None of 
these studies have identified the start of an attack, thus no conclusion 
can be drawn about how soon an infestation has been detected after an 
attack. 

Using very high-resolution images and analyzing the spectrum only 
from the tree crowns, i.e., at the single-tree level, is one of the solutions 
to reduce the influences from the forest structure. Drone images (un-
manned aerial vehicles, UAV) usually have a centimeter-level resolu-
tion, with multispectral or hyperspectral reflectance data covering many 
pixels per tree crown. These images support spectral analyses at the 
individual-tree level, and their spectra are less disturbed than satellite 
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images by the vitality and species of neighboring trees, canopy gaps, and 
low forest vegetation. The development of drones and drone-mounted 
sensors has facilitated research on mortality mapping (Junttila et al., 
2022; Klouček et al., 2019; Minařík et al., 2021; Näsi et al., 2015; Näsi 
et al., 2018; Minařík et al., 2020). 

To date, we are aware of only three studies conducted at the single- 
tree level with field inventory to validate the green attack (Honkavaara 
et al., 2020; Minařík et al., 2021; Bárta et al., 2022). Honkavaara et al. 
(2020) detected 64% of green-attack trees and Minařík et al. (2021) 
separated healthy and green-attack trees with the F-score being 
0.60–0.63 using Random Forest classification. The latter study also 
achieved classification with an F-score of 0.83 using deep learning, but 
the data size was insufficient for training a transferable convolutional 
neural network model avoiding overfitting to the used dataset. No 
detection accuracy was presented in the study by Bárta et al. (2022), but 
the study presented significantly different 25th and 75th percentiles of 
reflectance between healthy and attacked trees 23 days after the attack 
began, based on 75 attacked trees. The conclusion drawn from this was 
that infested trees should be detected and removed within 4–6 weeks of 
infestation. Unfortunately, this study did not quantify the separability or 
classification accuracy between healthy and attacked trees, and the 
detectability was tested monthly without a transition period between 
“undetectable” and “detectable”. 

Since infested, tree vitality declines along a continuum, but the 
process has been simplified as green, yellow, red, and grey phases of 
attacks based on crown discoloration (Luo et al., 2022). Although 
studies have identified green-attack trees (Honkavaara et al., 2020; 
Minařík et al., 2021), it is unclear how long the infested trees in these 
studies had been in the green-attack phase, and more accurate timings 
for detectability are needed to plan effective sanitation cutting. Several 
difficulties need to be overcome to address these issues: (1) green attack 
is challenging to find in the field, thus limiting sample sizes and ana-
lyses; and (2) frequent field observations are needed to identify the start 
of an attack. 

Whether green attacks can be detected using remote sensing is a 
fundamental research question to further develop forest monitoring and 
early warning techniques. Assessing detectability during the infestation 
process is also crucial for arranging efficient and effective sanitation 
cutting before brood emergence, and contributing to damage control. 
This study aims to answer whether it is possible to detect green attacks, 
how early the infestations can be detected, and what is the detection 
accuracy, i.e., detectability of green attacks. We used revisiting multi-
spectral drone imagery to focus on the crown reflectance and avoid noise 

due to other factors (e.g., ground visibility) in the forest. We conducted 
extensive fieldwork to collect the starting time of the infestations and the 
stages of the infestations during a growing season. Supported by 
repeated, very high-resolution image acquisitions and field inventory, 
we aim to confirm whether green attacks are detectable, and, for the first 
time, quantify a weekly detectability curve of infestations since being 
attacked. This study also proposes improved methods for early detection 
using very high resolution multispectral imagery. 

2. Materials and methods 

2.1. Study area and field observations 

The study area is located in Remningstorp, Sweden (58◦27′18′′N, 
13◦39′8′′E, Fig. 1a), a hemiboreal forest estate covering 1602 ha. The 
forests in this area are mainly Norway spruce (Picea abies [L.] Karst) and 
Scotch pine (Pinus sylvestris [L.]) managed for wood production. It is an 
experimental forest and our group has sample plots with inventory of 
forest attributes scattered in the estate. In the study area, bark beetle 
attacks had occurred in some stands from 2018 to 2020. 

The field observations and data collection were conducted from April 
to October 2021. In the study area, we first selected six stands fulfilling 
(1) having infestations from 2020, (2) the volume of spruce was larger 
than 80%, (3) mature forest, and (4) sufficiently large area for setting up 
four plots with 15 m radius. In each stand, four plots with a 15-m radius 
were set up to be attacked plots (Fig. 1), prioritizing (1) not damaging 
the long-term plots used by other studies that were sampled in grids over 
the estate, (2) not having dead trees or attacked trees from previous 
years in the plots, (3) not having other tree species, and (4) close to a 
group of trees attacked in 2020. Not all of these criteria could be ful-
filled, but we prioritized the first ones. 

To ensure beetle colonization, pheromone bags were attached to a 
tree close to the center of each plot (denoted as central trees), about 2 m 
above ground. The pheromone bags contain Phero-X-Lure IT simulating 
the aggregation of pheromones emitted by bark beetles. It can attract 
conspecifics to the site and cause an attack on surrounding trees. Such 
pheromone bags have been commonly used for monitoring beetle 
swarming and used in the management of bark beetle outbreaks (Ozcan 
et al., 2014; Öhrn et al., 2014; Meurisse et al., 2008; Schroeder, 2013). 
The pheromone bags used in this study can last at least 14 weeks, while 
we used them from week 16 (April 5) to week 22 (May 31). We removed 
the pheromone bags from the central trees at the end of May, two weeks 
after the first swarming, so the parental beetles could attack other trees 

Fig. 1. The study area in Remningstorp, Sweden (a), stands and plots (b), a pheromone bag (c) and a flight interception trap for bark beetles (d) on the central tree of 
a plot. 
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to initiate the sister broods (Öhrn et al., 2014), and more data from the 
attacked trees could be collected. On each central tree below the pher-
omone bag, we also attached a flight interception trap to monitor the 
swarming and indicate the potential attacks. More information on the 
traps is presented in Appendix A. 

The locations and diameters at breast height (DBH) of the individual 
trees were measured in April. The mean DBH of the sampling trees was 
27.9 cm (Appendix B). Field observations of the infestation symptoms 
were conducted weekly from week 16 (the week commencing April 5 in 
2021) to week 33 (August 16), and during week 42 (October 18). 
Symptoms of infestation were visually assessed by the same field assis-
tant every week, as consistently as possible. The recorded symptoms 
included: 

(1) resin flow at three levels, i.e., none, < 30 spots, > 30 spots; 
(2) number of holes in the bark at three levels, i.e., none, < 30 spots, 

> 30 spots; 
(3) bark damage at three levels, i.e., none, minor damage, major 

damage with exfoliated bark; 
(4) discoloration of the tree crown at four levels, i.e., green, yellow, 

red, and grey. 
(5) defoliation at four levels, i.e., 0–25%, 25–50%, 50%–75%, and 

75%–100%. 
In week 20 (May 17), bark beetles started swarming. They were 

caught in the traps, and entrance holes appeared in the bark of some 
trees. We determined the beginning of an attack when the entrance holes 
of bark beetles appeared in the bark. In total, 977 trees were monitored, 
208 of which were attacked by bark beetles during two swarmings 
(Fig. 2a). During the first swarming, 151 trees were attacked from week 
20 to week 23, and 10 trees were attacked from week 24 to 29. During 
the second swarming, 21 trees were attacked during week 30, and 26 
trees were attacked during weeks 34 to 42; the latter were not included 
in the analyses because no field observations took place between weeks 
33 and 42. The spectral characteristics of trees attacked during the first 
and second swarming were analyzed separately to explore possible 
differences. 

2.2. Drone image acquisition 

A MAIA S2 multispectral camera (SAL Engineering S.R.L. and EOP-
TIS S.R.L, Italy) was used, mounted on a DJI Matrice 210 RTK drone 
(Fig. 3). The MAIA camera has nine sensors with a resolution of 1280 ×
960 pixels, and the pixel size was 3.75 μm × 3.75 μm, resulting in an 
active area of 4.8 mm × 3.6 mm. Each sensor was linked to a band-pass 
filter that defined the wavelength range (band). We used the MAIA 
camera with a filter that matched the bands of the Sentinel-2 satellite at 
wavelengths ranging from 390 nm to 950 nm (Table 1). The camera was 

equipped with a MAIA Incident Light Sensor (ILS) that measured the 
ambient light level for each band, which was then used to calculate the 
true reflectance ratios. It had an integrated 6-axis inertial unit for motion 
processing, and a Global Navigation Satellite System (GNSS) receiver 
that provided a timestamp and position information for each image. The 
drone with the MAIA camera was flown at 80 m above the ground, with 
an 80% forward and side overlap. The flight height provided a nominal 
ground sampling distance (GSD) of 4 cm. Four radiometric reference 
targets (1 m × 1 m) were installed to transform the image data to 
reflectance. 

The drone images were acquired during the following weeks of the 
year. 

Week 19 (May 10–16). Before the bark beetle attacks began and the 
trees were healthy. 

Week 25 (June 21–27). After the attacked trees had experienced 1–5 
weeks of infestation. 

Week 33 (August 16–22). The trees attacked by the first swarming 
(attacked before week 25) had experienced 9–13 weeks of infestation, 
and 40% of them were discolored. The trees attacked in the autumn 
(attacked after week 25) had experienced 3–6 weeks of infestation 
without any discoloration observed in the field. 

Week 42 (October 18–24). The trees attacked in the spring (attacked 
before week 25) had experienced 18–21 weeks of infestation, and most 
of their crowns were yellow or red. The trees attacked in the autumn 
(attacked after week 25) had experienced 12–15 weeks of infestation, 
with 37% of them discolored, based on field observations (Fig. 4). 

2.3. Drone-image processing 

For each exposure point, the MAIA camera generated nine raw im-
ages, one for each spectral band. Post-processing of the raw images was 
carried out using the MAIA image-processing software and included the 
following corrections. 

(1) A geometric correction for each single-band raw image using the 
camera calibration parameters included for each sensor. 

(2) Co-registration of each spectral band image and generation of 
multi-band images based on a reference image using pixel-by-pixel 
convergence. The no-data borders of images were cropped. 

(3) Radial radiometric correction of the border effects of the images 
as a result of lens curvature. 

(4) Radiometric correction based on the ILS. 
The post-processed images (Fig. 5a) were then used to generate 

orthomosaic images (Fig. 5b) using Agisoft Metashape Professional 
(Version 1.7.2, Copyright 2021 Agisoft LLC.), including aligning photos, 
optimizing alignment, building a dense cloud, building digital surface 
models (DSMs), and building orthomosaics. The orthomosaic images 

Fig. 2. The number of discolored crowns during the growing season (a), the proportions of trees with discolored crowns at different weeks of infestation (b), and the 
duration of the green attack. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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were radiometrically transformed to reflectance (Fig. 5c) using the 
known reflectance of the radiometric reference targets, and manually 
georeferenced to an aerial image (acquired in 2016 and provided by the 
Swedish Land Survey) that covered the study area, with a 0.25-m 
resolution. 

2.4. Individual tree crown delineation 

Individual tree segmentation was conducted using the green band 
(band 3), and the generated segments were used for all bands. The local 
maxima in the images were detected as treetops and used for marker- 
controlled watershed segmentation (Fig. 6a), conducted using the Seg-
mentTrees tool in the Lidar Toolbox in Matlab (MathWorks, Inc., 2021). 
Segmentation usually resulted in segments that contained both tree 
crowns and the surrounding canopy gaps. Thus, we defined pixels >
Thgreen reflectance in the green band as the tree crowns and masked out 
the rest. We used Thgreen = 0.015 and conducted a sensitivity analysis on 
Thgreen to reveal its influence on infestation detection (Appendix C). The 
segments were linked with the tree identification numbers and field 
infestation records by matching the local maxima within the segments 
with the spruce locations measured in the field (Fig. 6b). For this step, 
the local maxima were linked to all possible field measurements and the 
pairs with smaller distances prioritized until all the local maxima had 
been paired with field measurements. 

Fig. 3. The MAIA camera, MAIA ILS, DJI Matrice 210 RTK, and the radiometric reference targets.  

Table 1 
Summary of the MAIA S2 multispectral camera specifications.  

Band no. Colour Center wavelength (nm) Bandwidth (nm) 

1 Violet 443 20 
2 Blue 490 65 
3 Green 560 35 
4 Red 665 30 
5 Red-edge 1 705 15 
6 Red-edge 2 740 15 
7 Red-edge 3 783 20 
8 Near infrared (NIR) 1 842 115 
9 NIR 2 865 20  

Fig. 4. The number of infested trees in each plot (single bars) and stand in June, August, and October, when the drone images were acquired. The red bars indicate 
discolored trees and the green bars indicate green-attack trees. (For interpretation of the references to colour in this figure legend, the reader is referred to the web 
version of this article.) 

Fig. 5. A post-processed multi-band single image from August (a), and an orthomosaic image before (b) and after (c) radiometric correction using the radiometric 
reference targets. The images are illustrated with the red (665 nm), green (560 nm), and blue (490 nm) bands. 
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2.5. Spectral and temporal analyses 

To calculate the spectra of a tree, the pixel values within a tree crown 
segment were averaged for each band. Spectral curves of healthy and 
attacked trees were drawn by presenting the median, 5th, and 95th 
percentiles, and were derived for May, June, August, and October. To 
identify the temporal characteristics of an infestation, we grouped trees 
by the duration of infestation (denoted as tree groups), and analyzed the 
spectral differences between the tree groups. The spectra of trees 
attacked by the first swarming (attacked before week 25) and second 
swarming (attacked at week 30) were analyzed separately, to determine 
whether they presented different temporal characteristics. Spectral dif-
ferences were tested using a two-sided Wilcoxon rank-sum test, 
comparing the null hypothesis that data from the two groups were 
samples from a continuous distribution with equal medians, against the 
alternative that they were not. The test assumed that the two groups 
were independent, and the differences were tested at the p < 0.01 and p 
< 0.001 levels. We also quantified the separability of the infestations by 
determining the kappa coefficient after classification using linear 
discriminant analysis (LDA). 

2.6. Developing vegetation indices 

The bark beetle attacks affect the trees' water transportation system, 
leading to water-stress symptoms, i.e., decreasing water content, loss of 
chlorophyll, and structural changes in the spongy mesophyll (Zabihi 
et al., 2021). Based on the spectral signature changes after attacked, we 
first calculated four ratio indices that should theoretically increase when 
a tree is under water-related stress (Penuelas et al., 1995; Gamon et al., 
1997); (Ehammer et al., 2010):  

• the ratio of the red and green bands 
(
R1 = Red

Green
)

(Red/Green Ratio)  

• the ratio of the red-edge and green bands 
(

R2 =
Red_edge1

Green

)

• the ratio of the two red-edge bands with 705 nm and 783 nm 
(

R3 =
Red_edge1
Red_edge3

)

• the ratio of the NIR and red-edge bands with 865 nm and 783 nm 
(

R4 = NIR2
Red_edge3

)

We then tested whether using multiple ratios could magnify any 
differences between the infested and healthy trees, using Eqs. 1–4: 

MR DSWI1 = R2 ×R3 =
Red edge1

Green
×

Red edge1
Red edge3

(1)  

MR DSWI2 = R2 ×R3 ×R4 =
Red edge1

Green
×

Red edge1
Red edge3

×
NIR2

Red edge3
(2)  

MR DSWI3 = R2 ×R3 ×R1 =
Red edge1

Green
×

Red edge1
Red edge3

×
Red

Green
(3)  

MR DSWI4 = R2 ×R3 ×R4 ×R1

=
Red edge1

Green
×

Red edge1
Red edge3

×
NIR2

Red edge3
×

Red
Green

(4) 

The band combinations were proposed based on the observation of 
spectral signature changes (Section 3.2.2) and supported by the theo-
retical radiation changes during the decline of tree vitality. The chlo-
rophyll loss should be revealed by less absorption in the red band 
compared with the green band 

(
Red

Green

)
, i.e. the Red/Green Ratio index, 

and indicates photosynthetic radiation (Penuelas et al., 1995; Gamon 
et al., 1997). The red-edge bands with wavelengths around 700 nm – 
720 nm are commonly used for indicating water stress of vegetation, and 
we used both the green and the Red-edge3 bands respectively to 
normalize the reflectance of the red-edge band to reduce the influences 
of tree height and shadows. The ratio of the NIR and red-edge bands, i.e., 
NIR/Red-Edge Ratio Index 1, has also been used for estimating photo-
synthetic active radiation and leaf area index (Ehammer et al., 2010). 
The spongy mesophyll changes should be revealed by less absorption in 

the NIR bands compared with Red-edge3 bands 
(

NIR2
Red_edge3

)
. The combi-

nation of the two bands has also been used in Normalized Difference 
Red-edge Index 3, indicating the post-fire conditions of forests. This 

Fig. 6. Segmentation of individual tree crowns from an orthomosaic image taken in August, showing the red-green-blue (RGB) bands. (a) The results of marker- 
controlled watershed segmentation. (b) Local maxima detection (white stars) and tree locations measured in the field (red triangles). Blue lines indicate the 
linked pairs of local maxima and field data. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of 
this article.) 
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study used simple ratios between two bands and multiplied them as new 
VIs to quantify the decline of tree vitality after attacked. 

The performance of the MR-DSWIs was compared with other vege-
tation indices (VIs), as listed in Table 2. 

2.7. Detection of infestation and analysis of the detectability 

The detection of infestation was built on the threshold of each VI. We 
assumed that healthy and infested trees would have similar VI distri-
butions before an attack (denoted as a healthy VI range) and that, as the 
infestations progressed, infested trees would gradually show abnormal 
spectra and VI values. 

We calculated the healthy VI range using our healthy samples (5% 
and 95% percentiles, to exclude extreme values), and detected an 
infested tree when the VI value for the tree was outside the healthy 
range. Detection rates were calculated for trees after different periods of 
infestation to show the detectability. We also compared the detection 
rates between using different VIs. 

3. Results 

3.1. Individual tree segmentation 

After pre-processing the drone images, we segmented individual-tree 
crowns as areas of interest (Fig. 7). This section presents results related 
to the quality and the segmentation of the drone images. The ortho-
mosaic images from May, June, and August included 92% to 98% of the 
trees, apart from the October image of Stand 2, which was influenced by 
wind and included only 86% of the trees (Table 3). During the four drone 
flights, we captured the status of trees after 1 to 22 weeks of infestation, 
in total obtaining 486 single-tree images of trees infested for different 
time periods (Fig. 7, used as samples). Different samples could come 
from the same tree but represent different periods of infestation. We 
grouped the samples by infestation duration, and presented the average 
spectral curves for the different groups. Eleven groups had >20 samples 
and were used for the spectral analysis. They were infested for 2, 3, 5, 
10, 11, 13, 19, 20, and 22 weeks during the first swarming, and 3 and 12 
weeks during the second swarming (Fig. 8). The rest of the groups had 
too few samples to represent infestation status and spectral features. 

3.2. Spectral and temporal changes during infestation 

3.2.1. Individual bands and temporal features 
The attacked trees showed the following spectral differences 

compared with healthy trees (Fig. 9 and Table 4). The May image did not 
show any significant spectral differences (i.e., p < 0.001) between 
healthy trees and trees attacked in June. The median of violet, blue, 
green, red, and red-edge1 bands increased after infestation, while red- 
edge2, NIR 1, NIR2, and NIR3 decreased after infestation. Only the 
red-edge1 and green bands showed significant differences in the June 
image between healthy and attacked trees. Only the red-edge1 showed 
significant differences (p < 0.01) after 3 weeks of infestation during the 
first swarming, with no significant differences for infestations during the 
second swarming. Only the red-edge1 and green bands showed signifi-
cant differences 5 weeks after attacked by the first swarming. The red- 
edge2 and all the NIR bands did not show any significant differences 
at 12 weeks of infestation during the second swarming. All the other 
bands showed significant differences after 10 weeks of infestation dur-
ing both attacks. 

3.2.2. Spectral signatures 
As the infestations progressed, the spectral signatures gradually lost 

the characteristics of a typical vegetation spectrum (Fig. 10). The 
spectral absorption by chlorophyll became weaker, increasing the ratio 
of red and green bands 

(
R1 = Red

Green
)

(Red/Green Ratio). The green–red- 
edge–NIR curve became flatter, increasing the ratio of red-edge and 

green bands 
(

R2 =
Red_edge1

Green

)
, and the ratio of NIR and red-edge bands 

(
R3 =

Red_edge1
Red_edge3

)
(NIR/Red-Edge Ratio Index 1). The spectral absorption 

by the spongy parenchyma became weaker, increasing the ratio of NIR 

bands at 860 nm and 780 nm 
(

R4 = NIR2
Red_edge3

)
. 

3.3. Detection rates 

We examined the detection rates using R1, R2, R3, R4 as indices, and 
classified a tree as infested when the index value was smaller or larger 
than the 5% or 95% percentile values of healthy trees. Fig. 11(a) shows 

that, by comparing R1, R2, R3, and R4, R2 

(
Red_edge1

Green

)
was the best for 

detecting infestations at 10–12 weeks, but the detection rates at 2–5 
weeks were lower and did not increase when more visible discoloration 

developed during later infestation stages. R3

(
Red_edge1
Red_edge3

)
and R1

( Red
Green

)

identified more infestations at 2–5 weeks and 19–22 weeks, 

Table 2 
Details of the vegetation indices (VIs) used.  

No. Abbr. Name Definition for MAIA S2 / 
Sentinel-2 bands 
(https://www.indexdatabase. 
de/) 

References 

1 
MR- 
DSWI1 

Multiple Ratio 
Disease–Water 
Stress Index 1 

Red_edge1
Green

×
Red_edge1
Red_edge3 

Proposed 
in this 
study 

2 MR- 
DSWI2 

Multiple Ratio 
Disease–Water 
Stress Index 2 

Red_edge1
Green

×
Red_edge1
Red_edge3

×

NIR2
Red_edge3 

Proposed 
in this 
study 

3 MR- 
DSWI3 

Multiple Ratio 
Disease–Water 
Stress Index 3 

Red_edge1
Green

×
Red_edge1
Red_edge3

×

Red
Green 

Proposed 
in this 
study 

4 MR- 
DSWI4 

Multiple Ratio 
Disease–Water 
Stress Index 4 

Red_edge1
Green

×
Red_edge1
Red_edge3

×

NIR2
Red_edge3

×
Red

Green 

Proposed 
in this 
study 

5 NDRE2 
Normalized 
Difference Red- 
edge Index 2 

Red_edge3 − Red_edge1
Red_edge3 + Red_edge1 

(Barnes 
et al., 
2000) 

6 NGRDI 

Normalized 
Green-Red 
Difference 
Index 

Green − Red
Green + Red 

(Tucker, 
1979) 

7 NDVI 

Normalized 
Difference 
Vegetation 
Index 

NIR2 − Red
NIR2 + Red 

(Rouse 
et al., 
1973) 

8 GLI Green Leaf 
Index 

(Green − Red) + (Green − Blue)
(Green + Red) + (Green + Blue)

(Louhaichi 
et al., 
2001) 

9 PBI 
Plant 
Biochemical 
Index 

NIR2
Green 

(Abdullah 
et al., 
2019c) 

10 GNDVI 

Green 
Normalized 
Difference 
Vegetation 
Index 

NIR2 − Green
NIR2 + Green 

(Gitelson 
and 
Merzlyak, 
1998) 

11 CIG 
Chlorophyll 
Index Green 

NIR2
Green

− 1 
(Gitelson 
et al., 
2003) 

12 CVI 
Chlorophyll 
Vegetation 
Index 

NIR2 × Red_edge1
Green × Green 

(Hunt 
et al., 
2011) 

13 NDRE3 
Normalized 
Difference Red- 
edge Index 3 

NIR2 − Red_edge3
NIR2 + Red_edge3 

(Navarro 
et al., 
2017)  
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respectively, with R3 showing higher detection rates than R1. We 
therefore assumed that multiplying R2 and R3 would result in better 
detection rates at both early and later stages of infestation. We tested 
this hypothesis by estimating the detection rates of the MR-DWSIs. The 
results (Fig. 11b) verified that R2 × R3 achieved a higher detection rate 
than using R2 or R3 separately, while R2 × R3 × R4, rather than R2 × R3 
× R1 or R2 × R3 × R4 × R1, showed an even higher detection rate than R2 
× R3. 

Comparing these with existing VIs, MR-DSWI2 achieved the highest 
detection rates, followed by MR-DSWI1. MR-DSWI3 and MR-DSWI4 

achieved higher detection rates than all the other VIs except NDRE2 at 
11 weeks of infestation (Fig. 10, Appendix D). Among the established 
VIs, NDRE2 achieved the best detection of infestations, followed by 
NGRDI. The superiority of MR-DSWI2 was exhibited in the early 
detection of infestations. For example, at 5 and 10 weeks of infestation 
from the first swarming, MR-DSWI2 detected 15% and 90% of infested 
trees, while NDRE2 detected 8% and 82% of infested trees. After 12 
weeks of infestation from the second swarming, the detection rates by 
MR-DSWI2 and NDRE2 were 67% and 57%, respectively. 

3.4. Detectability of infestations 

The detectability of infestations during the first swarming presented 
as: 

During 1–5 weeks of infestation, only 15% of trees showed signifi-
cantly different spectra in the drone images, and no discoloration was 
observed in the field. During 6–9 weeks of infestation, trees observed in 
the field with discoloration increased from 0 to 34%, but unfortunately 
we did not acquire any remote-sensing data during this stage of the 
study. During 10–15 weeks of infestation, 87% to 94% of trees showed 
significantly different spectra, while discoloration of only 48% to 74% of 
trees was observed in the field. Remote-sensing acquisitions stopped at 
22 weeks of infestation, when all infested trees showed significantly 
different spectra from healthy trees, while field observations lasted for 
23 weeks, by which time 90% of the trees displayed discoloration. 

The detectability of infestations during the second swarming devel-
oped as: 

During 1–6 weeks of infestation, 14% of the trees showed signifi-
cantly different spectra, while no trees showed visible discoloration in 
the field. After 12 weeks of infestation, 67% of trees showed significantly 
different spectra, while 44% showed visible discoloration in the field. 

Fig. 12 illustrates two extreme cases: (a) trees that had been infested 

Fig. 7. True colour RGB images of individual trees in October, including healthy, green-attack, and discolored trees. The black backgrounds were not part of the tree 
crowns and were masked out. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Table 3 
The number of trees based on the inventory and segmentation of the drone images from the four flights (May, June, August, October).  

Category From inventory From the image taken in 

May June August October 

Number % Number % Number % Number % 

Healthy 769 718 93 723 94 710 92 661 86 
Attacked 208 201 97 204 98 199 96 179 86 
Total 977 919 94 927 95 909 93 840 86  

Fig. 8. The number of trees representing different durations of infestation.  
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Fig. 9. Spectral changes for each band (median shown as a solid line, with 5th and 95th percentiles as bands) as infestation progressed during the first (a) and second 
(b) swarming. 
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for >10 weeks without showing abnormal spectra, and (b) trees showing 
abnormal spectra during the first 5 weeks of infestation. 

4. Discussion 

4.1. Spectral characteristics of infestations 

The red-edge1 (band 5, 705 nm wavelength) was the first to respond 
to an infestation, and the only band to show significantly different 

Table 4 
The separability of band reflectance of healthy and attacked trees. Light blue indicates significant differences at the p < 0.01 
level, and dark blue indicates significant differences at the p < 0.001 level. The numbers in the table are the separability of the 
band reflectance of healthy and infested trees by LDA and larger numbers indicate larger separability. 

Fig. 10. The spectral signatures (median with 5th and 95th percentiles) of trees at different weeks of infestation.  
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Fig. 11. Detection rates using simple ratio VIs (a) and multiple ratio VIs (b) for attacks during the first swarming, and a comparison with other VIs for trees attacked 
during the first (c) and second (d) swarming. 

Fig. 12. (a) Trees with normal MR-DSWI2 values after >10 weeks of infestation. (b) Trees with abnormal MR-DSWI2 values after <5 weeks of infestation.  
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reflectance after 3 weeks of infestation. This was followed by the green 
band (band 3, 560 nm wavelength), which showed significantly 
different reflectance after 5 weeks of infestation. These two bands were 
the only ones that showed significantly different reflectance in the June 
images, but the differences were not big enough to discriminate between 
healthy and infested trees. The two bands were sensitive to early-stage 
infestations, but the separability of healthy and infested trees only 
increased slightly during the middle to later stages of infestation. In 
contrast, the second red-edge band (band 6, 740 nm) and the NIR bands 
were not sensitive to early stages of infestation but showed high sepa-
rability at later stages of infestation. The red band (band 4, 665 nm 
wavelength) was the only one that showed high separability at both 
middle and later stages of infestation. 

Almost all studies using spectral images to detect infestation have 
reported increased reflectance in visible bands, decreased reflectance in 
NIR bands, and decreased spectral derivatives in red-edge bands (i.e., a 
change in reflectance with respect to wavelength) (Bárta et al., 2022; 
Einzmann et al., 2021; Hellwig et al., 2021; Honkavaara et al., 2020; 
Junttila et al., 2022; Klouček et al., 2019; Cessna et al., 2021). Similar 
spectral responses have also been observed in trees attacked by other 
insects and diseases, such as the pine shoot beetle (Lin et al., 2019) and 
pine wilt disease (Yu et al., 2021; Iordache et al., 2020). Existing VIs 
usually combine two bands by presenting a ratio or normalized differ-
ence, while we proposed four disease–water stress indices using multiple 
ratios. Since decreasing water content, loss of chlorophyll, and structural 
changes in spongy mesophyll occur during different stages of infesta-
tion, the multiplication of single ratios increases the differences between 
healthy and infested trees and thus increases their separability. This 
makes our proposed method more generic and robust across all infes-
tation stages. 

The MAIA camera used in this study captured the same bands as 
provided in Sentinel-2 images, from the violet to NIR bands, so the 
spectral responses of corresponding bands from the different sensor 
platforms could be compared. When infested trees lost their vitality, the 
reflectance of the blue to red-edge1 bands in the drone images increased, 
and similar changes were observed in Sentinel-2 data (Huo et al., 2021; 
Bárta et al., 2021; Abdullah et al., 2019b). The reflectance of the red- 
edge2 and the NIR bands decreased in the drone images after infesta-
tion. In Huo et al. (2021), the reflectance of these bands in attacked trees 
was higher than in healthy trees before the attacks, and lasted until later 
stages of infestation. In Bárta et al. (2021), both increased and decreased 
reflectance of these bands were observed at different infestation stages 
because of the influence of the canopy structure. Inconsistent changes in 
NIR bands have also been seen in other studies using different sensors 
and platforms (Ortiz et al., 2013; Klouček et al., 2019), possibly because 
the NIR bands are responding to factors other than insect infestation. 
The two red-edge bands responded to early infested trees in Bárta et al. 
(2021) when using Sentinel-2, but neither of them responded in Huo 
et al. (2021). In this study, only the red-edge1, and not red-edge2, 
responded in the drone images. More studies are needed to investigate 
the factors influencing the response of red-edge bands. 

4.2. Temporal characteristics of infestations 

4.2.1. Whether it is possible to detect infestations in June 
In 2021, the first bark beetle swarming in the study area started in 

week 20 (May 17). No sampled trees had been infested from previous 
years, and no spectral differences were observed before the attack be-
tween healthy trees and trees that were later attacked. Five weeks after 
the beginning of the attacks, i.e., in late June, infested trees did not show 
discoloration in the field (green attack) but did show significant 
increasing reflectance in the green band (band 4) and red-edge band 
(band 5). It could be that the multispectral images captured differences 
between healthy and green-attack trees, but it should be borne in mind 
that 91% of the green-attack trees still had spectra within the range of 
the healthy trees in June. Therefore, based on the environmental 

conditions of our study, we do not think early detection of infestations is 
feasible in June (1 month after a swarming). This is in agreement with a 
previous study (Huo et al., 2021) in the same area, in which spectral 
differences between healthy and attacked trees existed in Sentinel-2 
images taken before the attacks, and these differences did not increase 
during May and June (1 and 2 months after a swarming). 

In central Europe, swarming happens earlier, more often and more 
intensely than in northern Europe, explaining why some studies have 
shown detectability in June. One study observed swarming in April, 
May, and August, and could separate healthy and attacked trees in a 
Sentinel-2 image at the end of May (Bárta et al., 2021). In another study 
(Bárta et al., 2022), spectral differences between healthy and attacked 
trees existed before attacks, and were not significant enough to identify 
infested trees in May and June, but were significant enough in July (2 
months after the swarming and 1 month after infestation). Some studies 
have observed spectral differences between healthy and attacked trees 
in June but did not test whether the spectral differences existed before 
the attacks (Abdullah et al., 2019b, 2019c). 

4.2.2. Whether and when it is possible to detect green attacks 
This study presents clear evidence that spectral data can reveal in-

festations before crown discoloration, i.e. we were able to detect green 
attacks. Although the same conclusion has been drawn in many studies 
based on spectral differences between healthy and green-attack trees 
(Honkavaara et al., 2020; Minařík et al., 2021), our study has specif-
ically demonstrated that the spectral differences were caused by in-
festations because no significant spectral differences existed before the 
attacks. The detection rates from multispectral images were consistently 
higher than those detected by discoloration in the field. During the first 
swarming, we identified 90% of the infested trees after 10 weeks of 
infestation using multispectral images, about twice the number of trees 
detected in the field based on discoloration. We conclude that infested 
trees can be detected earlier using multispectral images than field ob-
servations based on crown colors. 

Vitality decay caused by infestations takes place on a continuum. 
Therefore, instead of dividing infestations into separate stages, e.g., 
green, yellow, and red attacks, we grouped trees according to the 
number of weeks of infestation, and plotted a continuous curve of 
infestation detectability over time. There were large variances between 
individual trees regarding the infestation stage, e.g., some trees were 
still in the green-attack phase after 10 weeks of infestation, while other 
trees were in the yellow-attack phase after just 5 weeks of infestation. 
We assume this is related to variability in tree vulnerability. By quan-
tifying the detectability, instead of qualitatively describing detectable 
green attacks, we were able to consider the variation between individual 
trees. 

During the first swarming, 15% of the infested trees were identified 
after 5 weeks of infestation, and 90% were identified after 10 weeks. We 
had intended to analyze the spectral responses during July, but were 
unable to acquire images during this period because of drone damage. 
This created a gap in the time series of images for trees at 6–9 weeks of 
infestation. The field observations showed a linear increase in the 
number of discolored trees during weeks 6–13 of infestation. Both the 
spectral changes in the images and discoloration observed in the field 
are indicators of vitality loss, hence we assume that there would be a 
period when the detectability of infested trees from multispectral images 
increases in a similar manner. However, we could not determine this 
period more precisely than 5–10 weeks of infestation, and we cannot 
reject the possibility that this period might be shorter than 10 weeks, e. 
g., 6–9 weeks of infestation. During this period of rapid change, it is 
essential that we can determine how early infestations can be detected. 
Taking all the different VIs into consideration, we did not see any 
indication that infested trees can be detected sufficiently during the first 
5 weeks of infestation, but most infested trees can be detected after 
10–13 weeks of infestation. 

Although the detection rates differed between different VIs, they did 
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not change the overall conclusion of how early infestations could be 
detected. The newly proposed MR-DSWI2 and MR-DSWI3 detected 15% 
of the attacked trees at 5 weeks of infestation, while other VIs detected 
5–8% of the trees. The newly proposed MR-DSWIs and NDRE2 detected 
>80% of the trees at 10 weeks of infestation, while the other VIs, apart 
from CVI and NDRE3, indicated similar detection rates at 13 weeks of 
infestation. 

One goal of developing early detection techniques is to enable the 
identification and removal of infested trees when the larvae are still 
inside the bark, on the assumption that this will reduce the size of a 
second swarming and the number of attacked trees. Attacks from the 
second swarming (week 30) were observed 10 weeks after the first at-
tacks (week 20) in this study. In practice, 6–9 weeks after an attack 
begins is likely to be the most efficient period for detecting and 
removing infested trees (which would be around July for the study 
area). Classifying trees too early during the infestation period would 
result in insufficient detection rates, while too late would result in less 
time for sanitation felling and an increased risk of a second swarming 
arising from individual variations. 

4.2.3. Factors influencing the critical period for detecting green attacks 
In our field experiment, 75% of the trees were attacked before week 

25 (June 21–27), and 10% were attacked in week 30 (July 26 to August 
1). We assumed that these two attacks originated from the first and 
second swarming, respectively. After 11 weeks of infestation by the first 
swarming, 85% of the trees were detected, while the detection rate 
during the second swarming was only 67% after 12 weeks of infestation. 
Different factors may cause this phenomenon, e.g., the attacks from the 
second swarming may have been less intense, or the trees attacked in 
late summer might have been less vulnerable compared with those 
attacked in the spring and early summer. Both of these factors would 
result in more trees defending themselves successfully or losing vitality 
more slowly after the second swarming. Temperature is a crucial factor 
in the intensity of attacks, and water-related stress influences the general 
vulnerability of spruces. In this study, we only exhibit temperature data 
in Fig. 2 for potential reference to other studies, but it was not further 
analyzed. More research is needed on how much these two factors in-
fluence the temporal characteristics of infestation development. A study 
in southern Czech Republic (Bárta et al., 2022) recorded attacks starting 
in week 19 (May 3, 2020) in recent forest edges, and identified in-
festations of trees in the monitored area in week 24 (June 17) by the 
field inventory. Four weeks later (in week 28, July 10), the 25th and 
75th percentile of spectra from healthy and attacked individual trees 
showed significant differences in the hyperspectral images. The rec-
ommended period in the Czech Republic for removing infested trees is 
within 6 weeks of infestation, i.e. the developmental time from egg to 
imago (Bárta et al., 2022). The critical period for detecting green attacks 
may therefore be about 4–6 weeks in central Europe and about 5–9 
weeks in Scandinavia, based on this limited number of studies. The at-
tacks in central Europe may have been more intense than those in 
Sweden, causing the attacked trees to lose vitality faster, because of the 
warmer temperature zone. Another study in central Czech Republic 
observed three swarming in 2018, around mid-April, late May, and early 
August. The attacked tree groups started to show separable spectra in 
Sentinel-2 images on May 31. We assume that satellite images capture 
subtle changes later than drone images because of their lower spatial 
resolution, but more studies are needed to verify these assumptions. 

4.3. Application potential, limitations, and further studies 

We conducted weekly field observations and considered infestations 
to have started when we observed entrance holes in the bark. Because 
entrance holes further up on the stems are not as easy to observe, the 
attacks may have started earlier than presented here. Nevertheless, the 
swarming monitoring using the flight intercept traps also indicated the 
start of the attacks and decreased the probability of delayed observation. 

Because of limitations with the drone flights, we did not obtain any 
drone images for weeks 6–9 of infestation during the first swarming, 
which should be a focus for future studies. The second swarming was less 
intense compared with the first, and we only observed 21 attacked trees. 
Therefore, the temporal-spectral analysis of the infestations from the 
second swarming is limited. This study mainly focused on trees attacked 
in the first swarming, and only monitored the second swarming until the 
green-attack stage. From the October drone image, 67% of the infested 
trees were detected, and damage control could be conducted. Exploring 
whether the remaining 33% of infested trees could be detected before 
the first swarming in the following year would be an interesting topic to 
pursue, and could contribute to population control planning. Future 
studies should also explore the potential of using hyperspectral images, 
which could provide slightly better detection rates compared with 
multispectral imagery (Honkavaara et al., 2020). Hyperspectral images 
would enable research on whether continuous spectral curves can pro-
vide more information for earlier detection than multispectral images. 
Many studies using satellite images have proposed SWIR bands for early 
detection from June to August (Immitzer and Atzberger, 2014; Huo 
et al., 2021), and so have spectrometer studies of needle reflectance 
(Abdullah et al., 2018; Reichmuth et al., 2018; Einzmann et al., 2021). In 
this study, we could not assess whether the SWIR bands were useful or 
not, but we encourage further research on the potential use of 
high-resolution SWIR bands for the early detection of infestations, by 
mounting SWIR sensors on drones. 

How early the infested trees show abnormal spectra should be 
answered both from the perspective of remote-sensing techniques and 
the colonization process and its drivers. We have presented spectra 
separability for infestations at different stages, and proposed new VIs 
that achieved higher detection rates for green attacks compared with 
existing VIs. Our proposed methodology could be a useful tool for 
quantifying vitality loss and supporting research on host-tree vulnera-
bility, the colonization process, and driving factors. For example, in this 
study, 9% of infested trees showed abnormal spectra during weeks 1–5 
of infestation (i.e., vulnerable trees were identified), and 6% of the 
infested trees did not show abnormal spectra after 13 weeks of infesta-
tion (i.e., invulnerable trees were identified). Mapping the occurrence of 
infestations and the vulnerabilities of trees could contribute to modeling 
environmental factors and estimating attack risk. 

For forest monitoring, drone image acquisition is more flexible in 
time and area compared to satellite images, and with higher spatial 
resolution providing health stages at the individual-tree level. The 
coverage of drone images is not sufficient for wall-to-wall mapping of 
large areas, nevertheless, this study provides valuable insights for large- 
area mapping. First, the study shows that it appears almost impossible to 
detect green attacks in June in Sweden, saving lots of effort attempting 
to use satellite images to detect infestations before July. It also indicates 
massive false positive detections in the large-area mapping if satellite 
images before July are used, since the abnormal spectrum is unlikely 
from the green attacks. Second, the proposed framework of early 
detection using drone images is suitable for the focused monitoring of 
small areas, and it is faster and more accurate than field inventory, thus 
can provide ground-truth data for large-area mapping. 

5. Conclusions 

We conducted weekly field observations on spruces attacked by bark 
beetles, and acquired and analyzed multispectral drone images before 
and during different stages of infestation. The red-edge band with a 705 
nm wavelength was the first band to respond to infestations, followed by 
the green band (with a 560 nm wavelength). We have developed new 
disease–water stress indices (MR-DSWIs) by multiplying ratios of green, 
red, red-edge, and NIR bands. Using these MR-DSWIs resulted in higher 
detection rates of infestations than previously used VIs: during the first 
swarming, 15% of infested trees were detected after 5 weeks of infes-
tation, and 90% were detected after 10 weeks. We conclude that, during 
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the first swarming, weeks 5–10 of infestation represent a key period for 
detection. The detection rates from multispectral images were higher 
than the rates of discoloration observed in the field throughout the 
whole season. Thus, we conclude that green attacks are detectable from 
multispectral drone images, and the proposed methods could be used for 
mapping local infestations at an early stage and indicating tree vitality. 

This study has addressed the question of how early trees infested by 
bark beetles show significantly different spectra compared with healthy 
trees. We encourage further studies that replicate and extend our results, 
with longer monitoring periods, including second and/or third swarm-
ing, spanning more years, and encompassing more climate zones. 
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Appendix A. Swarming monitoring 

Three types of swarming monitoring were used as shown in Fig. A. 
(1) Swarming monitored by the Swedish Forest Agency (SFA). The SFA organizes the swarming monitoring in 64 locations throughout Sweden. Big 

traps with pheromone bags were mounted in clear-cut areas surrounded by spruce forests. The traps were emptied every Monday and the number of 
trapped beetles was published every week. The closest trap to our study area was about 9 km away, and the number of trapped beetles is illustrated in 
Fig. A with blue bars. (https://www.skogsstyrelsen.se/statistik/statistik-efter-amne/svarmningsovervakning/) 

(2) In this study, we used a trap from the SFA and put it in a clear-cut area within the study area. The number of trapped beetles is illustrated in 
Fig. A with red bars. 

(3) In this study, we attached a flight interception trap (Ranius and Jansson, 2002) on each central tree in every attacked plot to monitor the 
swarming. The traps were made from a flat, vertical piece of transparent plastic with a container below with a mix of glycol (we used windshield 
washer fluid), water, and detergent to lower the surface tension (Fig. 1d). We counted bark beetles every week from week 16 (April 5) to week 28 (July 
12). The number of beetles is illustrated in Fig. A with yellow bars.

Fig. A. The number of beetles monitored by (1) the SFA (blue bars), in this study using (2) a big trap (red bars), and (3) small traps (yellow bars). (For interpretation 
of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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Appendix B. The DBH distribution of the sample trees

Fig. B. The DBH distribution of healthy and attacked trees.  

Appendix C. Sensitivity analysis (% detection rate) for Thgreen values using MR-DSWI2.  

Thgreen Weeks of infestation 

First swarming Second swarming 

2 3 5 10 11 13 19 20 22 3 12 

0 0 5 13 90 83 92 92 89 93 10 71 
0.005 0 5 13 90 83 92 92 89 93 10 67 
0.01 5 7 15 90 87 94 95 96 98 10 62 
0.015 2 11 15 90 87 94 95 98 100 10 67 
0.02 2 11 15 87 83 94 95 98 100 10 67 
0.025 2 11 15 85 83 94 95 96 100 5 62 
0.03 5 11 15 85 83 94 95 96 100 5 62  

Appendix D. Detection rate (%) of infested trees based on different VIs.  

VI Weeks of infestation 

First swarming Second swarming 

2 3 5 10 11 13 19 20 22 3 12 

MR-DSWI1 2 9 15 90 85 94 95 98 100 10 67 
MR-DSWI2 2 11 15 90 87 94 95 98 100 10 67 
MR-DSWI3 2 11 8 85 83 88 95 98 100 10 67 
MR-DSWI4 2 11 8 85 85 88 95 98 100 14 67 
NDRE2 2 7 8 82 81 92 95 96 100 0 57 
NGRDI 2 9 8 77 79 81 95 93 100 14 57 
NDVI 0 7 6 74 79 81 95 93 100 5 48 
GLI 0 2 4 72 73 81 95 96 100 14 48 
PBI 2 5 8 69 79 85 92 89 95 0 29 
GNDVI 2 7 6 59 69 79 92 83 95 0 24 
CIG 2 7 6 59 69 79 92 83 95 0 24 
CVI 0 5 4 31 29 54 54 52 64 0 10 
NDRE3 2 2 8 36 29 50 32 41 36 43 29  
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Näsi, R., Honkavaara, E., Lyytikäinen-Saarenmaa, P., Blomqvist, M., Litkey, P., 
Hakala, T., Viljanen, N., Kantola, T., Tanhuanpää, T., Holopainen, M., 2015. Using 
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