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Abstract Multi-environment trials (METs) of
potato breeding clones and cultivars allow to pre-
cisely determine their performance across test-
ing sites over years. However, these METs may be
affected by the genotypeXenvironment interaction
(GEI) as noted in tuber yield. Furthermore, trials are
replicated several times to optimize the predictive
value of the data collected because knowledge on spa-
tial and temporal variability of testing environments
is often lacking. Hence, the objectives of this research
were to use components of variance from METs to
estimate broad sense heritability (H?) based on best
linear unbiased predictors and use these estimates to
determine the optimum number of sites, years, and
replications for testing potato breeding clones along
with cultivars. The data were taken from METs in
southern and northern Sweden comprising up to 256
breeding clones and cultivars that underwent testing
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using a simple lattice design of 10-plant plots across
three sites over 2 years. Percentage starch in the tuber
flesh had the largest H? in each testing environment
(0.850-0.976) or across testing environments (0.905—
0.921). Total tuber weight per plot also exhibited
high H? (0.720-0.919) in each testing environment
or across them (0.726-0.852), despite a significant
GEI Reducing sugar content in the tuber flesh had
the lowest, but still medium H? (0.426-0.883 in each
testing environment; 0.718-0.818 across testing envi-
ronments). The H? estimates were smaller when their
variance components were disaggregated by year
and site, instead of lumping them as environments.
Simulating H? with genetic, site, year, siteXyear,
genetic X site, genetic X year, genetic X site X year, and
residual variance components led to establish that two
replicates at each of two sites in 2-year trials will suf-
fice for testing tuber yield, starch and reducing sugars.
This article provides a methodology to optimize the
number of testing size and years for METs of potato
breeding materials, as well as tabulated information
for choosing the appropriate number of trials in same
target population of environments.

Keywords Solanum tuberosum - Broad-sense

heritability - Cultivar development - Early stage
selection - Multi-site trials - Variance components
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Introduction

Multi-environment trials of potato breeding clones
along with released cultivars grown by farmers aim to
get accurate results for target productivity and qual-
ity traits, which calls for maximum control of unex-
plained variability within a data sample, e.g. due to
soil heterogeneity (Terman et al. 1967) or weather.
Variability often decreases when adding replications,
testing sites or years, using an appropriate experi-
mental design or considering spatial data analysis for
adjusting plot results.

Uniformity trials were used for determining shape
and size for field experiments in potato (Justesen
1932). Plot shape effect seems to be minor in trials
testing potato hybrids (Stockem et al. 2022). Fisher
(1970) argued the degree of precision of a trial for
estimating any mean depends on the replication
number. In this regard, Kalamkar (1932) noted that
increasing plot size decreased trial efficiency; i.e.,
more replications of smaller plots are better than a
small number of larger plot, especially if larger plot
sizes do not reduce significantly the trial variability.
Furthermore, Caligari et al. (1985) indicated that the
most efficient design for yield trials in potato may
include a single drill or plant with as many repli-
cates that can be managed by a breeder. However, as
noticed by Bos (1983), increasing replication num-
ber, decreases the number of testing accessions in
a trial, thereby counterbalancing the improvement
of selection response expected from more intensive
germplasm testing. Furthermore, Aikman and Lang-
ton (1983) indicated that replications had a marginal
effect under high selection intensity for low heritabil-
ity traits.

Although the experiment accuracy depends on the
number of both testing accessions and replications, it
seems that the optimum plot size for assessing total
tuber weight ranges from eight to 12 hills or plants,
for breeding clones (Bisogninda et al. 2006), and
hybrids (Stockem et al. 2022), respectively. Guard
rows are often included when the tuber yield of one
plot affects that of the adjacent plot (e.g. in fertilizer
trials), may be also used for cultivar testing (Mountier
1964), but at increasing cost. Nevertheless, Knight
(1924) demonstrated that replicated single rows pro-
vide reliable results in potato’s field experiments.
Blocking improves the efficiency of potato cultivar
trials (Mountier 1985). Lattice or incomplete block
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designs are preferred when the breeding clones or
cultivars included for testing are large (> 20).

Enhancing accuracy in germplasm testing leads
to an enlarged heritability, which results in increas-
ing the expected response to selection. We may use
heritability estimates along with field plot techniques
(Vallejo and Mendoza 1992) to improve multi-envi-
ronment testing of potato breeding clones along with
released cultivars, particularly when the genotype-by-
environment interaction affects productivity and qual-
ity traits in this crop (Yildirim and Caligkan 1985).
For example, heritability estimates confirmed the effi-
ciency of unilateral sexual polyploidization for multi-
trait selection and progeny testing in potato breed-
ing (Ortiz et al. 1991). Hence, the objective of this
research was to determine the minimum number of
replications, testing sites and years for potato multi-
environment trials based on the use of broad-sense
heritability estimates. In this way, we will be able to
optimize potato breeding trial efficiency in the culti-
var pipeline.

Materials and methods

Data from multi-site trials over years of the Svenska
potatisfordadling run by the Swedish University of
Agricultural Sciences (SLU, Alnarp, Sweden) were
used for this research. The trials included up to 256
breeding clones and released cultivars grown by EU
farmers (https://hdl.handle.net/11529/10548617) that
underwent testing at Skane (Helgegédrden and Moss-
lunda) and Norrland (Umed) regions of Sweden in
2020 and 2021 (Table 1). The trials used simple lat-
tice designs with two replications of 10-plant plots.
Helgegarden and Mosslunda are potato producing

Table 1 Number of advanced potato breeding clones and cul-
tivars planted at three sites in Sweden over 2 years

Site Year Advanced breed-  Cultivars
ing clones

Helgegarden 2020 32 137

2021 47 209
Mosslunda 2020 47 209

2021 47 209
Umea 2020 47 209

2021 47 209
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sites near Kristianstad (56° 01' 46" N 14° 09' 24" E)
in southern Sweden, while Umea (63° 49’ 30" N 20°
15" 50" E) is in northern Sweden. In each site crop
husbandry practices were the same as those used in
potato farming. Fungicide sprays against the oomy-
cete Phytophthora infestans were made only in Hel-
gegarden to avoid late blight throughout the growing
season. This treatment was used to achieve tuber yield
potential at this testing site.

The characteristics evaluated were total tuber
yield in 10-plant plot (kg), tuber weight (kg) by size
(<40 mm, 40-50 mm, 50-60 mm, > 60 mm;) in the
10-plant plot, while percentage of starch in the tuber
flesh was calculated after determining specific gravity
at harvest (Schippers 1976). Potato glucose strip tests
were used for measuring reducing sugars in the tuber
flesh (Mann et al. 1991). Host plant resistance to P.
infestans was evaluated over 2 years solely in Moss-
lunda, where the pathogen is ubiquitous and causes
high late blight severity, using the area under disease
progress curve (AUDPC, Fry 1978).

Analyses of the trials in each and across environ-
ments were done with META-R (Alvarado et al.
2020), which also estimated the best linear unbiased
predictors (BLUPs) for the eight evaluated traits con-
sidering both the testing germplasm, sites, and years
as random samples of their respective populations.

Biometrical modeling
Single-site year model

The response of the ith cultivar on the rth replicate
within the bth incomplete block nested within a repli-
cated is represented as y;,,,, in following Eq. (1):

Yiy = H+ C; + R, + IB(R) ) + €, €))

where p is the overall mean, C; is the random effect of
the ith cultivar assumed to have an independent and
identical distribution (iid) that is normal with mean
12!
zero and variance o%, that is, Ci~N(O, Gé)(i =1,
2,...,1), and R, is the random effect of replicates
iid
with iid normal distribution and variance o-,%,Rr ~N
(0,62)(r = 1,2, ..., R). The incomplete blocks nested
within replicate are considered a random effect iid
with normal distribution with mean zero and variance

2 iid 2 _ _
O3y Such that IB(R),, ~ N(0.% )b =1,2,....5)- The ran

. . iid . .
dom residual error is e;,, ~ N (0, Uez) with variance ¢2.

The variance component estimations of this model
are given in Table 2.

Multi-environment model

The response of the ith cultivar on the rth replicate
within the jth environment and on the bth incomplete
block nested within replicate and the jth environment is
represented as y;;,, in Eq. (2)

Yirs = M+ C; + E;+ R(E), ) + IBR, E),y ) + (CE); + €5,
e
12

where the random effect of cultivar is C; ~ N(0,02)

(i=1,2,...,I) with cultivar variance component aé,

and the random effect of environment (location-year

L. . iid .

combination is E;~ N(O, 0'125)(/' =1,2,...,J) with

environment variance component aé. The random

effects of replicated nested within environments

iid
. td 2 =
are described as R(E),(]») N(O, GR(E)>(F =12,...,R)

with variance component o2 while the random

R(EY
effect of incomplete block nested within replicate and

. . . iid
environment is described as IB(R, E),; ~ N (0, GIZB(R E)>

_ : : 2
(b=1,2,...,B) with variance component O lBR L)
The interaction effect of the cultivar X environment is

. iid L . .
described as CEij ~N (0, O'%,E) with interaction variance

component G%E and random residual that is defined
iid ) ) 5 .

as e, ~ N (0, o-e) variance component ¢2. Variance

components of this models are presented in Table 3.

Multi-site over years model

The response of the ith cultivar on the jth site, the
mth year, the rth replicate within site and year,
and the bth incomplete block nested within rep-
licated site and year is represented is represented
as Yy in below Eq. (3)

yi,/',m,r,b =u+t S/' + Mm + (SM)jm + R(SM)r(jm) + IB(RSM)b(jmr)

+C; + (CS); + (CM),, + (CSM) 3, + €y

3

where the random effect of the site is represented as

i
S/-HNN(O, o-g)(j =1,2,...,J) with variance component
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Table 2 Variance

components (genetic [ch]
and residual [626]) and
broad sense heritability (H?)
for potato tuber weight (kg
10-plant plot), percentage
of starch in the tuber flesh,
reducing sugars and host
plant resistance to late
blight (measured by the
area under disease progress
curve, AUDPC) for 2-year
(1: 2020, 2: 2021) multi-
environment testing as
determined for breeding

clones and released

cultivars in three distinct

sites in Sweden

Characteristic Helgegarden, Skane Mosslunda, Skane (late- Umead, Norrland
(yield potential) blight prone) (very long day-
length)
o’ o, H* o’ o’ H? o’ o, H

Total tuber 1 8318 1.760 0.904 14.088  4.389 0.865 5.623 0.989 0.919

weight 2 11.638 9.062 0.720 7.054 1.502 0.904 5.956 1.962 0.858
<40 mmtuber 1 0.267 0.043 0.925 0.254  0.121 0.808 0.821 0.138 0.922

weight 2 0.077 0.087 0.639 0.120  0.055 0.814 0.732 0.172 0.895
40-50 mm tuber 1 1.317 0.368 0.877 0.992  0.523 0.791 1.207 0.600 0.801

weight 2 0.673 0.497 0.730 0.684  0.368 0.788 1.078 0.601 0.782
50-60 mm tuber 1 2.234 0.898 0.833 2264  0.774 0.854 1.336 0.407 0.868

weight 2 2540 1968 0.721 1.301 0.577 0.818 1.165 0.546 0.810
>60 mmtuber 1 6.656 1.431 0.903 7.087  2.097 0.871 0.868 0.320 0.844

weight 2 16.943 10.982 0.755 3.478 1.219 0.851 0.808 0.304 0.842
Percentage of 1 5828 0.291 0.976 4716  0.672 0.934 4.198 0.761 0917
starch in the 2 5158 1.821 0.850 5987  1.298 0.902 6.716 0.739 0.948
tuber flesh
Reducing sugars 1 0.292  0.757 0.436 0221  0.399 0.526 0.249 0.275 0.644

2 0420 1.131 0.426 0.850  0.526 0.764 0.925 0.246 0.883
AUDPC 1 N/A 3000.614 422.273 0.934 N/A
2 1537.302 452.629 0.872

Table 3 Variance components (genetic [cszG], genetic X year
[GZGY], genetic X environment [GZGE]Z, and residual [626]), and
broad-sense heritability (H?) for potato tuber weight (kg 10-plant
plot), percentage of starch in the tuber flesh, reducing sugars and
host plant resistance to late blight (measured by the area under dis-

ease progress curve [AUDPC] only in stress-prone site) estimated
using 2-year multi-environmental testing at late blight-prone site,
across two sites (yield potential and stressful) over 2 years in Skane
(Sweden), and across three sites (yield potential, late-blight prone,

and very long days) in southern and northern Sweden

2 environments: Mosslunda, Skéne (late-
blight prone) over 2 years

Characteristic

4 environments: Helgegarden
(yield potential) and Mosslunda
(late-blight prone), Skéne over
2 years

6 environments: Helgegarden
(yield potential) and Mosslunda
(late-blight prone), Skane;
Umead, Norrland (very long

daylength) over 2 years
o’ oy o, H = e O% H = R 2
Total tuber weight 8.365 2.263 2939 0.818 7.802 2938 4289 0.856 5206 3.707 3.312 0.853
<40 mm tuber 0.140 0.048 0.088 0.753 0.113 0.056 0.079 0.825 0.202 0.179 0.107 0.839
weight
40-50 mm tuber 0.527 0.327 0440 0.658 0475 0404 0444 0.752 0363 0.614 0498 0.716
weight
50-60 mm tuber 1.265 0.537 0.670 0.744 0598 1477 1.066 0.543 0.577 1203 0.862 0.679
weight
> 60 mm tuber 4.313 0.986 1.653 0.826 5976 2.857 4.117 0.829 3.198 2.823 2.807 0.819
weight
Percentage of starch 5.263 0.140 0976 0944 4916 0349 1.119 0956 3.873 1.501 0.970 0.921
in the tuber flesh
Reducing sugars 0.318 0.266 0470 0.559 0366 0.104 0.736 0.756 0.340 0.176 0.555 0.818
AUDPC 1892.162 370.320 436.887 0.865 N/A N/A

252 = genetic X environment variance; i.e., considering each site-year as an environment
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) iid
o7, the random effect of the year is M,, ~N (0,02 )
(m=1,2,...,M) with year variance component as
afn, and the random interaction effect of site X year is

iid . . .
(SM);,, <N (0, 0'§M) with interaction variance component
‘752*1\/1' The random effect of replicated nested within

iid
site and year is assumed as R(SM),;,,, ~ N (0, ‘712«SM))

- : : 2
(r=1,2,...,R) with variance component of O Resuy
while the random effect of the incomplete blocks
nested within replicate site and year is defined as

iid .
IB(RSM) ) ~ N (O’ O'IZB(RSY) )(b =12,...B) with

variance component ¢> The random effects of

IB(RSY)'

iid
cultivar is denoted as C; ~ N(O, o%) (i=1,2,...]) with
variance component aé, and the random effect of the

. . — . iid
interaction of cultivarxsite is described by (CS); ~

N(0,02) with variance component oZ; the random

2.
cs®
effect of the interaction of cultivar X year is assumed

i
(CM),, ILN (0, o%M) with variance component. The

random effect of the three-way interaction of culti-

< N(0,62,,) with

var X site X year is assumed (CSY) Csy

ijy
2

e and the random residual is

variance component o
. iid N . N
described as e, ~ N (0, o ) with variance estimation

Table 4 Variance components (genetic [GZG], site [02]_], year
[GZY], site X year [GzLY], genetic X site [GZGS], genetic X year [GzGY],
genetic X site X year (GZGLY), and residual [Gze]), and broad-sense
heritability (H?) for potato tuber weight (kg 10-plant plot), per-

of 662. The variance components of this model are in
Table 4.

Heritability estimates

BLUPs show a high predictive accuracy even when
not including pedigree information (Piepho et al.
2008), and its efficiency has been already noted for
selecting among segregating offspring for tuber
yield and specific gravity (Ticona-Benavente and da
Silva Filho 2015). The combined analyses of vari-
ance (ANOVA) over the environments were possible
due to the homogeneity of variance across each of
the testing environments. The variance components
for the testing germplasm and environments can be
estimated using the expected mean squares of the
ANOVA. Broad-sense heritability (H), based on the
plot means for each of the six-testing environment
(site—year) was estimated as:

2

(02

2 _ C
H =—"> )

Gé + US/R

in which o-é, o-f and R were the genetic variance, the
residual variance, and the number of replications
(=2), respectively. H* based on the plot means across
testing environments was estimated for seven tuber
traits as:

centage of starch in the tuber flesh, reducing sugars and host plant
resistance to late blight (measured by the area under disease pro-
gress curve [AUDPC] only in stress-prone site) estimated using
2-year multi-environmental testing across three sites in Sweden

Characteristic o’ oo o’y %G Gy oLy 6% H?
Total tuber weight 4.5490 55960 1.468x107°  1.9780 22030 09571 1.3540 33140 0.7262
<40 mm tuber 0.1727 0.2104  0.0073 0.0186 0.0715  0.0326 0.1025  0.1077  0.7230
weight

40-50 mm tuber  2.489x 1071 0.0307 1.594x107  2.353x107" 0.3727  0.0901 0.2558 0.4970 0.4956
weight

50-60 mm tuber  0.3154 0.9042 1.619%x 107" 0.0060 0.7506  0.2460 0.4675 0.8545 0.3765
weight

> 60 mm tuber 2.9650 2.5600 2.907x107%  3.1790 22250  0.2404 0.9034 2.8140 0.7040
weight

Percentage of starch 3.7990 6.9700 4.993x10°  7.9440 0.3813  4.220x107%  1.1160 1.0050  0.9054
in the tuber flesh

Reducing sugars 0.3056 0.1522  0.4627 0.0814 0.0312  0.0996 0.0729  0.5754 0.7175
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2
o
H?> = =
2 2 5
GZ‘ + O-CE/E + Ge/ER

in which o%E is the genotype X environment variance,
and R and E are the number of replications and envi-
ronments, respectively. Variance components and
their interactions were further estimated indepen-
dently for sites and years to estimate H> for productiv-
ity and quality traits as follows:

2

[0}

2 _ C
H = 6)

O'é + GéS/S + O%M/Y + o-éSM/LY + GZ/LYR

in which 67, o7, and o7, are the genotypeXsite,
the genotypeXyear, and the genotype X site X year
interactions, respectively, while L is the number of
testing sites (=3) and M is the number of years (=2).

The minimum number of replications, sites and
years can be determined using the estimated vari-
ance components from the data. These variance com-
ponents for tuber weight, percentage of starch in the
tuber flesh and reducing sugars in the tuber flesh were
used to estimate H” assuming they were stable while
the denominator coefficients L, Y and R could vary.
Schutz and Bernard (1967) and Ortiz et al. (2008)
used a very similar approach with the phenotypic
variance (instead of H?) estimates to examine the
influence of experimental design on results in future
experiments testing soybean and maize germplasm.
The minimum option is given by the least number
of L, Y and R that will not affect H? estimates. Fur-
thermore, a curve resulting from plotting the number
of environments (sites or years) or replications in the
horizontal axis and H? estimates in the vertical axis
was used to allow visualizing the critical point in
which this curve starts to plateau (Duma et al. 2020);
i.e., beyond this point an increase in the number of
testing environments provides only a negligible gain
in precision.

Results

There were highly significant differences (P <0.001)
among BLUPs for all productivity and quality char-
acteristics in each and across testing environments.
Helgegarden had, on average, the largest tuber har-
vests in 10-plant plots (14.2 kg in 2021, 10.83 kg in

@ Springer

2022), while the lowest were, on average, in the late
blight prone Mosslunda (7.915 in 2020, 6.512 in
2021), and in Umea (7.192 in 2020, 7.567 in 2021).
The AUDPC BLUPs for host plant resistance to late
blight were highly significant (P<0.001) among
genotypes but not (P>0.05) across both years at
Mosslunda (234.1 in 2020, 240.9 in 2021). The per-
centage of starch in the tuber flesh was highest in
Helgegarden (above 14%), thereafter in Mosslunda
(between 12 and 13.5%) and the lowest in Umea
(below 10.5%). Reducing sugars vary significantly
across sites and years (ranging on average from 1 in
Umead 2021 to 3.4 in Mosslunda 2020). In Umea, the
percentage of tuber weight according to size was very
similar across years: 21% for below 40 mm, 41% for
40-50 mm, 26% for 50-60 mm, and 12% for above
60 mm. Tubers were larger in the testing sites at
Skane than Norlland; i.e., on average above 2/3 of the
total weight for tubers above 50 mm in Helgegérden
and about 3/5 in Mosslunda. The genotype by envi-
ronment interaction (GEI) was also highly significant
(P<0.001) for all characteristics.

The highest H? estimates for each site (Table 2)
were mostly for percentage of starch in the tuber flesh
(0.85-0.98). The AUDPC due to late blight had high
H? estimates (0.87-0.93) in both years at Mosslunda.
Total tuber weight per plot had also a high H? in each
testing environment (ranging from 0.72 in the highest
yielding Helgegarden 2021 to 0.92 in the low yield-
ing Umed 2021. H? estimates, on average for tubers
below 40 mm or above 60 mm were greater than
those for the other two tuber sizes. Reducing sug-
ars in the tuber flesh had the lowest H* estimates on
average.

Heritability estimates were larger for weight of
tubers below 40 mm and reducing tubers in the flesh
when including more testing sites (Table 3). H?
decreases slightly for total tuber yield and percentage
of starch in the tuber flesh when adding two more test-
ing environments (Fig. 1). There were no H? trends
according to the number of testing environments for
weight of tubers with 40-50 mm and 50-60 mm sizes
(Table 3), while the H? for AUDPC due to late blight
over years (0.86) was smaller than those estimated in
each year at Mosslunda.

Disaggregating the variance component of envi-
ronment into testing sites and years led to smaller H>
estimates (Table 4) than those when lumping them
together as environments. The highest H> estimate,
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Fig. 1 Broad-sense herit- 1
ability estimates according

to the number of testing 0.95 _—
environments for percent- 0.9
age of starch in the tuber ’
flesh in red, tuber weight 0.85 &= O PY
(10-plant plot) in blue, and 1
reducing sugars in grey 0.8
using trials data after testing
in 3 Nordic sites (northern 0.75
and southern Sweden) over
2 years 0.7 /
0.65 /
0.6 —
0.55
0.5
1 2 3 4 5 6

after disaggregating into testing sites and years,
was again for percentage of starch in the tuber flesh
(0.90), while the lowest were for weight of tubers
with 40-50 mm (0.50) and 50-60 (0.38) mm sizes.
Medium-high H? were estimated for total tuber
weight (0.76), and weight of tubers below 40 mm
(0.72) or above 60 mm (0.74) and reducing sugars in
the tuber flesh (0.72). The magnitude of the variance
component for the genotype x location (6°g;) inter-
action was larger than that of genotype X year (6°;y)
interaction for most tuber traits except the variable
reducing sugars in the tuber flesh as measured by
the sugar strip test. The variance component for the
genotype X location X year (GZGLY) was larger than the
6’ and o’y for percentage of starch in the tuber
flesh and weight of tubers below 40 mm and with
40-50 mm size, but smaller than the ¢’ for total
tuber weight and weight of tubers 50-60 mm size and
above 60 mm, and than ¢°gy for reducing sugars in
the tuber flesh.

Table 5 provides the results of simulating H*> when
keeping unchanged the variance components for
tuber weight, percentage of starch in the tuber flesh
and reducing sugars in the tuber flesh (Table 4) but
varying the number of testing sites, years, and repli-
cations. It appears clearly H? estimates are larger that
by increasing any of them but it will be most costly
to run the multi-environment testing. Hence, the
tabulated data allows detection of the plateau beyond
which an increase in the number of testing sites, years
and replications only will result in a negligible gain

in the H? estimate. Accordingly, it seems that multi-
environment trials using incomplete block designs
with two replications across two sites over 2 years
will suffice to estimate H” reliably. Table 5 further
assists understanding why selection in early genera-
tions (non-replicated single hill in first clonal gen-
eration [T,] or larger plots in second clonal genera-
tion [T,]) does not seem to be efficient for total tuber
weight because of low heritability estimates in such
trials. Using trials with at least two replications or
even better if testing occurs with multi-environment
trials (e.g. from T, onwards as done by Svenska
potatisforddling) at the target population of environ-
ments provides means for identifying more precisely
promising breeding clones during potato cultivar
development.

Discussion

Broad-sense heritability is the percentage of the
phenotypic variance accounted by genetic differ-
ences due to significant variability amongst geno-
types (Schmidt et al. 2019b). H? is also associated
with the coefficient of determination (R?) of a linear
regression (P =y + bG) of the unobservable genotypic
value (G;) on the observed phenotype (P;), or to the
squared correlation between predicted phenotypic
value and genotypic value. It is of further interest to
plant breeding because H> may be used in the genetic
gain (4;) equation to predict response to selection
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inflate H? (D’hoop et al. 2011). The minimum num-
ber of testing environments and replications may be,
however, debatable because both depend on various
factors, including the availability of planting materi-
als. Early generation (T);) testing uses nonreplicated
1-plant plots in the first-year field trial. There are suf-
ficient tubers for having replicated trials in the T; or
T, generation, when total tuber weight, specific grav-
ity (as a proxy for dry matter or starch in the tuber
pulp) and crisping suitability should be properly eval-
uated. Furthermore, the minimum number of testing
sites should consider the target population of environ-
ments where the breeding clones along with cultivar
checks will be included in multi-environment trials.
Curves ensuing from plotting H? at different num-
ber of testing environments (Fig. 1) suggests that the
ideal will be four for tuber weight and percentage of
starch in the tuber flesh because thereafter the H* gain
is minimal. Furthermore, a minimum of two sites
over 2 years will suffice for determining accurately
these traits when using simple lattice designs with
two replications (Table 5) in trials of bred germplasm
from T; (if enough planting materials available) or
T, onwards during potato cultivar development. The
saved resources resulting from reducing number of
testing sites, replications and years may be used for
planting more on-farm trials with advanced breed-
ing clones (T onwards), which may also provide
more information about associated crop husbandry
practices.

Strong selection for quantitative traits, even if they
are highly heritable, based on nonreplicated small
plots (14 plants) in the T, or T, appears to be unreli-
able in potato because of a significant GEI and a high
error variance. Brown (1987) demonstrated that the
error variance for total tuber weight of 1-plant plots
was significantly greater than that of 5-plant plots.
Moreover, H* estimates when considering potato
breeding trials using non-replicated plots in one test-
ing environment were always the lowest (Table 5).
Caligari et al. (1986) indicated that the inefficiency
of selection in the T, could be also attributed to the
inaccuracy of tuber yield assessment. Hence, selec-
tion for productivity using nonreplicated breeding tri-
als seems to be ineffective, even when considering the
best breeding clones from the previous year assess-
ment; i.e., in T,. Trial heterogeneity in early-stage
potato breeding trials calls for the use of augmented

@ Springer

(Federer 1956) or p-rep designs (Paget et al. 2017)
and spatial data analysis (Kempton et al. 1994)
when using non-replicated plots, and pedigree-based
BLUPs for selection of promising bred-germplasm in
T, and T,. As indicated by Slater et al. (2014), BLUPs
that use pedigree results in increased Ag when having
low H? in potato.

Ticona Benavente and Pereira Pinto (2012) indi-
cated that family selection for tuber yield and spe-
cific gravity may be also effective in early potato
breeding generations because heritability at the fam-
ily level was always larger than at the breeding clone
level. Inter-family variation is also more efficient
than within-family variation because the former has
a lower environmental effect (thus larger H?) than
among breeding clones of the same family (Sim-
monds 1996). Furthermore, as noted by Bradshaw
et al. (1998), combining family selection in T, with
within family selection in T, may lead to promis-
ing T; bred germplasm. This combined selection
approach appears to be very appropriate when having
low within family variation (Silva Melo et al. 2011);
i.e., low H for the desired trait among siblings.

Potato breeding trials normally involve testing of
promising advances clones along with released cul-
tivars in several environments across testing sites
over years. This article provides a methodology to
optimize their numbers in METs of potato breeding
materials, as well as tabulated information for choos-
ing the appropriate number of trials in same target
population of environments in the cultivar develop-
ment pipeline.
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