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Abstract: Southern Africa experiences a great number of wildfires, but the dependence on low-
resolution products to detect and quantify fires means both that there is a time lag and that many
small fire events are never identified. This is particularly relevant in miombo woodlands, where
fires are frequent and predominantly small. We developed a cutting-edge deep-learning-based
approach that uses freely available Sentinel-2 data for near-real-time, high-resolution fire detection in
Mozambique. The importance of Sentinel-2 main bands and their derivatives was evaluated using
TreeNet, and the top five variables were selected to create three training datasets. We designed a UNet
architecture, including contraction and expansion paths and a bridge between them with several
layers and functions. We then added attention gate units (AUNet) and residual blocks and attention
gate units (RAUNet) to the UNet architecture. We trained the three models with the three datasets.
The efficiency of all three models was high (intersection over union (IoU) > 0.85) and increased with
more variables. This is the first time an RAUNet architecture has been used to detect fire events,
and it performed better than the UNet and AUNet models—especially for detecting small fires. The
RAUNet model with five variables had IoU = 0.9238 and overall accuracy = 0.985. We suggest that
others test the RAUNet model with large datasets from different regions and other satellites so that it
may be applied more broadly to improve the detection of wildfires.

Keywords: UNet; AUNet; RAUNet; top variables; fire detection; Sentinel-2; small fires; miombo ecoregion

1. Introduction

Africa has been called the “fire continent” [1], but the fire detection methods typi-
cally used across the continent are based on low-resolution satellite images (MODIS and
Sentinel-3). Thus, small fires and burn areas cannot be detected precisely. Furthermore,
these models are based on burned area products (e.g., Sentinel-3/OLCI, SLSTR V1, and
MCD64A1 Version 6.1 from these satellites) [2,3] rather than raw satellite data, creating a
time lag. Together, this means that fires cannot be detected at the start, in near real time
when they are small. In the aftermath of fires, quantification of burned areas and the effects
on forest ecology and carbon dynamics remain largely unknown.

Nowhere are these issues more acute than in miombo woodlands, where fires both oc-
cur ca. 50 % more frequently than in other ecoregions of the world [4] and are dominated by
small burn patches [5,6]. The miombo ecoregion covers 360 Mha across eastern and south-
ern Africa [7] and is vastly important for and interconnected with rural livelihoods [8,9].
Miombo is one of the richest ecoregions in the world and among the top five global
wilderness areas for prioritizing conservation [10]. Unfortunately, miombo ecosystems
are increasingly threatened by natural and anthropogenic forces [11], among which fire
is a major driver of degradation [4]. Miombo woodlands have co-developed with people
and are well adapted to fire [12,13]. However, frequent and intense fires—especially late
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in the dry season—can reduce regeneration and growth, spur substantial carbon emis-
sions, and alter species composition, thereby threatening livelihoods, biodiversity, and
climate-related programs [14].

Although several attempts have been made to detect large fires in miombo wood-
lands [5,15–17], identifying small fires remains difficult. The integration of cutting-edge
deep-learning-based approaches and high-resolution Sentinel-1 and -2 data may help solve
this problem, thereby helping us to both detect the onset of fires in near real time and
quantify the effects of fires of all sizes in this dynamic ecosystem. Some dimensions of wild-
fires in miombo woodlands, such as frequency and severity, have been explored through
coarse- and medium-resolution satellite time series from SPOT Vegetation, MODIS, and
Landsat [16,18]. However, knowledge is still lacking on the exact spatial extent, duration,
and timing of fires, as well as their relationship with driving forces. High-resolution Sen-
tinel satellite data can overcome this limitation [19]. Using Sentinel-2 data, it was possible
to identify over 45% of fires of less than 100 ha that were not visible in the lower-resolution
MODIS products [20].

In order to map burned areas and active fires from satellite data, many studies have derived
indices such as the Normalized Burn Ratio (NBR) [21–23], Burn Area Index (BAI) [22–24],
Normalized Difference Vegetation Index (NDVI) [20,23,24], and Normalized Difference Water
Index (NDWI) [21]. Unfortunately, these indices are adversely affected by the temporal changes
in the vegetation and heterogeneity of the landscape [25,26]. Burn indices based on Sentinel-2
data, such as the Burned Area Index (BAIS2) [27], and prioritizing spectral indices [20,22,28–30]
and main bands [28,29], show promise for improving fire mapping. However, a combination of
different Sentinel-2 derivatives and main bands has yet to be fully explored. Therefore, one of
the objectives of the present study was to identify the most important variables for detecting
burned areas using Sentinel-2.

In recent years, various convolutional neural network (CNN)-based architectures have
been developed for classification, segmentation, or object detection from high-resolution satellite
data [31,32]. A CNN architecture consists of a set of layers and functions with a strong ability to
learn features from low-to-high spatial scales via modules and classifiers [33]. Various CNN ar-
chitectures have been tested for fire detection, such as UNet [21,33–35], BA-Net [36], FireNet [37],
Smoke-UNet [38], ResNet [39], DSMNN-Net [40], and unsupervised deep learning [41]. Using
FireCNN to detect active fires via multispectral data of the Himawari-8 satellite outperformed
the traditional threshold method [42].

Several deep-learning-based approaches have been developed to detect forest fires
that use the datasets of Landsat-8 [37,38]. Seydi et al. [37] developed the FireNet approach
to detect active fires using the combination of optical and thermal images of Landsat-8 data.
They compared the performance of the developed approach with classical machine learn-
ing approaches (e.g., k-nearest neighbor, support-vector machine, and random forest) and
reported the superiority of FireNet relative to these methods in detecting both active fires
and recently burned areas. Wang et al. [38] compared the efficiency of Smoke-UNet with
the standard UNet for early detection of forest fires using a composite band of Landsat-8
imagery within different forest biomes and found that Smoke-UNet slightly outperformed
the UNet model. In many of these studies, the deep learning architectures were trained
based on small datasets or based on the medium- or coarse-resolution images. Some studies
also trained the deep architecture via an RGB composite of the optical bands or fusion of
the optical and SAR data [21,38,43,44]. Meanwhile, little is known about the efficiency of
datasets that consider the derivatives of Sentinel data for fire detection, such as spectral
indices or burn indices. The majority of these studies concentrated on the dense forest
biomes, but the detection of fires in savanna woodlands (i.e., grassy woodlands) may re-
quire special architectures or datasets. Hence, we constructed a novel deep-learning-based
architecture with a large dataset of Sentinel-2 data, which represents different locations and
times for near-real-time segmentation of fires in the miombo woodlands.

Adding attention gate units to the architecture of UNet for image segmentation (At-
tention UNet; AUNet) has further improved the efficiency of UNet-based models. An
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attention mechanism concentrates on the target features within an image and ignores irrele-
vant backgrounds [45]. AUNet models have been efficient for mapping burned areas [43],
wildfire severity [46], and deforestation [47]. In addition to attention gates, adding resid-
ual connections may further improve the efficiency of the UNet (residual attention UNet;
RAUNet) [48], particularly for detecting small features within an image [49–53]. However,
the efficiency of RAUNet has not yet been investigated for the detection of forest fires.
Therefore, this research tests the possibility of improving the detection of fires and burned
areas—particularly small fire events—using RAUNet and Sentinel-2 datasets.

2. Materials and Methods
2.1. Description of the Study Area

We focused our study on the Mozambican part of the miombo ecoregion and selected
four areas throughout to create the label and image datasets for collecting the ground-truth
samples of fires and training the deep learning model. Of Mozambique’s 824,000 km2 land
area, roughly 41% is covered by natural forests and woodlands, the majority of which fall
within the miombo ecoregion (Figure 1a).
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Figure 1. Selected areas in Mozambique: (a) the location of the miombo ecoregion (green) and
sampling sites for woodland fires (boxes); (b) an example of a Sentinel-2 image including the object
fires for 13 September 2017; some examples of (c) 256× 256 image patches and (d) their corresponding
fire labels for training deep learning algorithms.

Miombo is dominated by trees of the genera Brachystegia, Julbernardia, and Isoberlinia,
while the mopane woodlands are dominated by Colophosperum mopane (Benth.) Leonard [54].
The woodlands are located at elevations between 200 and 300 m above sea level. The vast
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majority of the region falls into tropical savanna and dry climates [55]. The average annual
precipitation varies between 650 and 1400 mm, with an average temperature of 24–27 ◦C [7].
Mozambique hosts more than 5500 flora and 4200 fauna species [56]. However, this ecore-
gion is threatened by high deforestation (ca. 0.80% per year) [57]. Mozambique lost more
than 5 Mha of forest from 1990 to 2015, due to urban sprawl, agricultural expansion, log-
ging, intense fuelwood extraction, and uncontrolled and destructive fires [58,59], resulting
in ca. 5 Tg C emissions [57].

2.2. Data

We used Sentinel-1 and -2 data, MODIS fire products, Google Earth images, and
field observation data to establish the labelling and training datasets to develop and
assess the deep learning models. We obtained 324 Sentinel-2 images from the Copernicus
database throughout the years from January 2014 to August 2022. Fires detected by
MCD64A1 and Sentinel-3/OLCI Version 1 products were obtained from the online data
pool of the NASA Land Processes Distributed Active Archive Center (LP DAAC; https://
lpdaac.usgs.gov/data_access/data_pool, accessed on 10 October 2022) and the Copernicus
Global Land Service (CGLS; https://land.copernicus.eu/global/products, accessed on
15 September 2022), respectively. We extracted the approximate locations and exact times
of fires during the creation of the label datasets through these fire products. We carried
out field observations from burned areas and active fires in central Mozambique (see
Section 2.5).

2.3. The Datasets
2.3.1. Pre-Processing of Sentinel-2 Images

We randomly selected 48 multispectral Sentinel-2 images to create the label and train-
ing datasets. To derive reflectance data, we implemented atmospheric, radiometric, and
topographic corrections on Sentinel-2 images via the open-source software of the Sen-
tinel Application Platform (SNAP; https://step.esa.int/main/toolboxes/snap/, accessed
on 15 November 2021). All bands were resampled to a single size of 10 m using the
nearest-neighbor resampling method for simplifying the data processing.

In addition to the surface reflectance bands, we derived a variety of indices from
Sentinel-2 data in four categories: burn, vegetation, soil, and water indices. All indices,
their definitions, and their required formulae are provided in Table 1. After evaluating
these in TreeNet, we fed a combination of prominent reflectance bands and their derivatives
into the models as datasets.

Table 1. The derivatives of Sentinel-2, including burn, vegetation, soil, and water indices, for use in
training deep-learning-based models for detecting burned areas.

Type Index Description * and Equation Reference

Bu
rn

In
di

ce
s

Normalized Burn Ratio (NBR)
NBR highlights burned areas in large fire zones (>500 acres),

while mitigating illumination and atmospheric effects.
NBR = (B8A − B12)/(B8A + B12)

[60]

Normalized Burn Ratio2 (NBR2)
NBR2 modifies the NBR to highlight water sensitivity in

vegetation and may be useful in post-fire recovery studies.
NBR2 = (B11 − B12)/(B11 + B12)

[61]

Burned Area Index (BAI)
Highlights burned land by emphasizing the charcoal signal

in post-fire images. Brighter pixels indicate burned areas.
BAI = 1/((0.1 − B4)2 + (0.06 − B8A)2)

[62]

Burned Area Index for
Sentinel-2 (BAIS2)

BAIS2 is applied for the detection of both burned areas
and active fires.

BAIS2 = 1 −
√

((B6 × B7 × B8A)/B4)
× ((B12 − B8A)/

√
(B12 + B8A) + 1)

[27]

https://lpdaac.usgs.gov/data_access/data_pool
https://lpdaac.usgs.gov/data_access/data_pool
https://land.copernicus.eu/global/products
https://step.esa.int/main/toolboxes/snap/
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Table 1. Cont.

Type Index Description * and Equation Reference

Bu
rn

In
di

ce
s

Mid-Infrared Burn Index (MIRBI)

MIRBI is calculated using two reflectance SWIR bands
(B11 and B12). It is sensitive to spectral changes due to fire

regardless of noises.
MIRBI = 10 × B12 − 9.8 × B11 + 2

[63]

Moisture Stress Index (MSI)
MSI is used for canopy stress analysis, productivity

prediction, and biophysical modeling.
MSI = B11/B8

[64]

Char Soil Index2 (CSI2)

In savanna and other fires, two ash endmembers occur:
white mineral ash, where fuel has undergone complete

combustion; and darker black ash or char, where an
unburned fuel component remains.

CSI = B8A/B12

[65]

Ve
ge

ta
ti

on
In

di
ce

s

Aerosol-Free Vegetation Index
(AFRI)

AFRI 1600 nm (AFRI1) and AFRI 2100 nm (AFRI2). The
advantage of the derived AFRIs is to penetrate the

atmospheric column even when aerosols such as smoke or
sulfates exist.

AFRI1 = (B8A − 0.66 × B11)/(B8A + 0.66 × B11)
AFRI2 = (B8A − 0.5 × B12)/(B8A + 0.5 × B12)

[66]

Atmospherically Resistant
Vegetation Index (ARVI)

ARVI retrieves information regarding the atmosphere
opacity. ARVI is, on average, four times less sensitive to

atmospheric effects than the NDVI.
ARVI = (B8 − (B4 − γ(B2 − B4)))/(B8 + (B4 − γ(B2 − B4)))

where γ is a weighting function for the difference in
reflectance of the two bands that depends on aerosol type

(in this study: γ = 1).

[67]

Normalized Difference Vegetation
Index (NDVI)

Provides a measurement for the photosynthetic activity and
is strongly in correlation with the density and vitality of the

vegetation on the Earth’s surface.
NDVI = (B8A − B4)/(B8A + B4)

[68]

Two-band Enhanced Vegetation
Index (EVI2)

EVI2 is similar to the NDVI in that it is a measure of
vegetation cover, but it is less susceptible

to biomass saturation.
EVI2 = 2.5 ((B8 − B4)/(B8 + (2.4 × B4) + 1))

[69]

Weighted Difference Vegetation
Index (WDVI)

Corrects near-infrared reflectance for the soil background.
WDVI = B8 − (g × B4)

where g is the slope of the soil line.
[70,71]

Global Environmental Monitoring
Index (GEMI)

Was developed to minimize problems of contamination of
the vegetation signal by extraneous factors, and it is vital for

the remote sensing of dark surfaces, such as
recently burned areas.

GEMI = γ (1 − 0.25 × γ) − ((B4 − 0.125)/(1 − B4))
where γ(Sentinel) = (2 ((B8)2 − (B4)2) +

1.5 × B8 + 0.5 × B4)/(B8 + B4 + 0.5).

[72]

Normalized Difference Index 4
and 5 (NDI45)

This index is linear, with less saturation at higher values
than the NDVI. It has a good correlation with the green LAI

because of the red-edge band usage.
NDI45 = (B5 − B4)/(B5 + B4)

[73]

Pigment-Specific Simple Ratio
(PSSRa)

PSSRa is sensitive to high concentrations of chlorophyll a,
and it was developed to investigate the potential of a range
of spectral approaches for quantifying pigments at the scale

of the whole plant canopy.
PSSRa = B8A/B4

[74]
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Table 1. Cont.

Type Index Description * and Equation Reference

So
il

In
di

ce
s

Modified Soil-Adjusted
Vegetation Index (MSAVI)

Determines the density of greenness by reducing the soil
background influence based on the product of

NDVI and WDVI.
MSAVI = (2 × B8 + 1 −

√
((2 × B8 + 1)2 − 8 (B8 − B5)))/2

[75]

Second Modified Soil-Adjusted
Vegetation Index (MSAVI2)

MSAVI2 is a good index for areas that are not completely
covered with vegetation and have exposed soil surface. It is

also quite susceptible to atmospheric conditions.
MSAVI2 = (2 × B8A + 1 −

√
((2 × B8A + 1)2 −

8 (B8A − B4)))/2

[76]

Red-Edge Chlorophyll Index
(CIRed Edge/CIRE)

CIRE was developed to estimate the chlorophyll content of
leaves. Chlorophyll is a good indicator of the plant’s

production potential.
CIRE = B7/B5 − 1

[77]

W
at

er
In

di
ce

s

Normalized Difference Water
Index2 (NDWI2)

This index was developed to detect surface waters in
wetland environments and to allow for the measurement of

surface water extent.
NDWI2 = (B8 − B12)/(B8 + B12)

[78]

Modified Normalized Difference
Water Index (MNDWI)

This index was developed to enhance open water features,
while efficiently suppressing and even removing built-up

land, vegetation, and soil noise.
MNDWI = (B3 − B11)/(B3 + B11)

[79]

Normalized Pond Index (NDPI)

The NDPI algorithm makes it possible not only to
distinguish small ponds and water bodies (<0.01 ha), but
also to differentiate vegetation inside ponds from that in

their surroundings.
NDPI = (B11 − B3)/(B11 + B3)

[80]

* B2: blue; B3: green; B4: red; B5: red-edge 1 visible and near-infrared; B6: red-edge 2 visible and near-infrared;
B7: red-edge 3 visible and near-infrared; B8: wide near-infrared; B8A: narrow near-infrared; B9: cloud; B10: water
vapor SWIR; B11: shortwave infrared 1 (SWIR1); B12: shortwave infrared 2 (SWIR2).

2.3.2. Fire Label Dataset

The labeling dataset of woodland fires was generated from an RGB composite of
Sentinel-2, consisting of shortwave infrared 1 (SWIR1), near infrared (NIR), and green
bands, via visual interpretation (Figure 1b,c). We created a large geodatabase that includes
the exact spatial extent of the fires and the date of the image for each year (Figure 2;
Section 2.3.4). Approximately 6050 fire events (active fires or recently burned areas) were
delineated, ranging from 0.5 to 71,534 ha and covering ca. 423,500 ha. The fire polygons
were converted into a binary image containing pixels with the fire labels 0 (not affected)
and 1 (affected by fire event).

2.3.3. Determining the top Variables

We generated a square-shaped tessellation with cell size equal to the minimum size of
a created feature (i.e., 160 × 160 m) during the training of each deep-learning-based model
based on our designed structure. The values of all reflectance bands, the derivatives from
Sentinel-2, and the areas affected by fire were summarized within each cell. We randomly
selected 15,524 cells from areas affected and unaffected by fire. This database was used to
select influential variables for enhancing the segmentation of fire events.

The TreeNet regression approach was used to determine the importance values of
the variables. TreeNet begins with a weak, small tree and gradually grows based on the
residuals of the previous tree to build the next tree. The performance of TreeNet gradually
increases by increasing the depth of the trees as well [81]. In our model, we set the number
of trees and maximum nodes per tree on 2000 and 6, respectively. The learning rate was set
to auto. The least absolute deviation was set as a loss function. The TreeNet model was
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trained with 75% of the data and tested with the remaining 25%. We used R2 to test the
accuracy of the optimal TreeNet model to identify the most important variables.
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The influence of each variable was determined using relative importance values. We
also generated partial dependence plots [82] to analyze the response of the target variable
(area affected by fire) to each predictor. The top variables were used to create the datasets
for training UNet, AUNet, and RAUNet.

2.3.4. Training Datasets

We established three training datasets including the top three, four, and five variables
of Sentinel-2. The values of each variable were normalized between 0 and 255 using the
fuzzy linear transformation. The maximum values were assigned to cells that indicating
the areas affected by fires, and the minimum values were assigned to the areas unaffected
by fire. We converted the images and their corresponding labels into small patches with
a size of 256 × 256 pixels (Figure 1c). Each dataset consisted of 6000 image patches and
their 6000 corresponding fire labels. We divided the patches into three groups for training
(70%), validation (20%), and testing (10%) of UNet, AUNet, and RAUNet. The validation
dataset was used to control how well the training of our model was working, and the
testing dataset was used to assess how well our training model was performing [83].

2.4. Residual Attention UNet (RAUNet) Architecture

RAUNet integrates residual blocks and attention gates into the UNet structure [48].
UNet is a fully convolutional neural network with an encoder (a contraction path) and
decoder (an expansion path) architecture [84]. Attention gates can highlight the information
of target features and reduce noisy and irrelevant backgrounds in an image [85]. Attention
gates use an attention mechanism to retrieve spatial details in images, which may help
detect small fires. The residual blocks boost the UNet efficiency to extract higher features
in every convolution layer as well.

The architecture of RAUNet consists of the contraction and expansion paths of UNet,
as well as a bridge that connects the two paths (Figure 3b). The contraction path takes
an input image patch (256 × 256 × n, where n is the number of variables in the dataset)
and passes it through blocks, helping the network learn the details of a fire object. The
contraction path includes four layers, each consisting of a residual block. The spatial
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dimensions of features are reduced to a 2 × 2 max-pooling layer. Each residual block
includes two dilated convolutional layers (3 × 3), followed by a batch normalization and a
rectified linear unit (ReLU) activation function. While the spatial dimensions of features
are halved at each layer, the number of features is doubled during downsampling.
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Figure 3. (b) Architecture of the projected residual attention UNet (RAUNet), consisting of a con-
traction path (encoder) and an expansion path (decoder), using (a) the top variables of Sentinel-2 for
(c) fire segmentation.

The bridge layer includes a residual block layer with 512 feature maps of size 16 × 16.
This layer connects the contraction and expansion paths. The output of the bridge layer
enters the convolutional transpose layer on one side and becomes a gating signal for the
attention gate on the other side.

The expansion path also includes four layers. Each layer consists of a residual block
followed by a convolutional transpose layer (2 × 2). A skip connection and attention gate
are used to connect each layer in the expansion path with its corresponding layer in the
contraction path. The convolutional transpose layer (2 × 2) is used for upsampling of each
layer. The output of upsampling is concatenated with the output of the attention gate and
then passes through the residual blocks. Against the contraction path, the spatial dimensions
of feature maps increase, while their number reduces by half in the expansion path.

The output layer is upsampled to the original size of the input image patch in each
residual block. Then, it passes through a classification layer to reach the feature maps
as the number of the channels of the input image. The probability layers of fires are
created by passing the feature maps through a sigmoid activation function. The output is a
1 × 1 convolutional layer with one dimension and minimal loss (Figure 3c).

We used the TensorFlow and Keras libraries [86] to construct the architectures of
UNet, AUNet, and RAUNet and train them in Python. The models were trained using
the GPU of an RTX A2000. The optimal set of hyperparameters (e.g., learning rate, op-
timization algorithm, batch size, loss function, and dropout rate) were determined via
KerasTuner [83,87]. We set the minimum number of epochs to 100. The performance of the
models was controlled using the cross-entropy loss function.

Figure 4 shows an example of the feature maps that were produced in a block of the
contraction path and a block of the expansion path. Figure 4b presents different feature
maps from convolution, max pooling, batch normalization, and ReLU activation with a
size of 128 × 128 cells and including 32 channels. RAUNet learned the spatial feature
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details of burned areas in this stage. Figure 4c shows the expansion path: convolution,
upsampling, concatenation, and the added gate (with a size of 256 × 256 and 16 channels).
RAUNet learned the high-level features to map the burned areas. The output of the sigmoid
activation is shown in Figure 4d, and the final layer of burned area is shown in Figure 4e.
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In addition to RAUNet, we trained AUNet (integrated attention gates to UNet) and
UNet based on our three datasets to better understand the performance of RAUNet.
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2.5. Accuracy Assessment
2.5.1. Collecting Testing Data from Forest Fires

We pre-selected some fire patches for collecting ground-truth fire samples from the
LevasFlor concession in central Mozambique to assess the performance of the trained
RAUNet, AUNet, and UNet with three datasets. We used the trained models to predict the
spatial extent of fires that occurred in 2021 and 2022. The fire polygons were imported into
GPS devices and spotted through the navigation capabilities of the GPS on the ground. We
labelled the polygons as true (fire) and false (non-fire) objects. These samples were used to
create a reliable database (ca. 10%; 630 label patches) to assess the performance of trained
algorithms for fire detection through the evaluation metrics discussed in the next section.

2.5.2. Accuracy Assessment of UNet, AUNet, and RAUNet

We classified the collected samples into four categories and organized them within a
confusion matrix: the sum of ground-truth samples that were labelled as woodland fires on
the ground and predicted as woodland fires through each deep learning algorithm (true
positive; TP); the sum of samples that were labelled as non-fires and predicted as non-fires
(true negative; TN); the sum of samples that were labelled as fires but predicted as non-fires
(false negative; FN); and the sum of samples that were labelled as non-fires but predicted
as fires (false positive; FP). Then, the area under the receiver operating characteristic (ROC)
curve (AUC), overall accuracy (OA), and intersection over union (IoU) metrics were derived
from the confusion matrix to quantify the performance of the deep learning algorithms in
detecting fires.

AUC represents the degree to which a model is capable of distinguishing between two
classes. Higher values of AUC indicate better performance of the model.

The OA indicates the ratio of correct predictions for both fire and non-fire classes
(Equation (1)).

OA = (TP + TN)/ (TP + TN + FP + FN) (1)

The IoU expresses the similarity ratio between the predicted fires and the correspond-
ing segments of ground-truth samples (Equation (2)).

IoU = TP/ (TP + FP + FN) (2)

3. Results
3.1. Top Derivatives of Sentinel-2

The optimal TreeNet model was obtained after building 1983 trees with a learning rate
of 0.086 and a tree size of 6 (R2 = 0.89 for the optimal model). All predictors remained in
the TreeNet model, except for NDPI (Figure 5).

Our TreeNet analyses indicate that the derivatives of Sentinel-2 have remarkable
priority over the original bands in the detection of forest fires. NBR2 was the most important
variable (set to 100%), and BAIS2 and MIRBI had ca. 73% and 62% importance relative to
NBR2, respectively. Although the importance values of other variables steadily decreased,
the majority of them remained in the model (Figure 5). We used the datasets including the
top three, four and five variables to train the three algorithms.

3.2. Marginal Effects of Top Derivatives

The analysis of the marginal effects of the top five derivatives of Sentinel-2 shows
that the probability of detecting burned areas increases when NBR2 values are less than
−0.30 (Figure 6a), BAIS2 values are over 0.40 (Figure 6b), MIRBI values are more than 1.60
(Figure 6c), MNDWI values are less than −0.43 (Figure 6d), and B11 values are less than
2300 (Figure 6e).
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Figure 6. Univariate partial dependence plots for the top five variables derived from Sentinel-2 in
enhancing burned areas, including (a) the Normalized Burn Ratio2 (NBR2), (b) the Burned Area
Index for Sentinel-2 (BAIS2), (c) the Mid-Infrared Burn Index (MIRBI), (d) the Modified Normalized
Difference Water Index (MNDWI), and (e) the shortwave infrared 1 band (SWIR1; B11).

3.3. Performance of Trained Models Using Three Datasets
3.3.1. Dataset with the Top Three Variables

The comparison between three trained models using the top three variables (NBR2,
BAIS2, and MIRBI) shows that UNet (IoU = 0.881) slightly outperformed the others for fire
segmentation by all metrics (IoU, AUC, and OA; Table 2). This is shown for an image patch



Remote Sens. 2023, 15, 1342 12 of 19

in Figure 7, as the fire predicted using UNet shows more similarity with the label of fire
than the fires predicted by AUNet and RAUNet (Figure 7c–e).

Table 2. The accuracy of the trained UNet, attention UNet (AUNet), and residual attention
UNet (RAUNet) using three datasets generated from the top five derivatives of Sentinel-2 data
(i.e., NBR2, BAIS2, MIRBI, MNDWI, and B11) to identify the burned areas from the non-burned areas
in miombo woodlands.

Dataset UNet AUNet RAUNet

IoU 1 AUC 2 OA 3 IoU AUC OA IoU AUC OA

NBR2 4, BAIS2 5, MIRBI 6 0.8809 0.8868 0.9758 0.8703 0.8726 0.9710 0.8562 0.8609 0.9659

NBR2, BAIS2, MIRBI, MNDWI 7 0.8946 0.8906 0.9793 0.8730 0.8805 0.9713 0.9117 0.8976 0.9830

NBR2, BAIS2, MIRBI, MNDWI, B11 8 0.8915 0.8976 0.9779 0.8974 0.9005 0.9798 0.9238 0.9088 0.9853
1 Intersection over union. 2 Area under the receiver operating characteristic curve. 3 Overall accuracy. 4 Normalized
Burn Ratio2. 5 Burned Area Index for Sentinel-2. 6 Mid-Infrared Burn Index. 7 Modified Normalized Difference
Water Index. 8 Band 11; shortwave infrared 1.
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Figure 7. The predicted burned areas using three datasets and three trained deep-learning-based
models, including UNet, attention UNet (AUNet), and residual attention UNet (RAUNet), within
(a) an image-patch with (b) fire labels. The prediction of fires using (c–e) the top three Sentinel-derived
variables, (f–h) the top four variables, and (i–k) the top five variables with each of the three models.

3.3.2. Dataset with the Top Four Variables

By training the three models with the top four variables (NBR2, BAIS2, MIRBI,
and MNDWI), RAUNet (IoU = 0.912) showed the best performance, followed by UNet
(IoU = 0.895) and AUNet (IoU = 0.873) (Table 2). The fire predicted using RAUNet showed
robust similarity with its labelled fire in the tested image patch in Figure 7h.



Remote Sens. 2023, 15, 1342 13 of 19

3.3.3. Dataset with the Top Five Variables

By adding the fifth-best variable (B11), the performance of AUNet (IoU = 0.897) and
RAUNet (IoU = 0.9238) was enhanced. However, adding a fifth variable slightly lowered
the performance of the UNet model (Table 2). RAUNet with five variables (RAUNet5) had
the best overall performance and very high overall accuracy (98.53%).

4. Discussion
4.1. The Selected Variables and Datasets

We carried out an extensive investigation using TreeNet to select the top Sentinel-2
derivatives and bands for establishing a reliable dataset before training our models. Earlier
studies that tested different combinations of the main bands of Sentinel-2 concluded that
feeding the majority of the bands (visible, NIR, and SWIR) into the UNet model improves
performance [34]. However, the top three variables in our study were from the burn indices
derived from a combination of the SWIRs (NBR2 and MIRBI) or the red, red-edge, and
NIR bands (BAIS2). Thus, our work is more aligned with other studies that found that
these derivatives of Sentinel-2 have higher priorities—NBR2 [20,28,29], MIRBI [20,28,29],
BAIS2 [22,30], NIR, red, and red-edge, or SWIRs [36,88]. However, the main band B11
ranked fifth. Thus, our research adds that a combination of derivatives and the main bands
of Sentinel-2 have a better effect on detecting fires in woodland biomes.

Our results show that increasing the number of top variables from three to five in train-
ing datasets substantially improves the performance of AUNet and RAUNet for segmen-
tation of fires (Table 2), but including more variables will likely not increase performance
indefinitely [34]. Many studies used all of the main bands of Sentinel-2 [40,89], selected
main bands of Sentinel-2 [34,90,91], or single derivatives (e.g., burned area indices) [44,92]
for training their deep-learning-based approaches to detect forest fires. However, increasing
the number of channels (i.e., variables in a dataset) increases the parameters and training
time of the model. Thus, we sought to find appropriate datasets that included a combina-
tion of the main bands of Sentinel-2 and their derivatives—constrained to only those with
the highest importance—to both maximize performance and reduce the training time of
the deep-learning-based models.

4.2. The Performance of the Trained RAUNet

Our research confirms that integrating attention gate layers [93] and residual blocks [48]
into the UNet structure improves its accuracy for detecting fires of varying sizes and shapes.
Integrating the attention gate layers into the structure enhances the weight of important
features with varying sizes and shapes [45]. Adding the residual blocks to UNet allows the
model to extract further features in every layer [48]. These characteristics are crucial when
segmenting images (such as remote sensing data) that have high spatial information.

Among all of our models, the trained RAUNet with four or five variables outperformed
AUNet and UNet in detecting fire events. Other studies also found higher efficiency when
adding attention gate units (i.e., AUNet) for mapping forest fires [43], fire severity [46], and
deforestation [47], or adding residual connections and attention gate units to the UNet archi-
tecture (i.e., RAUNet) to enhance image segmentation [49–53], forest classification [94], and
building detection [52]. The current research adds the conclusion that RAUNet significantly
improved the accuracy of mapping burned areas compared to UNet and AUNet.

However, the computation time increases when the attention gate units and residual
connections that RAUNet requires for learning more complex features are added. In our
research, training RAUNet took 82% and 29% longer than training the UNet and AUNet
models, respectively. Although the training time of RAUNet was longer than the training
time of AUNet, adding residual connections [95] improved the performance of the trained
RAUNet for detecting burned areas in our research.
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4.3. The Efficiency of Trained Models in Demonstrating the Properties of the Fires

We used Sentinel-2 images from different dates (June–October) for training our models
to boost their efficiency in detecting fires regardless of the time. Our trained models could
predict, with high certainty, both active fires (e.g., Figure 8k) and recently burned areas for
the selected image patches in three consecutive months. Moreover, our models detected
not only medium and large fires, but also small fires. Figure 8a shows a small fire (red box)
that was correctly detected by our trained RAUNet5 model (Figure 8e). In contrast, the
efficiency of a UNet model for detecting small fires was criticized by previous research [96],
even after adding more bands to the dataset (F1-score = 82.4%). Therefore, our introduced
trained RAUNet may tackle the problem of detecting small burned patches using NASA
burned area products in the miombo ecoregion [20,97] (e.g., Figure 8c,h,m).
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Figure 8. The performance of RAUNet5 in detecting burned areas at different times within a specific
image patch of the miombo ecoregion: the predicted fires using the product fires of MCD64A1
Version 6.1 (500 m), Sentinel-3/OLCI Version 1 (300 m), and our approach (10 m) in (a–e) August 2021,
(f–j) September 2021, and (k–o) October 2021. The (a) very small fire in August and (k) active fire in
October were only detected by (e,o) RAUNet5. Our model showed strong performance in depicting
(e) the expansion of fires and (j) missing fires in its fire label.

In our example image patch, the sizes of burned areas were 102 ha, 147 ha, and 355 ha
based on the fire labels in August (Figure 8b), September (Figure 8g), and October (Figure 8l),
respectively. We compared the accuracy of the predicted burned areas based on our
RAUNet5 model with the two most commonly used burned area products. Using MCD64A1
Version 6.1 with 500 m resolution [2], no fires were predicted in August (Figure 8c) or
September (Figure 8c,h), and only one-third of the fires were detected in October (105 ha;
Figure 8m). The Sentinel-3/OLCI and SLSTR Version 1 product with 300 m resolution [3]
was slightly better than the MODIS product at detecting burned areas, but its estimates
were still low. It predicted fire events at ca. 10, 96, and 285 ha in August, September,
and October, respectively (Figure 8d,i,n). The RAUNet5 model drastically improved the
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quantification of fire events in these three months. It predicted burned areas of 108, 150,
and 351 ha in August, September, and October, respectively (Figure 8e,j,o). Our approach
not only outperformed the predictions by these two products concerning the accuracy of
burned area sizes, but also in detecting fire edges, small fires, and active fires.

Our trained models could detect the shape and extent of the fires even better than
their fire labels. For example, the expansion of fire (blue box in Figure 8a) was predicted
by RAUNet5 more accurately than the fire label. We highlighted a burned area in Septem-
ber (red box in Figure 8f) that was missing in its label (Figure 8g) but was detected by
RAUNet5 (Figure 8j). This shows that a well-trained model can perform better than visual
interpretation in the detection of fires.

4.4. Application and Outlook

The RAUNet5 model developed in this study is an end-to-end model that uses the
top five variables of Sentinel-2 (i.e., NBR2, BAIS2, MIRBI, MNDWI, and B11) to predict
fires of all sizes with a high resolution (10 × 10 m). The Sentinel-2 satellite passes every
five days, and our model can be run immediately. Our model can therefore detect active
fires in near real time. This could be applied to detect fires at the start and perhaps manage
them before they spread. As many of the fires in the miombo ecoregion are small [5,20,97],
our model could further be used in a time series to gain a more holistic understanding of
fire (e.g., frequency, duration, timing, and spread patterns). Such maps could be applied
to improve fire management, such as planning firebreaks, extinguishing existing fires,
and restoration of burned areas. The ability to quantify burned areas of all sizes will also
improve estimates of forest carbon dynamics in the miombo ecoregion.

We trained RAUNet using the datasets from the miombo ecoregion. We suggest that
RAUNet5 could become a more versatile model for mapping burned areas by training it with
large datasets of fire labelling and Sentinel-derived datasets from different regions as well.
Although datasets from Sentinel-2 showed great improvement over existing models (Figure 8),
including Sentinel-1 derivatives could further improve efficiency, particularly under high
cloud cover [33] and in real-time fire detection [98]. Combining Sentinel-1 and -2 could also
be used to map fire severity, which would have important implications for carbon emissions
and forest dynamics (e.g., mortality, growth, regeneration, and species composition).

The structure of UNet was improved by adding residual blocks, attention gate units,
or a combination of the two (i.e., as in the RAUNet in our research). We encourage future
studies to evaluate the efficiency of new integrations, such as RAUNet with guided de-
coder [50] and hierarchical attention residual nested UNet [99], for detecting and mapping
forest and woodland fires. It would be beneficial if future studies could test the efficiency of
our developed model in separating active fires from burned areas using our tested datasets.

5. Conclusions

This research is the first to use an RAUNet architecture to detect active fires and burn
events anywhere in the world, and it brings high-resolution fire detection to southern Africa.
We developed an end-to-end deep-learning-based approach that uses freely available
datasets from Sentinel-2 for detecting burned areas with a spatial resolution of 10 m across
the miombo ecoregion in Mozambique. We tested a set of derivatives, along with the main
bands of Sentinel-2, using TreeNet to determine the top five variables. Including up to five
variables in the dataset improved the performance of all three models. Adding attention
gate units (AUNet)—and especially residual blocks and attention gate units (RAUNet)—to
the UNet architecture improved the performance of the models when using the top five
variables. All three models were able to detect both active fires and burned areas, and they
showed a great improvement over the existing models that are typically used in Africa.
Their ability to detect even small fires and burned patches in near real time means that fires
can be detected, and perhaps even managed, before serious spreading. Further application
of these models will improve our understanding of fires, as well as their influence on forest
ecology and carbon dynamics, across the miombo ecoregion and the African continent.
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