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Abstract
The existence of an upper limit for extremes of quantities in the earth sciences, e.g. for river discharge or wind speed, is 
sometimes suggested. Estimated parameters in extreme-value distributions can assist in interpreting the behaviour of the 
system. Using simulation, this study investigated how sample size influences the results of statistical tests and related inter-
pretations. Commonly used estimation techniques (maximum likelihood and probability-weighted moments) were employed 
in a case study; the results were applied in judging time series of annual maximum river flow from two stations on the same 
river, but with different lengths of observation records. The results revealed that sample size is crucial for determining the 
existence of an upper bound.
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Introduction

Use of statistical models and methodology is of critical 
importance in hydrology. A proper statistical model is 
the basis for further applications, not least when studying 
extremes, such as estimation of return levels or examina-
tion of trends in hydrological variables under investigation. 
With current access to suitable software, model selection 
is of interest. On the one hand, this involves selection of a 
probability distribution. For a recent discussion of model-
ling extreme river discharges with typical distributions, see 
Rydén (2022a). On the other hand, it involves considering 
the methodological basis for choices. Using a maximum-
likelihood (ML) based framework, metrics such as Akaike’s 
Information Criterion (AIC) is an option. However, for other 
estimation techniques (e.g. methods of moments), alternative 
approaches must be used. In addition, careful examination 
of the fitted distributions with respect to parameter estimates 
and resulting related return levels could be good practice 
(Rydén 2019).

A key factor in statistical analysis of almost any kind is 
the sample size. Small samples are challenging, and ML 
approaches may be less suitable for extremes in certain situ-
ations (Coles and Dixon 1999). Hosking et al. (1985) pre-
sent comparisons (theoretical and numerical examples) of 
methodology for estimation of parameters in the Generalised 
Extreme Value (GEV) distribution. For the practitioner, the 
question arises as to whether there are statistical implica-
tions of using so-called small samples in estimation of a 
GEV distribution. This question is one of the subjects of 
the present analysis.

In fact, properties of the parameters in the GEV distribu-
tion can be linked to behaviour in nature. If the so-called 
shape parameter is negative, there exists (in theory) a finite 
right end point. It may be of interest from an applied point 
of view, and for understanding the hydrological system, to 
assess this parameter. For example, Roden (1967) found that 
the dimensions of a drainage basin determines the upper 
limit of discharge. However, negative and positive estimates 
of the shape parameter may still occur, e.g. Hosking et al. 
(1985) give examples, based on series of annual maxima. 
Hence, the estimated parameters, which depend upon the 
sample and more precisely sample size, have implications 
for interpretations of the system.

The present study extended the analysis in Hosking et al. 
(1985) through investigating by simulation studies the per-
centage of rejections of a Gumbel distribution (a GEV dis-
tribution with the shape parameter equal to zero) for various 
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sample sizes and chosen values of the shape parameter. As a 
case study and illustration, two time series of annual maxi-
mum flows from an unregulated river in northern Sweden, 
were analysed. These time series actually have the same esti-
mated shape parameter, but the decision to reject a Gumbel 
distribution differs, due to a substantial difference in lengths 
of the series.

The remainder of this paper is organised as follows: Sect. 
"Material and methods" provides a brief review of statistical 
extreme-value analysis and in particular inference with the 
GEV distribution. Moreover, the data from the two stations 
are described. Section "Result" outlines the simulation study, 
and presents the results which are then evaluated in rela-
tion to the estimation results for the two stations. Moreover, 
these results are discussed in relation to the estimations for 
the two stations. A concluding discussion is given in Sect. 
"Summary and discussion".

Material and methods

The GEV distribution

Briefly, extreme-value analysis can be said to concern the 
tails of distributions. A conventional approach, with ori-
gins in Gumbel (1958), is to fit a generalised extreme-value 
(GEV) distribution to a sample of independent annual max-
ima. This is the limiting distribution of independent maxima. 
The distribution function for the GEV distribution is given 
as:

defined on {x ∶ 1 + 𝜉(x − 𝜇)∕𝜎 > 0} and where 𝜇, 𝜎 > 0 and 
� are the location, scale and shape parameters respectively. 
The location parameter � is related to the centre of the dis-
tribution, while the scale parameter � describes deviations. 
The shape parameter � is related to the nature of the tail: 
if 𝜉 < 0 , the upper tail is bounded; if � = 0 the tail decays 
exponentially (the case of the so-called Gumbel distribu-
tion); if 𝜉 > 0 , the tail decays as a power function.

Estimation techniques

When fitting a conventional GEV distribution to data, esti-
mation is usually performed using the ML method. An 
implementation in R (R Core Team 2021) is provided in the 
package extRemes (Gilleland and Katz 2016).

A previous comparison of methodologies for fitting 
parameters in the GEV distributions by Hosking et al. (1985) 
covered probability-weighted moments (PWM) in addition 
to ML. In simulation studies, those authors found bias and 

(1)�(X ≤ x) = exp

{

−
[
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(

x − �

�

)]−1∕�
}

,

standard deviation for settings of sample sizes and values of 
the shape parameter � . Estimation of quantiles was also con-
sidered (Hosking et al. 1985). Concerning parameter estima-
tion, ML estimators were shown to be the least biased, but 
more variable than the PWM estimator in small samples. In 
the present study, estimation procedures as implemented in 
the R package lmom (Hosking 2019) were used.

For a review of estimation techniques for statistical 
extremes, see Coles and Dixon (1999).

Remark: Note that in general, deriving large-sample 
asymptotics of the ML estimator for a distribution family 
with varying support is a difficult problem. For a recent 
treatment of this topic, see Bucher and Segers (2017).

Testing hypotheses

According to Hosking et al. (1985): "It is often useful to test 
whether a given set of data is generated by a Gumbel rather 
than a GEV distribution". A simulation study is described 
in Sect. "Result", while the test methodology is briefly pre-
sented below. In a nutshell, one tests the null hypothesis 
� = 0 against some alternative hypothesis (typically � ≠ 0 ). 
We employed two approaches for the inference: Wald tests 
and bootstrap.

Wald tests:
When performing hypothesis testing for the shape param-

eter � from an ML estimation, so-called Wald tests can be 
employed. For instance, to test the null hypothesis � = 0 , 
the test quantity 𝜉∕s.e. (𝜉) is computed, where s.e. (𝜉) is the 
standard error of the estimated parameter. Computation of 
p-values follows from asymptotic normality, when 𝜉 > −0.5 . 
When −1 < 𝜉 ≤ −0.5 , the ML estimate exists, but does not 
have the standard asymptotic properties (Smith 1985). For 
situations investigated in this note is chosen 𝜉 > −0.5 , which 
is common in practice (Dey et al. 2016).

For estimation using probability-weighted moments, let �̃  
be the point estimate. Following Hosking et al. (1985), the 
test quantity �̃(n∕0.5633)1∕2 belongs to a standard normal 
distribution, and conventional statistical inference proce-
dures follow (p-values etc.).

Bootstrap:
In a recent article, Gilleland (2020) finds bootstrap meth-

ods appealing in an extreme-value context and gives several 
numerical illustrations. Simulation studies have been carried 
out by Caires (2007); for instance, confidence intervals for 
return levels based on a fitted GEV distribution were com-
puted, investigating various sample sizes as well as bootstrap 
sample size.

In this paper, we will use adjusted percentile bootstrap 
intervals, advocated by Caires (2007) and originally pro-
posed by Coles and Simiu (2003). These are obtained by 
taking the quantile of probability 0.025 of the empirical 
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distribution of the sample of bootstrap estimates as the lower 
limit and the quantile of probability 0.975 as the upper limit.

More  p rec i s e ly,  f rom a  r andom sample 
x = {x

i
, i = 1,… , n} , estimate the shape parameter by an 

estimator � = �̂(x) . A bootstrap samples x∗ is obtained by 
resampling; by randomly sampling n times, with replace-
ment, from the original sample x. Now, let B be a large 
integer. In all, B bootstrap samples x∗

b
 , b = 1,… ,B , are cre-

ated and a set of estimates �̂∗
b
 are computed. The adjusted 

bootstrap estimates, following Coles and Simiu (2003), are 
given by:

The quality of the coverage of the intervals does not consid-
erably depend on the bootstrap sample size B (Caires 2007).

In the simulation study performed in this paper, the result-
ing confidence interval based on Eq. 2 is used for testing: 
If zero is not found within the interval, the null hypothesis 
� = 0 is rejected. The bootstrap algorithm as implemented 
in the routine boot in the R package with the same name 
was employed (Canty and Ripley 2021; Davison and Hinkley 
1997).

Data sources

As an illustrative case, this study considered data on annual 
maximum flow or, more precisely, on the original time series 
of daily observations of flow (m3/s) and annual maxima were 
extracted from these series. The data originated from two 
stations on the river Torne, an unregulated river in the far 
north of Sweden. A study of extreme flows at multiple sta-
tions in this region was performed by Rydén (2022b), with 
the focus on investigation of possible trends in the magni-
tude and timing of extreme floods in northern Sweden. The 
two stations considered in the present study were selected 
since they happen to have the same ML estimate of the shape 
parameter.

Data are provided online by the Swedish Meteorologi-
cal and Hydrological Institute (SMHI): http:// vatte nwebb. 
smhi. se/ stati on/# . Table 1 provides details of the two sta-
tions investigated. A map showing the locations of the two 
stations is presented in Fig. 1, and the corresponding time 
series are shown in Fig. 2.

(2)�̂∗a
b

= �̂∗
b
−

1

B

B
∑

b=1

�̂∗
b
+ �̂, b = 1,… ,B.

Results

Details of the simulation studies, which resulted in plots 
for assessment, are provided in this section. Furthermore, 
estimated shape parameters and related tests for the two 
stations are then considered made with these plots in mind.

Simulation study

The algorithm is outlined as follows: 

Table 1  Descriptions of the two 
stations

Station Name River ID River Area (km2) Start End

2357 Abisko 1000 Torneträsk 3345.5 1985 2019
16722 Kukkolankoski 

övre
1000 Torne 33929.6 1911 2019

Fig. 1  Map showing locations of the two stations: A Station 2357,  
B Station 16722

Fig. 2  Time series of annual maximum flow for: Station 2357 (upper 
panel) and Station 16722 (lower pannel)

http://vattenwebb.smhi.se/station
http://vattenwebb.smhi.se/station
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1:  Initiate values of shape parameter � and the sample size 
n.

2:  Simulate from a GEV according to Step 1. Fit param-
eters by ML and by PWM, respectively.

3:  Perform test for the null hypothesis � = 0 against � ≠ 0 
for each of the two estimates (cf. Sect. "Estimation 
techniques") and test options (Sect. "Testing hypoth-
eses"). The conventional choice of significance level 
0.05 is used here. Record whether the null hypothesis 
is rejected.

4:  Repeat steps 2-3 a large number of times (2 000) and 
record, finally, the proportion of rejections for each 
case.

 In step 1, the values of � varies between −0.02 and 
−0.16 in 0.02 increments. The scale parameter was set 
here as � = 0 and the shape parameter as � = 1 , without 
loss of generality (the same argument as made by Hosk-
ing et  al. (1985)). The sample sizes were from the set 
{20, 40, 60, 80, 100, 150, 200, 250, 300} . In Step 3, for the 
bootstrap analysis, B = 200 was chosen.

The results from ML estimation (Wald test for inference) 
are shown in Fig. 3. The interpretation is straightforward: 
with increasing sample size, the proportion of rejection of 
the null hypothesis � = 0 increases. The smaller the shape 
parameter, the more evident is this feature. This figure, and 
the related findings, may be of interest to a practitioner, fac-
ing a situation with a specific estimated shape parameter for 
the sample size at hand. For instance, for a sample size of 
75, the difference in rejection behaviour between � = −0.1 
and � = −0.16 is notable.

The differences in overall rejection behaviour were minor 
when instead employing PWM, so the corresponding fig-
ure showing proportions of rejections versus sample size is 

omitted. However, for each sample size, differences in pro-
portions of rejections between the estimation methodologies 
are shown in Fig. 4. Note that an interesting peak arises as 
� moves away from zero. With decreasing values of � , the 
difference becomes more pronounced and the peak moves 
to smaller sample sizes.

Finally in this section, we illustrate the choice of test pro-
cedure (Wald test or bootstrap). In Fig. 5, we present in the 
left panel results based on simulations from a GEV distribu-
tion with � = −0.16 ; in the right panel, the corresponding 
results when � = −0.02 . In the first situation, it is desirable 
that the null hypothesis � = 0 is rejected, at least for larger 
samples. We note that ML estimation with a Wald test works 
best, and for samples larger than 100, the bootstrap inference 
based on the ML estimate renders similar, or slightly better, 
results. In the second situation (right panel), with a shape 
parameter closer to zero, the inference by bootstrap has a 
stronger tendency to reject, at least for sample sizes larger 
than 50, which could be seen as an advantage.

A tale of two stations

In the case study of two stations along the Torne river (see 
Sect. "Data sources"), GEV distributions were fitted with the 
ML method, and p-values were calculated (two-sided alter-
native hypothesis, � ≠ 0 ). The results are shown in Table 2. 
Note that from a practical point of view, the estimated values 
of � are identical ( −0.16 ), but, based on the conventional 
significance level of 0.05, the p-values yield different con-
clusions: a clear rejection of � = 0 for Station 16722, but not 
at all for Station 2357.

The reason might be the substantial difference in time 
series length. Turning to Fig. 3 and following the curve cor-
responding to � = −0.16 , a sharp decrease in proportion 

Fig. 3  Proportion of rejections of the Gumbel distribution with 
increasing sample size (ML estimation)

Fig. 4  Difference in proportion of Gumbel rejections by ML and 
PWM estimation, as a function of sample size
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of rejections of the Gumbel distribution can be seen with 
decreasing sample size.

Summary and discussion

One aim of this article was to more closely examine pos-
sible links between statistical distributions for extremes and 
their interpretations in earth sciences. The case example 
concerned river flows, where a negative value of the shape 
parameter in a GEV distribution implies that an upper bound 
exists. A previous study examining maximum discharge for 
the Rhine at Lobith concluded that "there is in fact an upper 
limit to the discharge at Lobith" (de Vriend et al. 2017). 
Thus, the question of an upper bound is non-trivial. Issues 
concerning the existence of an upper limit and its relation to 
statistical modelling have sometimes even resulted in con-
troversies in the research literature, see, for example, Harris 
(2005) and Simiu (2007) for a dispute on modelling extreme 
wind speeds.

The study by Hosking et al. (1985) was extended in the 
present analysis, which by simulation studies examined the 
influence of sample size on the tests for a possible Gum-
bel distribution. In both estimation strategies employed 
in this paper (ML, PWM), asymptotic normality is the 
assumption for the Wald tests. In practice, it is not easy to 
determine when this is attained, and there is no rules of 

thumbs to rely upon. The bootstrap-based inference seems 
a plausible choice, cf. the discussion related to Fig. 5.

In the simulation studies, the lowest sample size was set 
at 20. In the type of application discussed here, there are 
usually at least some decades of data (i.e. annual maxima) 
available. In this note, we studied merely inference of the 
shape parameter, � . Cai and Hames (2010) discuss the 
influence of sample size for estimation of return levels 
(employing a bootstrap approach).

Another asymptotic argument is to determine the lim-
iting distribution of the extremes. Dey et al. (2016) per-
formed simulation studies for some selected distributions 
(Pareto, Gamma, Normal, Beta) and investigated the rate 
of convergence for various sample sets. They used the 
Kolmogorov-Smirnov goodness-of-fit test to assess the 
proximity of distributions and empirical rejection percent-
ages observed. They found that heavy-tailed distributions 
converge faster. Similar studies with typical distribution 
settings and parameter choices from the earth sciences 
might be of interest. According to Dey et al. (2016), com-
pared with other sources on extreme-value analysis their 
paper "provides more statistical flavour through numerical 
studies". Future work oriented towards applications in, for 
example, hydrology would thus be appropriate.
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Fig. 5  Simulations studies, comparison of test strategies (Wald or bootstrap): left panel: � = −0.16 ; right panel: � = −0.02

Table 2  Results of ML estimation, for the two case study stations

Station Period 𝜉 p-value

2357 1985-2019 −0.158 0.24
16722 1911-2019 −0.159 0.018
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