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Environmental microbiology going computational—
Predictive ecology and unpredicted discoveries
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INCREASED DATA GENERATION AND
DATA CRUNCHING

The fields of microbial ecology and environmental
microbiology are producing loads of data, mainly
nucleic acid sequence data due to the extensive use of
amplicon sequencing and metagenomics, and an
increasing use of transcriptomics. To increase our
understanding of microorganisms in terrestrial ecosys-
tems, multiple, concerted efforts to collect large num-
bers of samples for analyses of microbial communities
were initiated already more than 15 years ago (Fierer &
Jackson, 2006; Lozupone & Knight, 2007) but have
really exploded the last years, with The Earth Micro-
biome Project Consortium being one of the first major
endeavours for bacteria across all biomes (Thompson
et al., 2017) and the work by Tedersoo et al. (2014) for
soil fungi. The majority of the investigations have a bio-
geography focus based on a single sampling occasion
and the word ‘global’ is frequently used in the titles of
these soil microbial catalogues and surveys (Bahram
et al., 2018; Delgado-Baquerizo et al., 2018; Gobbi
et al., 2022). Similar efforts have been done for many
other biomes. Although largely descriptive, they have
contributed to a better understanding of microbial diver-
sity and the distribution of microbial taxa and their func-
tions at an unprecedented spatial scale. Further,
correlative analyses have indicted direct or indirect
drivers of the observed patterns as well as the role of
microbial communities for ecosystem functioning
(Bahram et al., 2018; Delgado-Baquerizo et al., 2020;
Garland et al., 2021).

The massive amount of complex data is not only an
opportunity but also a major challenge when it comes
to meaningful interpretation. The field of computational
biology, being the intersection of computer science and
biology, is rapidly expanding and developing new
methods for this purpose. Artificial intelligence (AI),
including machine learning (ML) and to some extent
also deep learning (DL) methods are promising for
dealing with big data in microbial ecology and environ-
mental microbiology (Ghannam & Techtmann, 2021;
McElhinney et al., 2022). Especially ML approaches
are increasingly adopted by ecologists and many of
these methods will soon become routine tools for ana-
lyses of complex microbial omics data. They can be
used to categorize and finds patterns in uncategorized
data as well as analyse data that we know how to cate-
gorize. There are several advantages to using ML
methods in microbiome studies, for example, they can
deal with non-linear relationships, make better use of
the full depth of high-dimensional data, and can be
used to build predictive models based on environmen-
tal and community data.

Predictive modelling is very attractive in microbial
ecology. Among the ML methods, random forests have
become frequently applied in microbiome studies in the
last decade (Jones et al., 2014; Ryo & Rillig, 2017). It is
predominantly used for the identification of the best pre-
dictors for a given response variable and has for exam-
ple been used to rank the environmental variables
determining the major microbial phyla in wetlands
(Bahram et al., 2022) and the diversity of ammonia oxi-
dizing archaea across European soils (Saghaï
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et al., 2022), as well as the relative importance of biotic
and abiotic controls of nitrous oxide emissions from
agricultural soils (Jones et al., 2022). Random forest
modelling can be very useful when studying remote
areas that are difficult to sample, as exemplified by cli-
mate projections on microbial communities in the Ant-
arctic Ocean (Tonelli et al., 2021). RF models can also
show how predictions change over the range of each
individual predictor variable, thereby giving the possibil-
ity to identify thresholds or tipping points (Apley &
Zhu, 2020; Saghaï et al., 2022). Already in 2012, artifi-
cial neural networks were used to incorporate interac-
tions among community members in models for
predictions of microbial community composition in time
and space based on environmental data (Larsen
et al., 2012). A similar approach was used to predict
the maize rhizosphere community at different plant
development stages or growth conditions (García-
Jiménez et al., 2021). This type of approach can poten-
tially assist in the microbiome engineering of important
crops. However, with sequencing costs being relatively
cheap, there is an increasing interest in using AI and
microbiome data for microbiome-based diagnostics as
a means to address environmental challenges and
advance management practices (McElhinney
et al., 2022). Two recent examples of the latter are the
use of soil microbiome data to predict the propensity for
specific plant diseases in agriculture (Yuan et al., 2020)
and soil health metrics (Wilhelm et al., 2022), which
can be laborious and expensive to measure.
Combining ML and microbiome data has further shown
promising in environmental monitoring, tracing of con-
taminants and predictions of environmental quality
(Sperlea et al., 2022; Techtmann & Hazen, 2016;
Wheeler, 2019), which allows us to move away from
indicator taxa or microbial biomarkers and instead use
the full breath of information encompassed by the
microbial community in a given site or sample.

RE-USING DATA AND SHIFTING TO A
DATA-DRIVEN COMPUTATIONAL
SCIENCE

The large amounts of genetic data and corresponding
meta-data generated in microbiome studies are real
treasures, especially when it comes to metagenomes
and metatranscriptomes, and only a fraction of the
information available has been explored. This data can
be used for meta-analyses to increase the scale of the
study, but more importantly, it can be used to address
other questions than those posed by the researchers
that collected the original data. Making use of already
published genome or sequence data in microbial ecol-
ogy is not a new idea (Jones & Hallin, 2010) but now
we have increasing possibilities to mine extremely large
data sets (Coelho et al., 2022). Even more exciting are

the possibilities to combine different types of data and
information to go beyond the microbiome data. Integra-
tion of knowledge from diverse fields of research and
the combination of microbiome data with other data
from different sources have the potential to result in
unexpected and unpredictable results, as well as new
discoveries.

A recent example of re-using and combining data is
the work by Ke et al. (2022), who reanalyzed data in
published datasets on the effects of pesticide applica-
tion on soil microbial communities combined with infor-
mation on the physical and chemical properties of the
pesticides. By developing a ML model, they were able
to show that physical pesticide properties largely
explain the ecological impact of the pesticide. This
information can guide the design of pesticide molecules
to minimize environmental risk. In the field of precision
agriculture, researchers have proposed the integration
of AI and nanotechnology with disparate datasets to
enable the design of nanoscale agrochemicals for sus-
tainable food production (Zhang et al., 2021). In
another study, geographic and meteorological data as
well plant-traits, land-use type and microbial community
data were used in a ML-based prediction of grassland
degradation, which is a multi-factorial phenomenon not
easily captured by a few variables (Yan et al., 2022).
Combining datasets and using computational
approaches can also be used to develop new diagnos-
tic tools. For example, de Andrade et al. (2021) suggest
the development of a soil quality index based on soil
microbiome data, crop productivity and a range of abi-
otic environmental factors to improve crop production
systems using AI. Data-driven research relying on
large, multiple, complex datasets and computational
methods and capacity, as exemplified above, indicates
a new paradigm in microbial ecology, and ecology in
general (McCallen et al., 2019). We can anticipate new
insights, similar to the leaps taken after advanced bioin-
formatics and multi-omics approaches became an inte-
gral part of microbial ecology research.

Microbial ecology and environmental microbiology
will follow the trajectory in life sciences and become
increasingly computationally demanding, focusing on
larger and also more complex sets of information. We
are already seeing the laboratories being sparsely pop-
ulated while students, postdocs, and researchers
spend increasing amount of time in front of their com-
puters organizing and analysing data. My crystal ball
says that a shift towards a data-driven rather than an
experimental-driven and data generating science, that
depends on complex, big data, and advanced technolo-
gies, will be a game changer in microbial ecology and
environmental microbiology. This development is
already putting pressure on management, storage and
sharing of data. Data-driven microbial ecology research
where different types of data are combined to consider
the multidimensionality of ecosystems further suggests
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that students and researchers not only need to
enhance their computational skills, but also skills in
working interdisciplinary. Nevertheless, important dis-
coveries should ideally be followed by experimental
approaches to test hypothesis, determine causal rela-
tionships, and verify mechanisms. Already, experimen-
tal validation is definitely a bottleneck to close the circle
in microbial ecology research and, although my crystal
ball is a bit hazy here, it looks like this will become an
even greater bottleneck in the era of big data and data-
drivenresearch in microbial ecology.
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