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A B S T R A C T   

In sustainable forest resource management, establishing forest conservation areas is important to maintain forest 
biodiversity. However, assessing the conservation value of forests is challenging because the target areas are 
often both large and remote. We explored using dense airborne laser scanning (ALS) data to estimate conser-
vation values. Field data were collected at sites in Sweden for standing deadwood (S trees), laying deadwood (L 
trees), and trees considered particularly important for conserving biodiversity (N trees), and forest conservation 
values were determined using a commonly employed method in the field. A template matching method was then 
used to detect L, S and N trees from ALS data. L trees were identified from linear features in the point cloud above 
the ground, with a 52 % detection error rate. S and N trees were identified from unusually small or large crown 
diameters, with 71 % and 83 % error rates, respectively. We also tested the relationships between the three types 
of indicator tree, their summed values and the field inventory-assessed conservation values. Regressions between 
the assessed conservation values and ALS indicators were most robust comparing the three test sites when using 
the summed number of L, S, and N trees. A wall-to-wall map covering a 3 km × 4 km area was generated using 
Kernel density estimation of the summed number of ALS-derived indicators, to represent relative conservation 
values. The map was validated using 10 1-ha plots, and yielded an R2 value of 0.6 for predicted conservation 
values at the plot level. We conclude that ALS data can be used to map forest conservation values and inform 
decisions about which forests should be used for timber production and which should be set aside as conservation 
areas. The maps could also be used as a data source for habitat analysis.   

1. Introduction 

A range of environmental and social values can be assigned to for-
ests. In order to support sustainable and responsible ecological, social 
and economic management of forests and their resources, the concept of 
“high conservation value forests” (HCVFs) was proposed by the Forest 
Stewardship Council (FSC) in 1999. HCVFs are characterized by one or 
several of the following attributes: they (1) represent a significant con-
centration of biodiversity values, (2) are significantly large forests at a 
landscape level, where populations of autochthonous species exist in 
their natural form in terms of distribution and density, (3) contain rare, 
threatened or endangered ecosystems, (4) provide basic natural services 
in critical situations, for example as water catchments, erosion control, 

and barriers to destructive fire, (5) are fundamental to the basic needs of 
local communities, (6) and a critical component of local communities’ 
traditional cultural identity (FSC Principles and Criteria, February 
2000). Forest managers should identify HCVFs and implement man-
agement plans that maintain and enhance their value. In Sweden, forest 
harvesting requires an assessment of the biodiversity potential of forest 
stands to determine whether they can be harvested or should be set aside 
to conserve their value. In addition, patches of high conservation value 
within stands that are to be harvested need to be identified and retained, 
i.e. a green tree retention policy should be implemented. Therefore, 
estimating the forest biodiversity potential is important for sustainable 
forest resource management. 

However, comprehensive information on biodiversity is rarely 
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available, and gathering such information is extremely time-consuming 
and costly. Hence, assessed conservation values are commonly based on 
surrogates for biodiversity, i.e. easily recognizable structures or species 
the presence of which indicates high biodiversity (Lindenmayer et al. 
2015). Numerous surrogates, or sets of surrogates, have been suggested 
as indicators of conservation value (Noss, 1990; Lindenmayer and 
Likens, 2011; Hunter et al., 2016; Yong et al., 2018). In Sweden, the 
most widespread method is based on the presence of various habitat 
characteristics or structures, e.g. senescent/large trees and deadwood, 
and disturbance processes, such as signs of natural disturbance (Dra-
kenberg and Lindhe, 2001). All surrogate methods rely on field-derived 
sample data for the occurrence/abundance of the surrogates. To reduce 
the risk of biologically valuable areas being overlooked, there is a need 
for wall-to-wall maps of forest conservation values (Zhao et al., 2005) 
that represent the complete area of interest rather than just sample plots 
distributed within the area. 

Remote sensing, including airborne laser scanning (ALS), can be 
applied in forestry and ecology studies to obtain information more 
efficiently and accurately than field inventory, and most importantly, 
can be used to generate a comprehensive estimate (i.e. wall-to-wall map) 
of forest attributes. ALS data usually covers large areas and provides 
vertical information about forests, and full 3D representations of forest 
can provide insights into ecologically relevant features (Onojeghuo and 
Onojeghuo, 2017). ALS data used for habitat studies includes canopy 
openness, foliage height diversity, and microhabitats (Santopuoli et al., 
2020), as well as the height and species of individual trees (Müller and 

Vierling, 2014). Laser scanning has been used to map forest structure 
diversity (Adhikari et al., 2020; Adnan et al., 2019; Schneider et al., 
2020), tree species diversity (Mohammadi et al., 2020), and functional 
diversity (Zheng et al., 2021), all of which are highly related to forest 
biodiversity values (Ehbrecht et al., 2017; van Kane et al., 2011; Ster-
eńczak et al., 2020). However, we are not aware of any studies that have 
explored the possibility to use remote sensing data to construct indices 
from detailed 3D reconstruction of different types of tree objects from 
dense ALS data. Therefore, the potential of remote sensing needs to be 
further explored, and if reliable, the assessment method would be more 
efficient than field-based inventory, and more comprehensive to cover 
the whole area. 

In this study, we aim to test the potential of using ALS to map forest 
conservation values regarding the biodiversity (HCVF attribute 1), based 
on the premise that dense ALS data can provide information about forest 
structures relevant to biodiversity, such as the quantity of standing and 
lying deadwood and the number of trees with high conservation values 
(i.e., biodiversity indicators). We tested how well the number of ALS- 
derived indicator trees is correlated with field-assessed conservation 
values, the latter assigned using the surrogate method currently 
employed in Sweden and elsewhere. We developed a method for 
detecting biodiversity indicators from dense ALS data, to which we 
assigned a conservation value. We then produced a wall-to-wall map 
showing the distribution of the biodiversity indicators, and tested if an 
ALS-derived map can be used to successfully identify forests with a high 
conservation value. 

Fig. 1. The location of the study sites in Sweden (a), the 1-ha field plots at Krycklan (b, Site N), Siljansfors (c, Site M), and Attsjö (d, Site S), and the distribution of the 
assessed conservation values based on the field-inventories conducted at Site N (d), Site M (e), and Site S (f). The conservation value assessments were made in 
circular 1 ha plots distributed within the three sites according to panels b-d. 
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2. Study area and data collection 

2.1. Study sites 

The study sites, Krycklan (site N; Lat. 64.2◦ N, Long. 19.8◦ E; 6 780 
ha), Siljansfors (site M; Lat. 60.9◦ N, Long. 14.3◦ E; 1500 ha), and Attsjö 
(site S; Lat. 56.9◦ N, Long. 15.1◦ E; 350 ha), were located in northern, 
middle, and southern Sweden, respectively (Fig. 1). The sites were 
covered with managed boreal or hemi-boreal forests (Ahti et al., 1968), 
and the most common tree species were Scots pine (Pinus sylvestris), 
Norway spruce (Picea abies), and birch (Betula spp.). 

2.2. Study sites and field inventory data 

During the summer of 2019, the forest biodiversity potential of the 
study sites was assessed by taking field inventories within 1-ha circular 
plots (15 plots per site). The decision for the specific plot size and plot 
density were based on the same type of constraints that practitioners 
face when assessing conservation values, i.e. the need to balance the cost 
(time) and precision (plot density). In our specific case, we had to limit 
the field inventory to one week per site, and to balance the time con-
straints with the need to get a reasonable representation of the variation 
in conservation value across a site we decided to survey 15 of 1 ha plots 
within each site. To define a 1-ha plot, the ArcMap tool “Buffer” was 
used with a radius of 56.4 m, and to randomize the inventory the centers 
of the 1-ha plots were placed in a systematic grid using the tool “Create 
fishnet”. If a plot was positioned so that part of the 1 ha plot ended up in 
a habitat (e.g. on a mire) that did not fulfill the criteria for being forested 
(crown cover exceeding 10 % of the ground), it was manually moved to 
the nearest location so that the entire plot area represented forested 
conditions. To increase the likelihood that some of the plots included a 
high range of conservation values, two plots that were situated in either 
key woodland habitats or a nature reserve (i.e. areas already identified 
for their high conservation value or as a reserve) were added to each 
study site, resulting in an overall total of 17 plots per site. This implies 
that the grid used was close to, but not exactly a systematic grid. 

Within each of the 1-ha plots, we assessed the conservation value 
following the methodology developed by Skogsbiologerna AB (Dra-
kenberg and Lindhe, 2001). This method is widely used to assess forest 
conservation values, has been demonstrated to produce reliable esti-
mates of forest biodiversity, and can be used without specialized 
training to measure the biodiversity of any type of forest (Hekkala et al. 
unpublished). The surveyor uses a score sheet and systematically 
searches for the presence of certain stand characteristics, processes, and 
structures, such as the age distribution of the stand, presence of downed 
and standing dead trees, trees with holes, other microhabitats, vegeta-
tion type, and signs of forest fires or other natural disturbance. The 
survey is divided into six sections, site (with 12 variables), dynamics 
(13), microhabitats (15), trees (12), structures (13), and deadwood (15), 
and is usually conducted at the stand level (0.5–10 ha when the stand is 
uniform). For this study, the presence of each characteristic (with a 
maximum of 80) was recorded, and the sum of all the recorded char-
acteristics provided a value that represented the potential conservation 
value of the stand. Generally, stands with values exceeding 15–20 
represent forest of high conservation value. 

In addition to assessing the conservation value, we used a hand-held 
global positioning system (GPS) to record the position of all the lying 
deadwood (L trees) longer than 1.5 m with a diameter exceeding 10 cm 
in the basal end, and standing deadwood with a diameter at breast 
height (DBH) > 10 cm (S trees) within each 1-ha plot. We also recorded 
the position of trees of special importance for preserving biodiversity (N 
trees). The identification of N trees followed the criteria described by the 
Swedish Forestry Agency (Naturvårdsverket, 2012); they tended to be 
old large trees with characteristics typical of old-growth forests (a flat-
tened tree crown, dead branches, coarse bark, etc.), trees containing a 
bird nest, or trees of an uncommon species. All the identified L, S and N 

trees were thereafter referred to as indicator trees. The distribution of 
indicator trees in each study sites is presented in Fig. 2. 

2.3. ALS data 

ALS data was collected on June 28, 2019, using a Riegl VQ 1560i-DW 
(Riegl, 2020) scanner at 800 m above the ground. The scanner recorded 
two channels (CH): CH1 set at 532 nm (Green) and CH2 at 1064 nm 
(near-infrared (NIR)). The average density of the first returns was 26.5 
m− 2 for each channel. The point cloud was normalized from a ground 
model derived in TerraScan (version 019) (Terrasolid Ltd, 2023). We 
then created a normalized digital surface model (nDSM) at a resolution 
of 0.25 m from the tallest points of the normalized point clouds. 

3. Data analysis methodology 

The framework of the data analysis and methodology is presented in 
Fig. 3. Object detection and data analyses were conducted in MATLAB 
(The MathWorks Inc., 2021). The parameters used in the object detec-
tion were heuristically designed without training and tuning. 

3.1. Detection of lying deadwood (L trees) 

Downed deadwood (L trees) was detected using a template matching 
algorithm (Nyström et al., 2014; Huo and Lindberg, 2020). The steps 
were as follows. 

Step 1. Rasterization. Point clouds were sliced into [0.2, 0.5], [0.4 – 
0.7], [0.6 – 0.9] and [0.2 – 1.0] m height intervals (above ground), and 
rasterized (cell pixels with laser points taking a value of 1, and pixels 
without laser points taking a value of 0) at a resolution of 0.25 m. 

Step 2. Creation of templates. Linear filters at a resolution of 0.25 
m were defined with a length of 25 pixels (6.25 m) and a width of 1 or 2 
pixels (0.25 m or 0.50 m). The filters had 0 – π horizontal angles at 0.01 π 
intervals (denoting the directions of the templates, as shown in Fig. 4). 

Step 3. Template matching. The rasters of the sliced point clouds 
were convoluted using the templates. After convolution, pixels within 
the slices with values larger than Th were marked as potential locations 
(denoted as Set A) of deadwood, and the directions of the templates were 
recorded for the next step (Set A {(x, y, z, α)}, where x,y, z were the 
coordinates, and α was the direction of the template that resulted in a 
convoluted pixel value larger than Th). Th was set at 0.4 times the length 
× width (25 × 1 or 25 × 2 pixels) of the template. The same location 
could appear in different directions. We added the coordinates of all 
potential directions into Set A. 

Step 4. Determination of deadwood positions. After Step 3, Set A 
included the positions of downed deadwood (denoted as Set A1) detec-
ted in all the slices, and other linear objects on the ground such as bushes 
(Set A2). We observed that Set A1 usually contained positions with the 
same x and y and similar α in different slices, while Set A2 usually 
contained isolated positions. Therefore, we determined a location to be 
Set A2 when there was no other location with a similar α (α differences ≤

Fig. 2. The distribution of indicator trees, signifying trees important for pre-
serving biodiversity, within the three study sites. 
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0.02 π) in the surrounding 1 m. We remove Set A2 from Set A to define 
Set A1. We then merged the elements in Set A1 that belonged to the same 
deadwood, by using a Mean Shift Clustering algorithm on Set A1, to 
cluster elements with similar x,y, and α values. The algorithm assigns the 
points to the clusters iteratively by shifting points towards the highest 
density of points in the region, and it is commonly used to cluster laser 
points that belong to the same objects (Xiao et al., 2019; Melzer, 2007; 
Huo and Lindberg, 2020). The average x,y values for each cluster were 
taken to represent the positions of deadwood (Fig. 5). 

3.2. Segmentation of individual trees 

We used the local maxima from the nDSM as tree heights, and cir-
cular templates to estimate the crown diameters (Huo and Lindberg, 
2020). The templates were 3 × 3, 5 × 5, 7 × 7, and 33 × 33 pixels at a 
resolution of 0.25 m, corresponding to 0.75 m, 1.25 m, 1.75 m to 8.25 m. 
The nDSM was filtered using a Gaussian smoothing kernel with a Sigma 
standard deviation to reduce over- and under-segmentation. We initially 
used Sigma = 2 pixels to detect the local maxima for the dominant trees, 
and used all the templates to estimate the crown diameters. This setting 
reduced the over-segmentation of dominant trees, but promoted under- 
segmentation of smaller trees including S trees. Therefore, we then used 

Sigma = 1 pixel to detect the local maxima, and the templates for 0.75 m 
and 1.25 m to detect narrower crowns. The detected local maxima with 
Sigma = 1 pixel could be from big branches of dominant trees, so we 
tested the segmentation from the point cloud using points with hori-
zontal distances ≤ 0.5 m from the local maxima. If the points were 
scattered only at the top, rather than being distributed at height in-
tervals, the local maximum was identified as a branch and the segment 
was removed. This step could be achieved using different settings. We 
took points from the upper 1/3 of the heights, and divided the points 
into 0.5-m height intervals. If the points occupied less than 50 % of the 
height intervals, we identified them as branches. The parameters in this 
step were set up based on experience without optimization, and the 
sensitivity analysis was not limited by referencing. Fig. 6a shows an 
example of detected tree crowns. 

3.3. Detection of standing deadwood (S trees) 

We developed our method based on the observation that standing 
deadwood usually has an unusually narrow tree crown compared to the 
surrounding trees (Fig. 6b). We first detected young forest and excluded 
it from deadwood detection bearing in mind that (1) young forest usu-
ally has low conservation value, and (2) the distribution of crown 

Fig. 3. Framework of the data processing and analysis.  

Fig. 4. Examples of the linear filters (templates). The templates were 0.25 m (first row) or 0.50 m (second row) wide. Values of 1, –1, and 0 were assigned to white, 
black, and grey pixels, respectively. 

L. Huo et al.                                                                                                                                                                                                                                     



Ecological Indicators 147 (2023) 109946

5

diameters (CDs) usually differs between young and mature forest. Thus 
the method was based on the CD distribution of mature forest. For each 
tree with a narrow crown (a CD value of 0.75 m or 1.25 m), we calcu-
lated the 95 % percentile of the heights (H95) and CD (C95) of the sur-
rounding trees in a 15-m radius. Narrow trees were determined to be in a 
mature forest stand when H95 > 20 m or C95 > 3.5 m. For narrow trees in 
mature forest stands, we then calculated the mean and standard devia-
tion of the CDs in a 50-m radius (denoted as Cmean and Cstd), and defined 
a crown diameter as narrow (Co) if a) the crown diameter was 0.75 m or 
1.25 m, and b) Co < Cmean − Cstd. 

3.4. Detection of trees with high conservation value (N trees) 

In Sweden, trees of high conservation value are routinely identified 
and preserved as part of a strategy to conserve biodiversity. Trees 
considered to be of high conservation value are typically old trees 
(remnants of an older tree generation) with wide and flattened crowns, 
and core bark, and trees that have woodpecker nesting holes or harbor 
many wood-decaying fungi. We used unusually large crowns as an in-
dicator of trees of special importance for preserving biodiversity (N 
trees), and tested whether they could be used to predict conservation 
values. We first fit the tree heights and crown diameters (Fig. 7), derived 
from the individual tree segmentation in step 1 of S tree detection, for 
each study site using Equation (1): 

Fig. 5. The process of detecting downed deadwood. (a - d) Rasters detected at [0.2, 0.5], [0.4 – 0.7], [0.6 – 0.9] and [0.2 – 1.0] height intervals. (e) Potential 
positions based on all identified rasters (Set A). (f) The final positions of deadwood. 

Fig. 6. An example of detected tree crowns (a), and standing deadwood detected from an aerial view (b) and from a side view (c).  
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Fig. 7. Fitted curves for tree heights and crown diameters and the 99% prediction intervals for (a) Site N, (b) Site M, (c) Site S.  

Fig. 8. The ALS-detected and field-inventoried numbers of indicator trees and the error rate for each study site (from left to right Site N, M and S).  
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C = aebH (1)  

where a and b are coefficients, C is the crown diameter, and H is the tree 
height. We identified a tree as an N tree when the crown diameter was 
larger than the 99 % prediction intervals, i.e. had significantly larger 
crowns than predicted by height using a generalized tree-height model. 

3.5. Estimation of conservation values and validation 

We validated the detection results by comparing the number of L, S, 
and N trees detected by ALS and the inventoried number from the field, 
and calculated the detection error rate (%) as: 

Error (%) =

∑n
i=1|YALS − YField|
∑n

i=1YField
(2)  

where YALS and YField are the ALS and inventoried numbers of indicator 
trees, respectively, and i and n are the index of the plots and the number 
of plots, respectively. 

We regressed the conservation values using the ALS-detected number 
of L trees, S trees, and N trees, and the sum of L and S trees (L + S trees), 
and the sum of all indicator trees (L + S + N trees), using Equation (3): 

CV = a × ln(YALS + 1)+ b (3)  

where CV is the conservation value estimated from the field inventory, 

Fig. 9. Regression of the field-assessed conservation values (CV) and the ALS-detected number of indicator trees, with 75% prediction intervals.  
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and a and b are the coefficients. A value of 1 was added to YALS before 
taking the natural logarithm to avoid negative infinity. 

To demonstrate an application of the methodology, we generated 
maps based on the numbers of indicator trees to show the relative 
conservation values of the study area. The maps covered a 3 km × 4 km 
area at Site S, and included ten plots and one key woodland habitat 
identified by the Swedish Forest Agency. We implemented a detection 
algorithm using the ALS data to derive the locations of the indicator 
trees. We then generated heatmaps using kernel density estimation in 
QGIS, which indicated the density of indicator trees within a 56-m 
radius. The radius was set to match our field plot size. The resolution 
of the maps was 10 m. We determined the average pixel values for the 
ten plots from the heatmaps and tested the linear relationship between 
the values derived from the map and the CVs assessed from the field 
data. 

4. Results 

4.1. Detection of L, S, and N trees 

The distributions of the ALS-derived tree heights and crown di-
ameters for each plot, derived from 3.2 Segmentation of individual trees, 
are presented in Appendices A and B to show the structural character-
istics. The detection accuracies using ALS data for the L trees by Section 
3.1, S trees by Section 3.3, and N trees by Section 3.4 are presented in 
Fig. 8. The identification of L trees had a relatively small detection error 
rate, with the detected and inventoried numbers distributed along the 
1:1 line, while the identification of S trees and N trees displayed larger 
detection errors (Fig. 8). There were also differences in detection ac-
curacies between the different study sites (Fig. 8). By summing the ALS- 
detected number of indicator trees, however, the difference in detection 
errors between the sites decreased, resulting in similar detection accu-
racies across all sites (Fig. 8). 

4.2. Regression of field-assessed CV 

The regression of CV using ALS-derived L, S, and N trees varied be-
tween the three test sites (Fig. 9). The best fit between ALS-derived in-
dicators and CV assessed from the field survey was in site M using L trees 
(intermediate latitude). Not all indicator trees derived from ALS data 
predicted conservation values successfully, e.g. S trees at Site N. How-
ever, the relationship between the number of indicator trees derived 
from ALS and assessed conservation values from the field was stronger 
when the different types of indicator tree were summed, especially when 
all three were summed together. A higher ALS detection accuracy did 
not, however, always lead to better prediction (Table 1). Our interpre-
tation is that the detection error was not constant across tree type, and 
that a lower detection error for one tree type could compensate for the 
higher error of another. The performances differed less between the 
study sites when all types of indicator tree were used, suggesting the 
summed values provided a more generic and robust estimate than in-
dividual values. 

4.3. Heatmaps of conservation values and hotspots 

To demonstrate the potential of the proposed methods for large area 
mapping, we generated heatmaps of the ALS-derived indicator trees 
(Fig. 10) to indicate the relative conservation values. The heatmaps 
generally distinguished areas with high and low conservation values 
(Figs. 10 and 11), and the values from the maps showed a positive 
correlation with the field-assessed CVs for all ten plots. When using all 
types of indicator trees, the map-derived values had a linear relationship 
with the CVs, the largest R2 value being 0.6 and the smallest RMSE of the 
CV scores being 2.9. We thus concluded that a heatmap derived from 
ALS-detected indicator trees can represent relative forest conservation 
values. 

5. Discussion 

This study has explored the potential of ALS data for mapping forest 
conservation values. The key technique was detecting indicator trees 
from point clouds and regressing the conservation values using the 
number of detected indicator trees. The indicator trees included lying 
deadwood (L trees), standing deadwood (S trees), and trees with a high 
conservation value (L trees). To detect L trees, we used a template 
matching method to identify linear objects above the ground with spe-
cific widths. Possible errors were identified, however. (1) When the 
canopy was too dense, or the field- or bush-layer vegetation sheltered 
the L trees, there could be insufficient point cloud data for L trees to be 
detected. (2) When there was field- or bush-layer vegetation with linear 
shapes, e.g. bushes along the road, the algorithm did not distinguish 
them from L trees, resulting in an over-estimation. (3) When snags 
decomposed into two or several pieces, it could also result in an over- 
estimation. This agrees with the challenges to detecting L trees from 
ALS data identified by others (Heinaro et al., 2021; Lindberg et al., 
2013), and our approach resulted in a lower accuracy than studies using 
terrestrial laser scanning (TLS). For example, Yrttimaa et al. (2019) used 
TLS to detect downed deadwood and standing stem volume and ach-
ieved an overall completeness of 33 % and correctness of 76 %, 
respectively. However, although ALS data has a lower accuracy rate 
compared to TLS data, the advantage is that ALS data can be used to 
cover much larger areas for mapping. 

Although we used a simple method for detecting S and N trees, we 
could predict the conservation values derived from field surveys. One 
way to improve the accuracy could be to incorporate species recognition 
algorithms, e.g. utilizing intensity information from multispectral laser 
scanning data (Axelsson et al., 2018; Amiri et al., 2019) and multi- 
temporal ALS data, and combining them with optical data (Kamińska 
et al., 2018). This would, however, require reference data from field 
inventories of individual trees to train the models. 

Although the detection of L trees had a higher degree of accuracy 
than detection of S and N trees, the conservation values were predicted 
more accurately when all three ALS-derived indicators were combined. 
When used together (by summing the numbers of all three indicators), 
the weight of the detection error caused by each type of detection was 1/ 
3 of the weight when using one alone. The different study sites also 

Table 1 
The detection error rate and regression performance of ALS indicator trees.  

Indicator trees Site N Site M Site S All sites 

Detection Regression Detection Regression Detection Regression Detection Regression 

Error [%] R2 RMSE* Error [%] R2 RMSE* Error [%] R2 RMSE* Error R2 RMSE* 

L 64  0.27  5.3 40  0.55  4.0 58  0.08  4.7 52  0.27  4.7 
S 72  0.00  6.2 84  0.04  5.9 59  0.30  4.1 71  0.06  5.3 
N 76  0.63  3.8 94  0.08  5.8 84  0.07  4.7 83  0.20  4.9 
L + S 47  0.06  6.0 53  0.56  4.0 45  0.40  3.8 48  0.27  4.7 
L + S + N 54  0.23  5.5 62  0.37  4.8 49  0.53  3.3 55  0.32  4.5 

*RMSE of the estimated CV, which were distributed from 1 to 22 in our study area as measured by the field inventory. 
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responded differently to single indicators, while all test sites responded 
to the sum of all three indicators. Using three indicators is therefore 
more generic and can be applied to different types of site. When map-
ping the conservation values of an unknown area, we expect the per-
formance to be more stable when all three indicators are used. 

This study indicates that the amount of deadwood is an efficient 
predictor of assessed conservation values. The availability of deadwood 
is a widely used surrogate of biodiversity, supported by positive corre-
lations between species richness of saproxylic organisms and deadwood 
availability (Similä et al., 2006; Djupström et al., 2010; Abrego and 
Salcedo, 2013; Ylisirniö et al., 2016). The volume of deadwood itself can 
be used as an indicator of forest species diversity. For example, a 
deadwood volume ≥ 6 m3/ha is one of the five conditions that charac-
terizes a boreal forest as having high biodiversity (Kallio et al., 2008). L 
trees have been detected from ALS data using 3D reconstruction 
methods (Lindberg et al., 2013; Mücke et al., 2013) and statistical 
methods based on the canopy structure (Tanhuanpää et al., 2015). Using 
deadwood as an indicator of conservation value is also proposed by 
Skogsbiologerna, using their method for obtaining reference data. The 
innovation of our study is applying the detection of deadwood using 
laser scanning data to estimate conservation values. 

We propose a framework for using ALS data to generate wall-to-wall 
maps of conservation values, with many potential practical applications. 
Forest managers can use such maps for planning at several spatial scales. 

Although it is unlikely that they could replace field-based assessments of 
conservation value, the maps can provide important supporting infor-
mation for such assessments. For example, using heatmaps could ensure 
that potential within-stand hotspots of biodiversity are checked during 
field inventories, or assist green infrastructure management at a land-
scape level (e.g. when selecting where in the landscape management 
should focus on wood production and where the focus should be 
conservation-oriented management). Furthermore, heatmaps could help 
authorities decide the locations and borders of conservation areas, tak-
ing into account the size and distribution of HCVFs and economic im-
pacts. The maps could provide a dataset for habitat and ecological 
analyses, such as habitat connectivity, ecological corridors (Morandi 
et al., 2020; Wu et al., 2021), and habitat fragmentation (Ahmad et al., 
2018; Chibeya et al., 2021; Nurfatimah et al., 2018), based on the lo-
cations of indicator trees detected using ALS data, and the density of 
indicator trees within a certain radius. Different radii could be used for 
different ecological analyses, considering the habitat area required for 
different species or the specific ecological processes of conservation 
interest (Fig. 12).Fig. A13.Fig. B14.. 

It should also be possible to derive forest structure information from 
the ALS data, and previous studies have shown that forest structure di-
versity can be used to estimate habitat heterogeneity (Sverdrup-Thy-
geson et al., 2016), biodiversity (Coops et al., 2016), the potential of 
forest ecosystem services (Vauhkonen, 2018), and conservation values 

Fig. 10. Heatmaps using different types of indicator tree. The blue circles represent the field plots, and the adjacent numbers are the conservation values based on 
field inventories (low values = low potential for biodiversity, high values = high potential for biodiversity). The red polygon is an area identified as a key woodland 
habitat (an area especially important for the conservation of biodiversity) by the Swedish Forest Agency. (For interpretation of the references to colour in this figure 
legend, the reader is referred to the web version of this article.) 

L. Huo et al.                                                                                                                                                                                                                                     



Ecological Indicators 147 (2023) 109946

10

(Munteanu et al., 2022), according to the habitat heterogeneity hy-
pothesis (Tews et al., 2004; Rödig et al., 2017; Lundholm, 2009; Pom-
merening et al., 2020). However, although we determined the 
distribution of tree heights and crown diameters from the ALS data, the 
distributions were often similar between plots with high and low CVs 
(Appendixes A and B). We used a systematic sampling method when 
setting up the plots, thus many different forest types were included in 
our samples, with different species compositions, ages, densities, layers, 
and management. All these factors added noise to the structural in-
dicators, causing them to be less sensitive to conservation values. The 
indicator trees used, the L, S and N trees, were less influenced by the 
noise factors than the structural indicators, and showed more stable 
correlations with the conservation values. Besides the proposed method, 

another possible solution is to classify the forest into different types or 
functional groups first (Edman et al., 2011; Szantoi et al., 2016; Juutinen 
et al., 2008; Coops et al., 2016; Fuhr et al., 2022), and then compare 
conservation values within the same type using the structural indicators. 
This would require a larger dataset than the one used in this study, and 
should be the focus of future studies. 

In addition, this study used dense ALS data to identify indicator trees, 
although such dense scanning is yet not available for large areas such as 
region or national level. Therefore, the dense laser scanning and the 
proposed methods can be used in selected study areas to derive wall-to- 
wall maps and conduct connectivity analysis for biodiversity. If less 
dense scanning is used to cover larger areas, we expect that the accuracy 
of identifying L trees would be lower, while identifying S and N trees 

Fig. 11. Average densities of indicator trees derived from the heatmaps, and the linear regression with the conservation values (CV) assessed in the field. The red 
lines are the regression lines, and the dashed lines are the 95% confidence bounds. (For interpretation of the references to colour in this figure legend, the reader is 
referred to the web version of this article.) 

Fig. 12. Heatmaps generated using different radii for the number of indicator trees.  
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should be relatively stable. It would thus be possible to map conserva-
tion areas using S and N trees. In future studies, it would be valuable to 
test the mapping performance using less dense ALS data that are avail-
able for large areas such as region or national level. 

6. Conclusions 

After evaluating methods for mapping forest conservation values, we 
recommend using the ALS-detected number of lying deadwood (L trees), 

Fig. A13. The distribution of ALS-derived tree heights in each plot.  

Fig. B14. The distribution of ALS-derived crown diameters in each plot.  
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standing deadwood (S trees), and trees especially important for 
conserving biodiversity (N trees). ALS estimates were more robust 
(better at predicting field-assessed conservation values) for all three 
study sites when the sum of all three indicators (L, S, and N trees) was 
used. The proposed method could be used for operational mapping of 
forest conservation values over larger areas, and building wall-to-wall 
maps to support the identification of conservation hotspots in the 
landscape. Such maps could be used to inform forest management and 
direct conservation efforts, thereby supporting the development of more 
sustainable forest management practices. 
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Rödig, E., Cuntz, M., Heinke, J., Rammig, A., Huth, A., 2017. Spatial heterogeneity of 
biomass and forest structure of the Amazon rain forest: Linking remote sensing, 
forest modelling and field inventory. Glob. Ecol. Biogeogr. 26 (11), 1292–1302. 

Santopuoli, G., Di Febbraro, M., Maesano, M., Balsi, M., Marchetti, M., Lasserre, B., 2020. 
Machine Learning Algorithms to Predict Tree-Related Microhabitats using Airborne 
Laser Scanning. Remote Sens. (Basel) 12, 2142. 

Schneider, F.D., Ferraz, A., Hancock, S., Duncanson, L.I., Dubayah, R.O., Pavlick, R.P., 
Schimel, D.S., 2020. Towards mapping the diversity of canopy structure from space 
with GEDI. Environ. Res. Lett. 15 (11). 
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