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A B S T R A C T   

Plant responses to water stress influence water and carbon cycles and can lead to feedbacks on climate yet 
characterizing these responses at ecosystem levels remains uncertain. Quantifying ecosystem-level water use 
strategies is complex due to challenges of upscaling plant traits and disentangling confounding environmental 
factors, ultimately limiting our ability to understand and anticipate global change in ecosystem dynamics and 
ecohydrological fluxes. We reduce the dimensionality of this problem and quantify plant water use strategies by 
combining plant traits with soil and climate variables into parameter groups that synthesize key eco- 
physiological tradeoffs. Using a parsimonious soil water balance framework, we explore variations in plant 
water uptake capacity, water stress responses, and water use performance via these non-dimensional parameter 
groups. The group characterizing the synchronization of plant water transport and atmospheric water demand 
emerges as the primary axis of variation in water use strategies and interacts with the group representing plant 
hydraulic risk tolerance, especially in arid conditions when plant water transport is limiting. Next, we show that 
specific plant water use strategies maximize plant water uptake (leading to carbon gain benefits) weighted by 
risks of water stress (leading to higher costs of water use). A model-data comparison demonstrates that these 
ecohydrologically optimal parameter groups capture observed soil moisture variability in 40 ecosystems and 
beyond aridity, rainfall frequency is an important environmental control for plant water use strategies. The 
emerging parsimonious link between ecohydrological performance and non-dimensional parameters provides a 
tractable representation of plant water use strategies, relevant to parameterize global models while accounting 
for ecological and evolutionary constraints on the water cycle.   

1. Introduction 

Plant-level characteristics that regulate water transport from the soil 
to the atmosphere and assimilation of atmospheric carbon determine 
tradeoffs between plant water use for growth versus water conservation 
for survival (Reich, 2014; Skelton et al., 2015). They also shape species 
composition in competitive environments (Lu et al., 2020) and ulti-
mately influence ecosystem carbon and water fluxes. Despite increas-
ingly available plant trait data (Kattge et al., 2020), empirical and 
conceptual challenges limit our ability to exploit trait data effectively 
beyond the plant level to improve model process representations such as 
gas exchanges and drought responses at the ecosystem scale (Mencuc-
cini et al., 2019). For example, variability in trait-based plant water use 
strategies between and within ecosystems (Choat et al., 2012; Skelton 
et al., 2015) are still poorly understood. Explaining variability in 

ecological constraints on the water cycle across global biomes requires a 
holistic theoretical basis for plant water use strategies that accounts for 
dynamic interactions with environmental conditions across scales (Feng 
et al., 2019, 2018; Kannenberg et al., 2022). 

Plant functional traits vary across species and within plant functional 
types (Anderegg, 2015). They exhibit global eco-evolutionary patterns 
(Franklin et al., 2020) and trends in response to changing water avail-
ability (Trugman et al., 2020). While these traits are often coordinated 
(Manzoni et al., 2013b; Mencuccini et al., 2015), untangling con-
founding environmental effects and understanding global patterns in 
trait coordination at plant to ecosystem levels remain problematic 
(Lavergne et al., 2019). Notably, performance of plants with similar 
traits varies in different climates; and, vice versa, different traits can lead 
to similar performance under a given climate (Feng et al., 2019). Water 
use strategy definitions thus need to consider traits in combination with 
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soil and climatic conditions at plant-to-ecosystem levels. 
Identifying combinations of traits and soil and climatic variables that 

best describe key eco-physiological tradeoffs can be guided by a formal 
search for non-dimensional parameter groups (Buckingham, 1914). 
Importantly, diagnosing plant water use strategies with 
non-dimensional numbers (without units) provides a universal 
description of the system at any organizational scale and offers avenues 
to test hypotheses in a lower-dimensional context (Porporato, 2022). 
Furthermore, ecohydrological coordination embedded in the 
non-dimensional framework reduces equifinality and uncertainties 
inherent in characterizing trait-based ecological functions at 
plant-to-ecosystem levels in a changing climate. Non-dimensional 
groups have been previously used to classify plant drought responses 
(Feng et al., 2018), but have yet to be implemented in a modeling 
framework to predict drought responses in different ecosystems as well 
as define which specific plant water use strategies are ecohydrologically 
successful. 

Specific strategies or plant functions emerging from trait coordina-
tion and interactions with environmental conditions can be estimated 
from eco-evolutionary optimality (Franklin et al., 2020; Manzoni et al., 
2014). Importantly, theoretical optimality principles are applicable at 
both species and ecosystem levels and can improve upon empirical 
model formulations and reduce the number of required parameters 
(Harrison et al., 2021). The ability of optimality principles to explain 
patterns in water use strategies of whole ecosystems still needs to be 
further confirmed by confronting their predictions with key measured 
hydrologic variables. 

Soil moisture integrates hydrologic fluxes, soil, plant traits, and cli-
matic conditions that are tightly linked to ecosystem functioning 
(Rodríguez-Iturbe and Porporato, 2005). Soil moisture observations 
therefore encode plant water use patterns imposed by climatic and soil 
conditions, and these patterns can be interrogated via ecohydrological 
approaches (Bassiouni et al., 2020, 2018). Further, ecohydrological 
approaches accounting for the stochasticity of rainfall can characterize 
the mean intensity, duration, and frequency of periods of soil water 
deficit to identify optimal environmental conditions for vegetation 
(Porporato et al., 2001). Nevertheless, despite previous data-driven 
(Bassiouni et al., 2020) and theoretical (Manzoni et al., 2014) ana-
lyses, we lack tractable and transferable quantification of plant water 
use strategy patterns across biomes. To inform parametrization of plant 
responses to drought and anticipate ecosystem vulnerabilities to global 
change, we propose and test an ecohydrological optimality criterion to 
quantify plant water use strategies as a function of readily available 
environmental conditions. This theoretical approach has the advantage 
of being more tractable and explainable than empirical parameteriza-
tions and does not require calibration to targets such as observations of 
evapotranspiration and gross primary productivity. 

By combining ecohydrological optimality with the Buckingham-Π 
Theorem, we address the challenge of quantifying the multiple di-
mensions of plant water use strategies and their tradeoffs, especially at 
the ecosystem level. Specifically, we first reduce the complexity of eco- 
physiological controls on transpiration by combining plant traits with 
soil and climate parameters into non-dimensional Π groups. We then 
define metrics of plant water use capacity, sensitivity to water stress, and 
water use performance linked to daily soil moisture dynamics and long- 
term risks of plant water stress. Leveraging this framework and soil 
moisture data from 40 ecosystems, we provide data-driven and theo-
retical support for the hypothesis that plants adapt to long-term growing 
season conditions by balancing maximization of water uptake (leading 
to carbon gains and growth) with minimization of risks of unfavorable 
water-stressed conditions (leading to higher costs or penalties of water 
use). 

Our approach extends the analytical value of non-dimensional 
groups beyond summarizing how traits, soil, and climate co-determine 
water use strategies, by implementing non-dimensional groups in an 
ecohydrological modeling framework to explain variability in ecological 

constraints on the water cycle. Further, the framework incorporates 
traits into response-based metrics of plant water use strategies and link 
them to ecohydrological performance accounting for cumulative im-
pacts of water stress on plant function as well as their feedbacks. This 
study offers a parsimonious but effective alternative to more complex 
models to investigate and parameterize water use strategies across wet 
to arid ecosystems, exploiting ecohydrological optimality as a guiding 
principle. 

2. Materials and methods 

Our modeling framework is centered around a conceptual repre-
sentation of the soil-plant-atmosphere continuum (SPAC) (referred to as 
‘eco-physiological’ model) coupled to a stochastic soil water balance 
(referred to as ‘ecohydrological’ model). The eco-physiological model 
(Section 2.1) calculates transpiration as a function of soil saturation, 
plant functional traits and plant hydraulic status (Fig. 1a), which we 
simplify to express metrics of plant water uptake capacity as a function 
of non-dimensional parameter groups (Fig. 1b). We then integrate the 
eco-physiological model into the ecohydrological model (Section 2.2) to 
link plant controls on transpiration to soil and climatic conditions. The 
coupled models quantify how biotic and abiotic components interact 
and ultimately determine long-term plant water use, water stress, and 
water use performance (Fig. 1c). We apply this SPAC-water balance 
framework (Section 2.3) first to explore water use strategies theoreti-
cally and then to infer plant water use strategies from data and verify an 
ecohydrological optimality criterion (Fig. 1d). Model parameters and 
metrics characterizing plant water use strategies are summarized in 
Tables 1 and 2, respectively. 

2.1. Eco-physiological model and reducing the dimensionality of plant 
water use strategies 

The daily rate of transpiration (T, m day− 1) is bound by potential 
atmospheric water demand, characterized here by potential evaporation 
(E0, m day− 1, Priestley and Taylor, 1972) and constrained by soil water 
supply within a depth Z (m), characterized here by soil water saturation 
(s, unitless, 0 ≤ s ≤ 1). We aim to simplify the description and explo-
ration of plant water use strategies by expressing the ratio β = T/E0 as a 
function of s and non-dimensional parameters that define 
eco-physiological tradeoffs (Fig. 1a – b). Further, we derive four metrics 
of plant water uptake capacity and the sensitivity of plant uptake to 
hydraulic status (resulting from E0 and s together) to summarize 
different plant water use strategies. 

2.1.1. Water flux through the soil-plant-atmosphere continuum (SPAC) 
Following conceptual plant hydraulics models (Feng et al., 2017; 

Manzoni et al., 2013b), we assume plant water storage is much smaller 
than transpiration at the daily time scale and equate water fluxes along 
different components of the SPAC (Fig. 1a). Therefore, T is equal to the 
rate of water supply from soil to roots; water transport from roots to 
canopy; and water flux from canopy to the atmosphere. The rate of water 
supply from soil to canopy is driven by the difference between soil (ψs, 
MPa) and canopy (ψc, MPa) water potentials (we neglected gravimetric 
potential) and is controlled by the series of soil-to-root (KSR, m day− 1 

MPa− 1) and plant xylem (KP, m day− 1 MPa− 1) conductances. The water 
flux from canopy to atmosphere is equal to water vapor that diffuses 
through stomata, driven by the difference in water vapor in the atmo-
sphere and in the leaf (D, mol− 1), and is regulated by canopy conduc-
tance (GC, m day− 1): 

T = β(s)E0 =
KSRKP

KSR + KP
(ψs − ψc) = GCD. (1)  

We assume that KSR decreases non-linearly with decreasing ψs from its 
maximum value KSR,max at soil saturation (ψs,sat); and that KP and GC 
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decrease linearly with decreasing ψc from their maximum values KP,max 
and GC,max, respectively and with slopes determined by canopy water 
potentials at 50% xylem (ψx,50, MPa) and stomatal (ψg,50, MPa) 
conductance loss (Fig. 1a). We focus on the ecosystem as a whole and 
express all conductances per unit ground area. They are functions of 
plant root-, stem-, and leaf-level traits and soil water retention param-
eters (Table 1), such as root area index (RAI, m2 m− 2); leaf-specific 
maximum xylem conductivity (kx,max, kg m− 1 MPa− 1 s− 1); canopy 
height (hc, m); leaf area index (LAI, m2 m− 2); and saturated soil con-
ductivity (ks,sat, m day− 1) – see Manzoni et al. (2014) for details on this 
linearized SPAC parameterization and justifications for simplifications. 

2.1.2. Non-dimensional groups emerging from the SPAC 
Eight parameters and state variables suffice to describe key aspects of 

water flux through the SPAC and its sensitivity to environmental con-
ditions defined in the eco-physiological model: T, varying with plant 
traits, soil texture, climate, and water status; E0, varying here only with 
temperature and radiation (Priestley and Taylor, 1972); s, the only state 
variable in our framework, varying due to stochastic rainfall events 
affecting the soil water balance within a depth Z and controlled by SPAC 
characteristics; KSR,max, varying with soil texture and root structure 
and depth; KP,max, varying with xylem conductivity and plant size; ψg,50, 
varying with stomatal sensitivity; ψx,50, varying with xylem vulnera-
bility; ψ s,sat , varying with soil texture. 

The dimensionality of the system can be reduced by combining these 
eight variables based on three primary dimensions (length, time, and 
mass), but only two primary units (m day− 1 and MPa), into 8 – 2 = 6 
non-dimensional quantities (Buckingham, 1914) that summarize key 
climate, soil, and eco-physiological tradeoffs emerging from the SPAC: 

β = T/E0 reflects the degree of transpiration downregulation and varies 
temporally in response to plant water stress. A value of 1 indicates 
transpiration is equal to potential atmospheric water demand and a 
value of 0 indicates transpiration has ceased. 

s reflects soil water supply relative to soil saturation within a depth Z 
and varies with the soil water balance driven by stochastic rainfall in-
puts and controlled by SPAC characteristics. A value of 1 indicates all 

soil pores are filled with water and the minimum value is the hygro-
scopic point when water is bound to the soil. 

ΠR =
ψg,50
ψx,50 

reflects the degree of plant hydraulic risk tolerance. A value 

close to 0 represents the most risk-averse strategy, with strict stomatal 
control to limit xylem damage; and a value close to 1 represents the most 
risk-tolerant strategy, with more passive stomatal control to favor car-
bon assimilation (Feng et al., 2018; Skelton et al., 2015). 

ΠF = E0
KP,max|ψg,50|

reflects the degree of plant water flux control. A value 

close to 0 indicates that plant water supply is nearly unlimited compared 
to atmospheric demand; a value close to 1 indicates synchronization of 
supply and demand; and larger values point to a bottleneck in plant 
water transport relative to demand due to stomatal and/or xylem 
limitations. 

ΠT =
KSR,max|ψg,50|

E0 
reflects soil-root water transport capacity. Values are 

generally high, but lower values occur when water supply is limited by 
the soil-root system for slow draining soils (clay). 

ΠS =
ψg,50
ψs,sat 

reflects soil suitability for plant water extraction. Values are 

generally high (|ψs,sat| tends to be small) and highest values occur for 
high porosity soils (sand). 

Applying the Buckingham-Π Theorem (Buckingham, 1914; Porpor-
ato, 2022) by relating β to s and the four Π groups (Fig. 1b), we can 
express plant water uptake at a given soil saturation without dimensions 
but accounting for SPAC environmental and plant characteristic that 
vary across ecosystems 

β = f (s, ΠR, ΠF, ΠT , ΠS). (2) 

We note that the application of Buckingham-Π Theorem does not 
lead to a unique choice of non-dimensional groups and results are spe-
cific to the system under consideration and the line of inquiry. We obtain 
six groups for our simplified representation of the water flux through the 
SPAC and these groups have similarities to nine groups previously 
identified for describing plant hydraulic failure and carbon limitations 
due to drought stress (Feng et al., 2018). We choose E0 and ψg,50 as key 
representative variables (to non-dimensionalize units of m s− 1 and MPa, 

Fig. 1. Visual summary. (a) A series of flux-gradient relations describes the soil-plant-atmosphere continuum (SPAC). Water flux along the SPAC depends on local 
water potential status from the soil (ψ s) to the canopy (ψc) and conductances of the soil and root (KSR), plant stem (KP), and canopy (GC). (b) We reduce the 
complexity of the SPAC by combining variables into four non-dimensional Π groups and express the ratio (β, Eq. (2)) between transpiration (T) and atmospheric 
evaporative demand (E0) as a function of soil saturation (s) and Π groups. (c) The shape of this function varies with plant water uptake capacity and can be 
approximated by three shape parameters (fww, s*, sw Eqs. (4) and (5) and an overall index reflecting water use strategies from stress averse to stress tolerant (σ, Eq. 
(6)). We implement β(s, Π) in a water balance forced with stochastic rainfall (with average depth α and frequency λ) and obtain soil saturation probability distri-
butions (p(s), Eq. (8)), as well as long-term mean transpiration (T, Eq. (10)) and risk of water stress (θ, Eq. (12)) as a function of α, λ, Π groups, soil texture, and 
rooting depth. (d) We test if parameters that best-fit empirical p(s) derived from soil saturation observations also optimize plant water use performance in terms of 
maximizing plant water uptake weighted by risks of water stress (ε, Eq. (13)). 
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respectively) because we aim to interpret coordination of climate and 
stomatal sensitivity versus other SPAC characteristics. A different se-
lection of variables and their combinations would result in less compact 
approximations of β as a function of s and Π groups (Eqs. (3)–(5) below). 
We also note that as a result of the assumption that the daily water flux 
through the xylem must be transpired through stomata, canopy 
conductance is a redundant variable and hence does not appear in Π 
groups. This does not imply that a Π group describing canopy conduc-
tance would be unimportant. Rather, this implies that the SPAC depends 
on coordination between stomatal and xylem traits and therefore we can 
adopt a more parsimonious description of the system without canopy 

conductance and representing atmospheric water demand via only E0. 
Further, ψg,50 is regarded as an outcome of a specific response to plant 
stress rather than a prescribed trait because, as we will show, we infer ψg, 

50 values from data-driven and optimality criteria. 

2.1.3. Metrics of plant water uptake capacity 
We approximate Eq. (2) mathematically to express key characteris-

tics of plant water uptake capacity analytically as a function of Π groups. 
To do so, similarly to previous work (Manzoni et al., 2014), we solve the 
SPAC eco-physiological model (Eq. (1)) for three shape parameters of a 
piece-wise linear function that downregulates transpiration due to soil 
water stress (Feddes et al., 1978; Laio et al., 2001) 

β(s, Π) ≈

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0, s ≤ sw,

s − sw

s* − sw
fww, sw < s ≤ s*,

fww, s* < s,

(3)  

where fww is the ratio of the well-watered rate of transpiration to E0; s* 
and sw are soil saturation thresholds below which transpiration is 
downregulated from its well-watered rate and when transpiration 
ceases, respectively. 

By solving Eq. (1) under well-watered conditions (ψ s = 0) and 
assuming soil-to-root conductance (KSR) is not limiting, we obtain an 
expression for fww as a function of climate and eco-physiological 

Table 1 
List of ecohydrological model state variables, parameters, symbols, and explanations. Values listed are for a baseline temperate broadleaf forest with loam soil texture 
used in Figs. 2–5. Subscripts denote sources of parameter values for implementing the model at study sites.  

Symbol Definition Unit Value 

State variables 
T Plant soil water uptake or transpiration m s− 1  

s Soil saturation or relative soil moisture unitless  
θ Dynamic plant water stress unitless  
β Degree of transpiration downregulation unitless  
Physical constants 
g Gravitational acceleration m s− 2 9.81 
ρw Water density kg m− 3 1000 
Climate characteristics 
Td Day length s day− 1 43,200 a 

E0 Potential evaporation m day− 1 0.0035 a 

α Rainfall intensity m day− 1 0.007 a 

λ Rainfall frequency day− 1 0.35 a 

Soil texture characteristics 
ks,sat Saturated soil hydraulic conductivity m day− 1 0.3 a 

ψs,sat Soil water potential near saturation MPa − 0.0047 a 

b Exponent of the soil-water retention curve unitless 5.39 a 

sfc Soil saturation at field capacity (− 0.03 MPa) unitless 0.71 a 

sh Soil saturation at the hygroscopic point (− 10 MPa) unitless 0.24 a 

n Soil porosity m2 m− 2 0.45 a 

Root matrix characteristics 
Zr Rooting depth m 0.5 a 

RAI Root area index per unit ground area m2 m− 2 10 b 

dr Fine root diameter m 0.0005 c 

Canopy characteristics 
LAI Ecosystem leaf area index per unit ground area m2 m− 2 2 a 

ψg,50 Canopy water potentials at 50% stomatal conductance loss MPa − 1.5 b 

hi Characteristic amount of interception per unit leaf area m day− 1 0.0002 c 

k Canopy radiation extinction coefficient unitless 1.2 c 

Plant stem characteristics 
hc Canopy height m 20 a 

kx,max Leaf-specific maximum xylem hydraulic conductivity kg m− 1 MPa− 1 s− 1 0.0008 b 

ψx,50 Canopy water potentials at 50% xylem conductance loss MPa − 2.5 b 

Upscaled maximum conductance per unit ground area 
KP,max 

= kx,max
LAI
hc

Td

ρw 

m day− 1 MPa− 1  

KSR,max 
= ks,sat

̅̅̅̅̅̅̅̅̅̅
RAI
drZr

√
106

ρwg 
m day− 1 MPa− 1   

a extracted from FLUXNET2015 data and metadata (Table S1). 
b inferred from the ecohydrological model. 
c assumed constant for all ecosystems and based on literature values. 

Table 2 
Summary of non-dimensional parameters and metrics characterizing plant water 
use strategies and plant water use performance.  

Symbol Definition 

ΠR Plant hydraulic risk tolerance 
ΠF Plant water flux control 
ΠT Soil-root water transport capacity 
ΠS Soil suitability 
fww Fractional loss of conductivity in well-watered conditions (Eq. (4)) 
s* Soil saturation at incipient stomatal closure (Eq. (5)) 
sw Soil saturation when plant water uptake ceases (Eq. (5)) 
σ Overall index of plant water uptake capacity (Eq. (6)) 
ε Plant water use performance (Eq. (13))  
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variables embedded in the Π groups: 

fww = 1 −
1

2ΠR

[

1+
ΠF

2
−

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(ΠF

2
+ 1
)2

− 2ΠFΠR

√ ]

. (4) 

By solving Eq. (1) for ψ s at which any arbitrary transpiration rate T =
βE0 is achieved, we can express s as a function of β and Π groups. 

s(β) =
(

ψs(β)
ψs,sat

)− 1
b

=

[
ΠT

2βΠS

( ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 +
4βΠ2

S

ΠT

(

2(1 − β) −
βΠF

1 − (1 − β)ΠR

)√

− 1

)]− 1
b

, (5)  

where b (unitless) is a soil pore size parameter for converting ψ s to s 
(Brooks and Corey, 1964). The soil saturation thresholds for the 
piece-wise linear function (Eq. (3)) are then defined by setting β =
0.95fww for s* and β = 0.05fww for sw in Eq. (5), while evaluating Eq. (5) 
with β in the interval (0, 1) reproduces a sigmoidal response (Fig. 1c). 

Through their dependence on Π groups Eq. (4) and (5), fww, s*, and sw 
account for stomatal and hydraulic traits, plant size and density, as well 
as soil and climate characteristics. As such, these combined parameters 
lead to a certain realized water uptake capacity that reflects limitations 
to plant water transport along the SPAC beyond soil water availability in 
the rooting zone (i.e., s or ψ s). We define the index σ (unitless) as the 
overall plant water uptake capacity relative to a hypothetical maximum 
corresponding to no hydraulic or stomatal limitation. We calculate σ by 
integrating β (Eq. (3)) over soil saturation states between the hygro-
scopic point (sh) and field capacity (sfc), and normalizing by the same 
integral when transpiration is equal to E0 for all soil saturation states 

σ = fww
sfc −

s*+sw
2

sfc − sh
. (6) 

The shape of β(s, Π) therefore summarizes complex SPAC eco- 
physiological mechanisms including interactions with environmental 
conditions and represents water use strategies ranging from stress averse 
(σ close to 0) to stress tolerant (σ close to 1). This spectrum includes, for 
example, intensive water use when soil saturation is high (fww close to 1 
and s* much lower than sfc, leading to high σ); conservative water use 
when soil saturation is high (fww much lower than 1, s* close to sfc, 
leading to low σ); sensitive water use when stomata rapidly close at high 
saturation states (sw close to s*, leading to low σ); or extensive water use 
with the ability to partially open stomata at low saturation states (sw 
much lower than s*, leading to high σ). 

These four plant water use strategy characteristics (fww, s*, sw, σ), 
describing the shape of β(s, Π), span multiple levels of abstraction that 
can be useful for varying levels of inquiry about plant water uptake 
capacity. Due to its definition as an integral, σ summarizes plant water 
use strategies from stress-averse to stress-tolerant with some equifin-
ality. Therefore, nuanced strategies still need to be interpreted from the 
ecohydrological parameters (fww, s*, sw) defining water uptake capacity 
along the full range of soil saturation states. At an even finer level of 
detail, the role of plant traits (ψg,50, ψx,50, kx,max, RAI) on these strategies 
needs to be assessed via eco-physiological tradeoffs reflected in the Π 
groups. 

Our plant water use strategy metrics, can also be interpreted along 
the iso to anisohydric continuum or ‘hydroscape’ (Fu and Meinzer, 
2019; Meinzer et al., 2016). For example, for the same value of plant 
water uptake capacity (σ), isohydric behavior can be associated with 
relatively higher fww, s*, and sw (higher plant conductance but more 
stringent stomatal regulation), while anisohydric behavior can be 
associated with relatively lower fww, s*, and sw (lower plant conductance 
and higher stomatal resistance to drying soil). We also note that defi-
nitions of fww, s*, and sw parameters, which are a function of traits, soil 
and climate variables underline the need for cautious interpretation of 
isohydricity indexes with a plant’s environmental conditions (Feng 

et al., 2019; Kannenberg et al., 2022). 

2.2. Ecohydrological model and parsimonious quantification of plant 
water use performance 

The capacity of plants to take up water, determined by Π groups and 
based on the eco-physiological model (Section 2.1), influences the soil 
water balance and occurrence of water stress, resulting in varying per-
formances depending on local soil and hydro-climatic conditions. To 
quantify links between plant water use strategies and water use per-
formance, we integrate our novel formulation of β(s, Π) (Eqs. (3)–(5)) in 
a soil water balance (Fig. 1c – d), thus constructing our ecohydrological 
model. The soil water balance accounts for stochastic rainfall charac-
teristics as well as water balance components interacting with transpi-
ration (soil water evaporation, canopy interception, runoff, and 
infiltration). We then obtain growing season soil saturation probability 
distributions (p(s), Eq. (8), from which we can directly assess long-term 
average plant water uptake (T, Eq. (9)), risks of water stress (θ, Eq. (11)), 
and water use performance (ε, Eq. (12)). While performance in this 
study is focused on water as a limiting factor, there are further avenues 
to additionally account for light and nutrient limitations or atmospheric 
CO2 effects in Π groups through for example more complex definitions of 
potential atmospheric demand instead of E0 used here (Priestley and 
Taylor, 1972). 

2.2.1. Stochastic soil water balance 
We consider a bucket model for a homogenous soil column with a 

depth Z (m) and porosity n (unitless), in which water fluxes are inter-
preted at the daily time scale. This lumped approach employs scale- 
effective parameters (Bassiouni et al., 2020, 2018; Manzoni et al., 
2014) and resulting fluxes represent the individual or whole ecosystem 
water balance, depending on the organizational scale at which the 
model and its parameters are interpreted. We assume that the dynamics 
of Z and rooting zone evapotranspiration dynamics are synchronized 
(Dong et al., 2022). Therefore, modeled soil water dynamics are repre-
sentative of the ecosystem, even if the soil column depth, prescribed by 
observation depths (Table S1), may not exactly comprise the whole 
rooting zone. This assumption is justified by our focus on the temporal 
dynamics of evapotranspiration and their relation to soil saturation 
instead of total ecosystem evapotranspiration volume. 

The daily soil water change is the difference between the rate of 
rainfall and the rate of soil water losses, including surface runoff, infil-
tration below depth Z, and evapotranspiration. We treat rainfall as a 
censored Poisson distribution characterized by a mean event depth (α, m 
day− 1), frequency (λ, day− 1), and canopy interception threshold (Δ, m 
day− 1). Excess rainfall relative to available soil storage is converted to 
surface runoff according to a saturation excess mechanism; the rate of 
infiltration is both a stochastic process controlled by rainfall and a state- 
dependent process; and the rate of evapotranspiration is a state- 
dependent process, dependent on saturation and vegetation (Caylor 
et al., 2006; Laio et al., 2001). 

We approximate Δ empirically multiplying LAI by a characteristic 
amount of interception per unit leaf area (hi = 2 × 10− 4 m day− 1) 
(Bastiaanssen et al., 2012). The mean frequency of rainfall reaching the 
soil under the canopy is thus reduced to λ′

= λe− hiLAI/α. We assume that 
vegetation canopies exponentially reduce potential energy available for 
soil water evaporation due to shading according to Beer’s law (Φ =
e− kLAI), where k = 1.2 is an extinction coefficient ensuring that potential 
soil water evaporation becomes < 0.05E0 for closed canopies and re-
lations between LAI and our modeled long-term fraction of transpiration 
to total evaporation (Fig. S1) reflects observed patterns (Wang et al., 
2014; Wei et al., 2017). Following Caylor et al. (2006), we partition total 
potential soil water losses from evapotranspiration per unit ground area 
(bound by E0) into maximum soil water evaporation (ΦE0) plus 
maximum plant water uptake ((1 − Φ)E0). 

As such, the total rate of soil water losses is a continuous piece-wise 
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function of soil saturation, including vertical drainage for states above 
sfc; plant water uptake, which decreases linearly from fww(1 − Φ)E0 for 
states above s* to 0 at sw (Eq. (3)); and soil water evaporation, which 
decreases linearly from ΦE0 for states above sfc to 0 at sh. The complete 
deterministic soil water loss function standardized by nZ (denoted by 
ρ(s)) is 

ρ(s) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ηE + ηT + m
[
ea(s− sfc) − 1

]
, sfc < s ≤ 1

ηE
s − sh

sw − sh
+ ηT , s* < s ≤ sfc,

ηE
s − sh

sfc − sh
+ ηT

s − sw

s* − sw
sw < s ≤ s*,

ηE
s − sh

sfc − sh
, sh < s ≤ sw,

0, 0 < s ≤ sh,

(7)  

where ηE = ΦE0
nZ ; ηT = fww

(1− Φ)E0
nZ ; a = 2b − 4; m =

ks,sat

nZ[ea(1− sfc ) − 1]
. 

The soil saturation probability density function (p(s)) for the ho-
mogenous soil column with maximum water storage nZ can be derived 
analytically given this stochastic soil water balance under the assump-
tion of statistical steady-state during the growing season. We can thus 
calculate p(s) directly for given soil properties (n, ks, sat, b, sfc, sh), 
average growing season climate (E0, α, and λ), vegetation cover (LAI), as 
well as plant water use strategies (Π groups). The solution for p(s) given 
by Caylor et al. (2006) and recast for our model variant is: 

where 1γ = α
nZ; κ = λ

′ sfc − sh
ηE

; ω = λ
′ (sfc − sh)(s* − sw)

ηE(s* − sw)+ηT(sfc − sh)
; δ = λ

′
ln
(

ρ(s)
ηE+ ηT

)
− a(s− sfc)

a(m− ηE − ηT)
; C 

is a constant to ensure that the integral of p(s) over 0 < s < 1 is equal to 1. 
Finally, we calculate the long-term mean growing season water 

balance components including precipitation (〈P〉 = αλ), soil water 
evaporation 〈E〉, plant transpiration 〈T〉, and canopy interception 〈I〉 as 

〈E〉 = ΦE0

∫sfc

sh

s − sh

sfc − sh
p(s)ds + ΦE0

∫1

sfc

p(s)ds (9)  

〈T〉 = (1 − Φ)fwwE0

∫s*

sw

s − sw

s* − sw
p(s)ds + (1 − Φ)fwwE0

∫1

s*

p(s)ds, (10)  

〈I〉 = αλ
(
1 − e− hiLAI/α) (11)  

where integrals on the right-hand side of Eqs. (9) and (10) represent 
mean E and T under water-limited and well-watered conditions, 
respectively. Differently from previous contributions, this water balance 
accounts for plant behavior ranging from stress-averse to stress-tolerant 
via water use strategies as a function of Π groups (Eq. (4) for fww and Eq. 
(5) for s* and sw). 

2.2.2. Risk of plant water stress 
We use dynamic plant water stress (θ), proposed in Porporato et al. 

(2001), to quantify long-term risk of water stress using the stochastic soil 
water balance. This metric accounts for the impact of stress (stomatal 
closure) and its likelihood (occurrence of soil saturation states below s*), 
which are quantified via long-term mean static plant stress (ζ, unitless), 
as well as the number (n*, unitless) and duration (T*, days) of soil 
saturation crossings of the s* threshold during the growing season 

〈θ〉 = min

[(
〈ζ〉
k

〈T*〉

TGS

)1/
̅̅̅̅n*

√

, 1

]

, (12)  

where 〈ζ〉 =
∫ sw

sh
p(s)ds +

∫ s*

sw
s* − s

s* − sw
p(s)ds, with integrals representing 

mean ζ when soil saturation is below and above sw, respectively, and 
assuming that 〈ζ〉 above s* is zero; TGS is mean growing season length 
(days); 〈T*〉 =

P(s*)

ρ(s*)p(s*)
; P(s) is the cumulative soil saturation probability 

density function; n* = TGS/T*; and k is an index that can be interpreted as 
the 〈ζ〉 a plant can experience during the duration TGS without suffering 
from permanent damage (leading to θ = 1). In the absence of specific 
information, we prescribe a fixed value k =2/3, which ensures that θ < 1 
for all study sites. 

This probabilistic formulation of plant water stress is heuristic, but 
translates complex links between soil water deficit and loss of photo-
synthesis, including both temporal and permanent physiological dam-
age to provide a parsimonious but realistic measure of long-term cost of 
water stress for plant productivity and links to water use efficiency 
(Porporato et al., 2001). 

2.2.3. Plant water use performance 
We define plant water use performance (ε, unitless), as stress- 

weighted transpiration normalized by water availability (Bassiouni 
et al., 2020; Caylor et al., 2006) 

ε = (1 − 〈θ〉)〈T〉/〈P〉. (13) 

This metric of plant water use performance represents the tradeoff 
between water uptake, leading to carbon gains and growth (represented 
by 〈T〉/〈P〉), and risks of unfavorable water-stressed conditions, during 
which the water penalty of opening stomata to fix carbon is greater and 
leads to high costs of water use (represented by (1 − 〈θ〉). In other words, 
long-term transpiration is linked to plant productivity through (1 − 〈θ〉), 
which is defined to capture long-term water use efficiency (Porporato 
et al., 2001). With this approach, water use performance is evaluated 
without directly estimating photosynthesis. Moreover, by quantifying 
performance relative to available water, ε is also a measure of water 
productivity, which is a meaningful measure for comparisons between 
ecosystems in different climates. 

Next, we assume that plant traits adapt to maximize water use per-
formance (Eq. (13)). This approach is similar to optimality criteria 
adopted in stomatal optimization theories (Mencuccini et al., 2019; 
Wang et al., 2020), but now using our minimalist ecohydrological 
framework. While there is no consensus on the most appropriate 

p(s) = C
e− γs

ρ(s)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(sw − sh)
κ
[

s* − sh

sw − sh
+

ηT

(
sfc − sh

)

ηE(sw − sh)

]ω[
(ηE + ηT)

(
sfc − sh

)

ηE(s* − sh) + ηT

(
sfc − sh

)

]κ

eδ, sfc < s ≤ 1,

(sw − sh)
κ
[

s* − sh

sw − sh
+

ηT

(
sfc − sh

)

ηE(sw − sh)

]ω[ ηE(s − sh) + ηT

(
sfc − sh

)

ηE(s* − sh) + ηT

(
sfc − sh

)

]κ

, s* < s ≤ sfc,

(sw − sh)
κ
[

s − sh

sw − sh
+

ηT(s − sw)
(
sfc − sh

)

ηE(s* − sw)(sw − sh)

]ω

, sw < s ≤ s*,

(s − sh)
κ
, sh < s ≤ sw,

0, 0 < s ≤ sh,

(8)   
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formulations of optimality criteria and constraints for different spatial, 
temporal, or organization scales (Bassiouni and Vico, 2021; Sabot et al., 
2022), leveraging dynamic plant water stress (θ) allows for the opti-
mality formulation to account for cumulative impacts of soil moisture 
deficits on net carbon gain as opposed to typically assumed instanta-
neous performance maximization (Feng et al., 2022; Lu et al., 2020). 

2.3. Framework application 

We first explore the role of the Π groups theoretically using baseline 
parameter values for a temperate broadleaf forest (Table 1) as a sample 
ecosystem. We then apply the framework at 40 selected ecosystems 
using prescribed site-specific soil texture, vegetation structure, and 
climate parameters derived from data and metadata (Table S1) and 
inferring the four unknown plant traits (ψg,50, ψx,50, kx,max, RAI) through 
model inversion to quantify associated Π groups and the shape param-
eters for β(s, Π). 

Rooting depth plays an integral role in defining plant water use 
strategies via both KSR, max and the soil water balance. However, here 
we focus on variations of other eco-physiological traits and constrain Z 
to site-specific values consistent with available soil moisture data. Spe-
cifically, we prescribe Z as 1.5 times the soil moisture measurement 
depth (Table S1), which generally corresponds to the average rooting 
depth in the studied biomes. As such, we limit our analysis to Π groups in 
the eco-physiological model defining the shape of β(s, Π) (Section 2.1), 
rather than the ecohydrological model (Section 2.2). Π groups for the 
ecohydrological model have been previously defined and studied for the 
partitioning of the soil water balance (e.g. Feng et al., 2012; Porporato 
et al., 2004) as well as in the context of optimal Z across climatic gra-
dients (Guswa, 2010), namely E0

αλ (the aridity index) and (sfc − sw)nz
α (the soil 

water storage index). 

2.3.1. Data 
We use daily observations and site characteristics from 40 sites 

(Table S1) in the FLUXNET2015 dataset (Pastorello et al., 2020) as well 
as satellite LAI estimates (Myneni et al., 2015). We select sites and 

quality check records to best meet soil water balance model assumptions 
and only analyze growing season data – see Methods S1 and Table S1 for 
details about data and site selection. The model requires rainfall, net 
radiation, and air temperature climate data inputs. We evaluate model 
results against soil moisture observations as well as independent (not 
used in parameter inference) total evapotranspiration and gross primary 
productivity measured by eddy-covariance. 

2.3.2. Parameter inference and evaluation 
For each site, we infer two sets of parameters with (i) a data-driven 

criterion, maximizing the goodness-of-fit between empirical (derived 
from data) and theoretical (Eq. (8)) soil saturation probability distri-
butions, p(s), and (ii) the ecohydrological optimality criterion, maxi-
mizing plant water use performance, ε (Eq. (12)). We adapt a Bayesian 
inference algorithm from previous work (Bassiouni et al., 2020, 2018) to 
this study’s improved soil water balance, which explicitly partitions 
evapotranspiration and is eco-physiologically constrained by plant traits 
represented in Π groups – see Methods S2 for details about parameter 
inference. 

We compare parameter sets as well as metrics of plant water uptake 
capacity and water use performance emerging from both criteria and 
hypothesize that ecohydrological optimality explains plant water use 
strategies encoded in soil moisture observations. To evaluate the pre-
dictive skill of our modeling approach at each site, we calculate the 
theoretical p(s) applying both the data-driven and optimality-based 
parameter sets. We then quantify goodness-of-fit compared to the 
empirical p(s), derived from soil moisture time series, using a quantile- 
level Nash-Sutcliffe efficiency (NSE = 1 indicates a perfect model, 
NSE < 0 indicates that the model has less predictive skill than mean s). 
Previous studies using this metric considered NSE < 0 unacceptable and 
NSE >= 0.5 a good match (Bassiouni et al., 2020, 2018). As an addi-
tional and independent measure of predictive skill, we compare 
optimality-based model results to record-averaged growing season total 
evapotranspiration and gross primary productivity across the selected 
40 ecosystems. 

Fig. 2. Water use strategies with varying stomatal sensitivity represented by the water potential at 50% loss of stomatal conductance (ψg,50). (a) Fraction of 
transpiration to potential atmospheric demand (β, Eq. (2)), as a function of soil saturation (s); (b) index of plant water uptake capacity (σ, Eq. (6)); (c) soil saturation 
probability density function (p(s), Eq. (8)); (d) plant water use performance (ε, Eq. (13)); (e) effect of ψg,50 on non-dimensional groups: hydraulic risk tolerance (ΠR), 
plant water flux control (ΠF), soil-to-root water transport capacity (ΠT), and soil suitability (Πs). Prescribed parameter values are for a temperate broadleaf forest with 
loam soil texture (Table 1). ψg,50 ranges from − 0.35 (yellow) to − 2.5 (purple) MPa according to the color scale on the x-axis in subplots b, d, and e. 
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3. Results 

3.1. Plant water flux control is the primary axis of variation in water use 
strategies 

Plant traits, individually, alter Π groups and consequently plant 
water use strategies reflected in the shape of β(s, Π). However, multiple 
combinations of individual traits can produce Π groups of the same 
value and therefore lead to the same behavior in terms of plant water 
uptake capacity (fww, s*, sw, and σ, Eqs. (3)-(6) and same ecohydrological 
outcomes in terms of plant water use performance (ε, Eq. (13)). Further, 
combinations of different Π groups can also lead to similar results 
because Π groups interact (Eqs. (4) and (5)) to determine water flux 
through the SPAC reflected in the shape of β(s, Π). Plant water flux 
control (ΠF) and hydraulic risk tolerance (ΠR) affect all three β(s, Π) 
shape parameters, while soil suitability (ΠS) and soil-root water trans-
port capacity (ΠT) only affect s* and sw and do not influence fww Eqs. (4) 
and (5). We summarize and illustrate the role of the Π groups theoret-
ically (Figs. 2–5 and Figs. S2 – S5) varying baseline parameter values 
(Table 1). 

Stomatal sensitivity, ψg,50, affects fww, s*, sw, and hence the shape of 
β(s, Π) (Fig. 2a), through its appearance in all four Π groups (Fig. 2e). 
With more sensitive stomatal control (less negative ψg,50) and all else 
being equal, fww decreases and s* and sw increase towards wetter states. 
Consequently, the overall index of plant water uptake capacity de-
creases, leading to increasingly stress-averse strategies (decreasing σ; 

Fig. 3. Effect of plant water flux control (ΠF) on (a) the fraction of transpiration 
(T) to potential atmospheric demand (E0) as a function of soil saturation (β(s), 
Eq. (2)), (b) plant water uptake capacity (σ, Eq. (6)) representing the normal-
ized area of the β(s) function; and non-dimensional groups for hydraulic risk 
tolerance (ΠR), plant water flux control (ΠF), soil-to-root water transport ca-
pacity (ΠT), and soil suitability (Πs). We obtain water use strategies for different 
values of ΠF by varying the water potential at 50% loss of stomatal conductance 
(ψg,50) and maintaining other 3 Π groups constant by adjusting ΠR with the 
water potential at 50% loss of xylem conductance (ψx,50), ΠT with maximum 
soil-root conductance (KSR,max), and ΠS with soil water potential near saturation 
(ψ s,sat) to counterbalance the effect of varying ψg,50. Baseline parameter values 
are in Table 1. ψg,50 ranges from − 0.35 (yellow) to − 2.5 (purple) MPa ac-
cording to the color scale on the x-axis in subplots b. 

Fig. 4. Effect of hydraulic risk tolerance (ΠR) on (a) the fraction of transpira-
tion (T) to potential atmospheric demand (E0) as a function of soil saturation 
(β(s), Eq. (2)), (b) plant water uptake capacity (σ, Eq. (6)) representing the 
normalized area of the β(s) function; and non-dimensional groups for hydraulic 
risk tolerance (ΠR), plant water flux control (ΠF), soil-to-root water transport 
capacity (ΠT), and soil suitability (Πs). We obtain water use strategies for 
different values of ΠR by varying the water potential at 50% loss of stomatal 
conductance (ψg,50) and maintaining other 3 Π groups constant by adjusting ΠF 

with maximum plant xylem conductance (KP,max), ΠT with maximum soil-root 
conductance (KSR,max), and ΠS with soil water potential near saturation (ψ s,sat) 
to counterbalance the effect of varying ψg,50. Baseline parameter values are in 
Table 1, except we divide maximum xylem conductance by 3 to exaggerate the 
range of β(s) patterns. ψg,50 ranges from − 0.35 (yellow) to − 2.5 (purple) MPa 
according to the color scale on the x-axis in subplots b. 

Fig. 5. Effect of plant water flux control (ΠF) and hydraulic risk tolerance (ΠR) 
with constant water potential at 50% loss of stomatal conductance (ψg,50) on (a) 
index of plant water uptake capacity (σ, Eq. (6)); (b) plant water use perfor-
mance (ε, Eq. (13)); (c) fraction of transpiration to potential atmospheric water 
demand (β, Eq. (2)) as a function of soil saturation (s), when varying ΠR 
(increasing from top (yellow, ΠR = 0.10) to bottom (purple, ΠR = 0.90)) and ΠF 
(increasing from darker (ΠF ≈ 0) to lighter (ΠF = 3) colors in each sub-panel). 
Prescribed baseline parameter values are for a temperate broadleaf forest with 
loam soil texture (Table 1) and varying maximum plant conductivity (Kp,max) 
and water potential at 50% loss of xylem conductance (ψx,50) to change ΠF and 
ΠR, respectively. 
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moving from purple to yellow curves in Fig. 2b). With decreasing σ and 
progressively downregulated transpiration, soil saturation probability 
distributions, p(s), shift to wetter states because plants conserve more 
water (Fig. 2c). Additionally, plant water use performance, ε, increases 
to a maximum and then declines as stomatal sensitivity increases 
(Fig. 2d) because stress-tolerant plants (very negative ψg,50) are more 
likely to be water stressed due to less constrained and excessive water 
use, while overly conservative strategies do not use available water 
effectively. 

The other key SPAC variables can counterbalance effects of ψg,50 in 
each individual Π group, leading to combinations of Π groups that 
determine a wider spectrum of water uptake capacity than those 
exemplified in Fig. 2. Variables that interact with ψg,50 include xylem 
vulnerability (ψx,50) in ΠR; plant size and hydraulic architecture that 
define KP,max (LAI, hc, kx, max) in ΠF; soil and root properties that define 
KSR,max (ks,sat, RAI) in ΠT; and soil water holding capacity (ψ s, sat) in ΠS. 
However, the extent to which water use strategies deviate from the 
general pattern imposed by ψg,50 alone (Fig. 2) is constrained by ranges 
of trait values documented in different biomes (e.g. Manzoni et al., 
2013a). Certain combinations of Π groups (and water use strategies) can 
result from a large diversity of co-existing traits, while other strategies 
can only occur for more specific trait combinations due to constraints of 
atmospheric water demand (E0) and soil texture. While soil and root 
properties can influence the shape of β(s, Π), we conclude that they do 
not considerably counterbalance effects of aboveground plant traits. 
This is because differences in soil texture and root area index (summa-
rized in ΠS and ΠT) result into negligible variations in relative plant 
water uptake capacity (Fig. S2 – S5). Note that here we explore relative 
plant water uptake capacity for a given rooting zone, to isolate from the 
strong controls of soil texture and rooting depth on available soil water 
through interacting with the total water balance. 

Decreasing plant water flux control and all else being equal 
(decreasing ΠF; moving from yellow to purple curves in Fig. 3) results in 
more stress-tolerant strategies (increasing σ) by both increasing fww, 
which enhances water uptake in wetter states, and decreasing s* and sw, 
which increases water uptake in dry states. For set plant traits, ΠF de-
creases when atmospheric water demand (E0) decreases. As a result of 
lower E0, plant water transport becomes less limiting and σ accordingly 
increases. Increasing plant hydraulic risk tolerance and all else being 
equal (increasing ΠR, Fig. 4) decreases s* and sw, as well as fww, which 
leads to more conservative water uptake at wetter states and little 
change to σ compared to decreasing ΠF. 

Hydraulic risk tolerance (ΠR) modulates the effect of plant water flux 
control because ΠR influences the sensitivity of the relation between 
ΠF and σ (Fig. 5). For a fixed ψg,50 but varying ψx,50 and KP,max, the ca-
pacity to take up soil water decreases more steeply with increasing ΠF at 
high compared to low ΠR (moving from purple to yellow curves in 
Fig. 5a). Because increasing ΠF also lowers water stress, plant water use 
performance, ε, peaks at intermediate values of ΠF, and the ΠF value at 
the peak increases with decreasing ΠR (Fig. 5a). This means that at low 
ΠF, the value of ΠR has little effect on water use performance, and that 
the combination of both high ΠF and ΠR leads to lowest performance. 
High risk tolerance is thus not beneficial in combination with high plant 
limitations on water flux (low KP,max|ψg,50| increases ΠF) or high atmo-
spheric water demand (high E0 increases ΠF). 

In summary, plant water use strategies represented by the shape of 
β(s, Π) are primarily defined by plant water flux control (ΠF), therefore 
also influencing plant water uptake capacity and water use performance 
as well as their sensitivity to climate variability. Plant hydraulic risk 
tolerance (ΠR) has a smaller influence and interacts with water flux 
control especially when plant water transport is limiting (high ΠF). Risk 
aversion versus tolerance (low to high ΠR) only affects water use per-
formance when atmospheric water demand is much greater than plant 
water transport capacity (higher values of ΠF) and depends directly on 
climate in the definition of ΠF and indirectly on the timing and amount 

of rainfall interacting with ΠF via β(s, Π) in the water balance. 
Importantly, the theoretical patterns suggest an optimal range of traits 
that maximize plant water use performance and not all possible com-
binations of plant traits and Π groups may be viable depending on the 
degree of climate variability. 

3.2. Optimal water use strategies maximize long-term mean transpiration 
weighted by risks of water stress 

Building on the theoretical results, we apply our framework across 
the selected 40 ecosystems to test the ecohydrological optimality crite-
rion (maximizing Eq. (13)). The median Nash-Sutcliffe efficiency (NSE) 
between empirical and theoretical soil saturation probability distribu-
tions, p(s), is 0.9 using parameters that maximize the fit with soil 
moisture observations (data driven criterion) and 0.7 using parameters 
that maximize plant water use performance ε (optimality criterion) 
(Fig. 6a). Applying the model using the data-driven and optimality- 
based parameters explains 95 and 83%, respectively, of the variability 
in long-term mean growing season soil saturation observed across the 40 
ecosystems (Fig. 6b). Therefore, comparing predictive model skill using 
the optimality criterion (with independent theoretically estimated pa-
rameters) and the data-driven criterion (with empirically fitted param-
eters) lends support to our parsimonious approach. 

Fig. 6. Predictive skill of the parameterized soil water balance. (a) Distribution 
of the goodness-of-fit in terms of the Nash-Sutcliffe efficiency (NSE) between 
empirical and theoretical soil saturation probability distributions using pa-
rameters inferred from the data-driven criterion (purple) and the optimality 
criterion (blue). Areas where histograms overlap appear in dark blue. (b) 
Correlation between long-term average growing season observed and modeled 
soil saturation using data-driven (r = 0.95, RMSE = 0.04, bias = − 2.5%) and 
optimality-based (r = 0.83, RMSE = 0.07, bias = − 3.2%) parameter estimates. 
Pearson’s correlation coefficients (r) are statistically significant with >99% 
confidence. Solid colored lines in (b) represent the regression fit through the 
origin. Gray dashed line in (b) indicates the 1:1 line. 
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The posed metric of stress-weighted transpiration (ε, Eq. (13)) using 
optimality-based parameters also explained 55% of the variability in 
long-term average growing season gross primary productivity across the 
40 ecosystems (Fig. 7a). Further, the ecohydrological model using 

optimality-based parameters explains 67% of the variability in long- 
term average growing season total evapotranspiration (Fig. 7b) and re-
produces patterns in long-term water balance partitioning along the 
aridity axis (Fig. 8a) as well as a mesic maximum in the transpiration 
fraction (Fig. 8b), consistent with other empirical and modeling studies 
(Budyko, 1974; Good et al., 2017; Paschalis et al., 2018; Porporato et al., 
2004). 

Our comparison of data-driven and optimality-based parameter es-
timates (Fig. 9) indicates that the shape of β(s) that best captures 
observed soil moisture variability is also ecohydrologically optimal in 
terms of maximizing water use performance (ε, Eq. (13)). Pearson’s 
correlations between data-driven and optimality-based parameter esti-
mates range from >0.9 for fww, sw, and ΠF, to 0.41 for ΠR. The biases 
between data-driven and optimality-based parameter estimates range 
from <5% for fww and ΠF, to 32% for ΠR (Fig. 9). The high correlations 
and low bias between data-driven and optimality-based estimates sug-
gest that the shape of β(s) is well constrained, despite some uncertainty 
regarding specific nuances in plant water use strategies. For example, 
the degree of plant hydraulic risk (ΠR) is not critical to define daily plant 
water uptake capacity in most biomes. Our findings therefore support 
the hypothesis that plant traits are adapted to growing season environ-
mental conditions and maximize water use performance in terms of 
balancing long-term mean transpiration and risks of water stress (ε, Eq. 
(13)). 

The root-mean-square difference between water use performance, ε, 
resulting from the best-fit models and maximum ε from the optimality- 
based models is 0.08, and the bias indicates that ecosystems, as char-
acterized by soil moisture observations, are on average within 9% of 
their maximum theoretical water use performance. Water use perfor-
mance based only on static stress 〈ζ〉 leads to much greater differences 
between data-driven and optimality-based parameters and a bias to-
wards more stress-tolerant strategies (Fig. S6). This demonstrates the 
importance of using of dynamic stress 〈θ〉 when defining water use 
performance and the need to account for the number and duration of 
periods with soil saturation below the threshold s* during the growing 
season. The comparison between 〈ζ〉 and 〈θ〉 also underlines that both 
the amount and timing of rainfall affect the long-term cost of water use 
due to cumulative stress. 

Despite the coordination expected between water flux control (ΠF) 
and hydraulic risk tolerance (ΠR) given their dependence on stomatal 
sensitivity (ψg,50) in the analytical model, Pearson’s correlation between 
optimal ΠF and ΠR values is weak (Fig. S7, r = − 0.1). This means that 

Fig. 7. Modeled and observed ecohydrological fluxes. (a) Correlation between long-term average growing season observed gross primary productivity (〈GPP〉, gC 
m− 2 d− 1) and modeled stress-weighted transpiration ((1 − 〈θ〉)〈T〉, mm d− 1) using data-driven (r = 0.54) and optimality-based (r = 0.55) parameter sets for 40 
ecosystems (Table S1). (b) Correlation between observed long-term average growing season modeled versus observed total evapotranspiration (〈ET〉, mm day − 1) for 
data driven (r = 0.68, RMSE = 0.51, bias = − 4.6%) and optimality-based (r = 0.67, RMSE = 0.51, bias = − 3.9%) parameter sets. Pearson’s correlation coefficients (r) 
are statistically significant with >99% confidence. Markers indicate dominant plant functional types at each site. Mixed ecosystems include temperate and boreal 
forests with mixture of broadleaf and needleleaf trees as well as tropical and Mediterranean savannas and shrublands with a mixture of herbaceous and woody 
vegetation. Solid colored lines represent the regression fit through the origin and gray dashed line in (b) indicates the 1:1 line. 

Fig. 8. Model partitioning of long-term average growing season rainfall 〈P〉 into 
(a) total evaporation 〈ET〉 and (b) only transpiration 〈T〉 as a function of aridity 
measured by the ratio between long-term average growing season potential 
evaporation 〈E0〉 and 〈P〉 for 40 ecosystems (Table S1), using the data-driven 
(open markers) and optimality-based (solid markers) parameter sets. Colors 
indicate plant water flux control (ΠF). The gray line in (a) represents the 
average global annual water balance tendency (Budyko, 1974) as 
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
〈E0〉/〈P〉(1 − e− 〈E0〉/〈P〉)tanh(〈P〉/〈E0〉)

√
. Markers indicate dominant plant func-

tional types at each site. Mixed ecosystems include temperate and boreal forests 
with mixture of broadleaf and needleleaf trees as well as tropical and Medi-
terranean savannas and shrublands with a mixture of herbaceous and 
woody vegetation. 
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these two Π groups can be useful targets for parameter inference and 
represent two complementary aspects of water use strategies. However, 
ΠR is more difficult to infer from data especially in humid conditions and 
the goodness-of-fit between data-driven and optimality based ΠR was 
poor (Fig. 9e). This is expected from the model theoretical behavior 
(Fig. 5) showing that plant risk tolerance, summarized by ΠR, has a 
minor effect on plant water uptake capacity and performance when at-
mospheric water demand is lower than plant water transport capacity 
(low ΠF) and the negative correlation confirms that having both high ΠF 
and high ΠR is not ecohydrologically successful. The inference algorithm 
converges to robust estimates of the lumped parameters (fww, s*, sw) 
despite higher uncertainty in estimates of individual traits (mean coef-
ficient of variation of posteriori parameter estimates <0.05 versus be-
tween 0.1 and 1). Therefore, lumped parameters and Π groups 
describing the SPAC, rather than individual traits, provide a more con-
strained and robust definition of β(s, Π) and the associated ecohydro-
logical functions at the ecosystem level. 

The water use strategies emerging from the optimal Π group values 
do not vary consistently between plant functional types. Under the same 
growing season conditions, both needle leaf forests and grasslands can 
have the same Π group values, resulting from different possible trait 
combinations. The variability in water use strategies are primarily 
explained by aridity ((〈E0〉/〈P〉), Fig. 9). For example, the most stress- 
avoidant strategies (high ΠF, low ΠR, low σ) are found in Mediterra-
nean climates including needleleaf, broadleaf, and savanna ecosystems. 
Statistically significant correlation coefficients between (〈E0〉/〈P〉) and 
σ, ΠF, and ΠR are − 0.80 (− 0.85), 0.86 (0.92), and − 0.35 (− 0.33), 
respectively, for data-driven (and optimality-based) estimates (Table 3). 
However, σ is more correlated with E0 than rainfall characteristics; ΠF is 
more correlated with rainfall frequency; and ΠR is more correlated with 
rainfall intensity (Table 3). 

4. Discussion 

We analyze soil moisture observations, a key ecosystem variable, to 
evaluate whether plants achieve efficient soil water use by coordinating 
SPAC biotic components, as previously hypothesized (Manzoni et al., 
2013b; Mencuccini et al., 2015; Prentice et al., 2014; Reich, 2014). We 
seek to improve understanding of ecosystem-climate interactions 
beyond previous studies that explain variations in individual plant 
functional traits with average long-term climate characteristics such as 
mean annual precipitation and temperature (Choat et al., 2012), as well 
as improve empirical quantification of variability in ecosystem-scale 
water stress responses with uncertain eco-physiological underpinnings 
(Bassiouni et al., 2020; Fu et al., 2022; Yanlan Liu et al., 2021). We 
therefore take a holistic view and explain variations in plant water use 
strategies using non-dimensional Π groups within an ecohydrological 
model. This framework combines plant traits, soil and climatic 

Fig. 9. Relation between data-driven water use strategies that maximize the goodness-of-fit between empirical and theoretical p(s) and optimality-based estimates 
that maximize plant water use performance using data from 40 study sites (Table S1). (a) Fractional loss of conductance in well-watered conditions (fww, r = 0.90, 
RMSD = 0.10, bias = − 3.4%); (b) soil saturation at the point of incipient stomatal closure (s*, r = 0.87, RMSD = 0.08, bias = − 15.4%); (c) soil saturation at the 
wilting point (sw, r = 0.93, RMSD = 0.05, bias = − 15.3%); (d) plant water transport control (ΠF, r = 0.92, RMSD = 0.29, bias = − 1.7%); (e) plant hydraulic risk 
tolerance (ΠR, r = 0.41, RMSD = 0.37, bias = 31.7%); (f) overall index of plant water uptake capacity (σ, r = 0.88, RMSD = 0.10, bias = 3.3%); (g) plant water use 
performance (ε, r = 0.91, RMSD = 0.08, bias = − 9.0%). Pearson’s correlation coefficients (r) are statistically significant with >99% confidence. Markers indicate 
dominant plant functional types at each site. Mixed ecosystems include temperate and boreal forests with mixture of broadleaf and needleleaf trees as well as tropical 
and Mediterranean savannas and shrublands with a mixture of herbaceous and woody vegetation. Color indicates growing season aridity, measured by the ratio 
between long-term average potential evaporation 〈E0〉 and rainfall 〈P〉. Markers with empty face colors distinguish sites with poor goodness of fit (NSE < 0) between 
the theoretical and empirical p(s) using the optimality-based parameter estimates (2 out of 40). Gray dashed lines indicate the 1:1 lines. 

Table 3 
Correlations between water use strategies and climate parameters. Values 
indicate the Pearson’s correlation coefficient for data-driven (and optimality 
based) parameter estimates with at least 95% confidence and ‘ns’ indicate non- 
significant correlations. Index of plant water uptake capacity (σ), plant water 
transport control (ΠF), and plant hydraulic risk tolerance (ΠR), aridity index 〈E0/ 
P〉, long-term average atmospheric water demand 〈E0〉, rainfall intensity (α), 
rainfall frequency (λ), long-term average precipitation 〈P = α λ〉.   

〈E0/P〉 〈E0〉 σ λ  

σ − 0.80 (− 0.85) − 0.39 (− 0.44) 0.37 (0.35) ns (ns) 
ΠF 0.86 (0.92) 0.32 (0.36) ns (ns) − 0.35 (− 0.38) 
ΠR − 0.35 (− 0.33) ns (− 0.37) 0.31 (0.33) ns (ns)  
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conditions to link strategies to a dynamic metric of plant water use 
performance that accounts for feedbacks due to risk of plant water stress 
(Figs. 2–5). We find that individual traits do not determine optimal plant 
water use strategies and water use performance because various com-
binations of trait values lead to similar ecohydrological outcomes. 
Importantly, parameters defining plant water use strategies that maxi-
mize water use performance also capture temporal variability in soil 
moisture within ecosystems (p(s)) and spatial variability in long-term 
growing season ecohydrological fluxes across wet to arid ecosystems 
(Figs. 6–7). The ecohydrologically optimal plant water use strategies 
point to coordination in plant traits to meet atmospheric water demand 
and stochastic water availability that influence stress risk and cumula-
tive drought impacts. Despite its parsimony, this tractable quantification 
of plant water use strategies and ecohydrological performance offers 
promising avenues to parameterize and diagnose plant responses to 
water limitations under climate change. Further, alternative optimality 
and coordination hypotheses can be tested by revisiting our framework 
with different or more complex performance criteria and Π groups 
incorporating additional processes and tradeoffs. 

4.1. Ecohydrological coordination, reflected in Π groups, simplifies the 
description of plant water uptake 

Non-dimensional Π groups, summarizing key eco-physiological 
tradeoffs, capture simultaneously biotic and abiotic controls on plant 
water use strategies in a tractable model, leading to an effective but 
parsimonious description of ecosystem-climate interactions. We focus 
on the shape of the relation between soil moisture and transpiration 
relative to potential atmospheric water demand (β(s, Π)) and identify 
non-dimensional axes of variation that are not directly apparent when 
looking at individual traits due to covariations among plant traits and 
environmental conditions in which plants grow. The dominant axis 
capturing variations in water use strategies is the plant water flux con-
trol (ΠF), which represents the ratio of atmospheric water demand over 
plant-controlled water supply to the leaves. The dominance of ΠF points 
to the importance of combined climatic and plant characteristics in 
defining plant water use strategy. The plant risk tolerance axis (ΠR), 
capturing coordination of hydraulic and stomatal traits within a plant 
and contrasting stomatal versus xylem sensitivity to water status, be-
comes influential when plant water transport is most limiting (high ΠF). 
In other words, ΠF mainly drives variability in plant water uptake ca-
pacity (σ) and ΠR regulates nuances in the sensitivity of σ to variability 
in ΠF due to changes in atmospheric water demand (E0) or plant size and 
hydraulic architecture (KP,max). The groups describing soil suitability 
(ΠS) and soil-root transport capacity (ΠT) were less influential. For a 
given rooting depth, they had no effect on soil water uptake in well- 
watered conditions (fww) and only negligible impact on thresholds of 
soil water uptake (sw and s*). 

We demonstrate that Π groups explain stress responses in a wide 
range of ecosystems, thus expanding on a previous dimensional analysis 
of plant drought responses (Feng et al., 2018) and taking the concept a 
step further by incorporating Π groups in a modeling framework to 
improve understanding of the influence of plant traits in 
ecosystem-climate interactions. The two most influential axes, repre-
sented by ΠF and ΠR, are consistent with the ‘fast-slow’ plant economics 
spectrum (Reich, 2014). Slow trait strategies are associated with 
stress-avoidance due to limited plant water transport (high ΠF) and/or 
risk avoidance (low ΠR). However, ΠF combines eco-physiological and 
climatic variables, leading to a generalized and more meaningful 
approach for capturing variations at ecosystem levels compared to 
existing metrics for water use strategies based solely on traits (Skelton 
et al., 2015). ΠF is also related to sources of variation of previously 
identified major axes of ecosystem function, in particular water use ef-
ficiency, derived from exploratory data analyses (Díaz et al., 2016; 
Migliavacca et al., 2021). The added benefit is that Π groups have 
stronger mechanistic underpinnings and lead to a more transferrable 

and generalizable approach. 
Furthermore, Π groups combine different traits and reveal their co-

ordination. A single Π group value can represent a wide range of possible 
individual traits characterizing a diversity of co-existing species in an 
ecosystem that lead to similar long-term water use performance. The 
relation between water balance and Π groups, rather than single pa-
rameters, has a practical implication because we show that calibrating 
traits in SPAC models will inevitably lead to multiple solutions. Our 
approach thus provides new avenues to reduce the complexity of 
quantifying ecosystem function and to increase model robustness 
(Prentice et al., 2015) by focusing on Π groups that embed ecologically 
meaningful mechanisms instead of individual parameters. 

4.2. Ecohydrological optimality explains plant water use strategies 

Beyond summarizing the SPAC in a small number of non- 
dimensional groups, our parsimonious approach predicts ecologically 
successful water use strategies (optimality-based estimates) that are 
consistent with the long-term water balance spanning wet to arid cli-
mates (data-driven estimates) (Fig. 9). As such, this approach links and 
generalizes previous data-driven (Bassiouni et al., 2020) and theoretical 
studies (Feng et al., 2018; Manzoni et al., 2014). Optimal combinations 
of Π groups defining β(s) explain observed soil moisture variability (p(s)) 
and encode combinations of plant traits that are most effective at using 
limited water resources accounting for the cost of water stress, as 
captured by the water use performance ε. This implies that, at the 
ecosystem level, plants are adapted to growing season conditions to 
maximize water use performance. As a result, our framework provides a 
method to understand and parameterize the sensitivity of transpiration 
to soil moisture and potential atmospheric demand based on few easily 
available environmental variables, instead of prescribing or calibrating 
optimality costs or parameters as commonly done when modeling sto-
matal conductance (Mencuccini et al., 2019). 

Aridity primarily influences optimal water use strategies, although 
these strategies vary among studied ecosystems and within plant func-
tional types. Generally, variability in metrics of plant water uptake ca-
pacity (fww, s*, sw, and σ) across biome and along the aridity axis are 
consistent with patterns and findings from previous empirical studies 
(Bassiouni et al., 2020; Fu et al., 2022). Further, the theoretical frame-
work optimal ΠF significantly increases with decreasing rainfall fre-
quency (water demand becomes more important during the longer dry 
spells), while optimal ΠR increases with increasing rainfall intensity 
(water stress is more ‘acceptable’ in wetter climates). Our findings 
indicate that both the timing and amount of rainfall are key to quantify 
risks of water stress and resulting water use performance. Importantly, 
the improved match between data-driven and optimality-based param-
eters using the dynamic water stress (θ) (Fig. 9) versus static water stress 
(ζ) (Fig. S6) points to long-term eco-evolutionary adaptation to sto-
chastic water availability that influences the long-term cost of water use 
and the need to avoid both temporal and irreversible impacts on pro-
ductivity. Our results therefore provide novel evidence that optimality 
inferred from long-term risks, rather than instantaneous impacts (Feng 
et al., 2022; Lu et al., 2020), is more consistent with ecohydrological 
data. 

While most parameters estimated from the data- and theory-based 
approaches are very well correlated, the correlations for ΠR are poor 
(Fig. 9e). This does not necessarily undermine the validity of the eco-
hydrological optimality criteria and the importance of accounting for 
risks of water stress to quantify plant water uptake capacity and its 
sensitivity to environmental conditions. Rather, it points to some limi-
tations of the long-term water balance framework and daily data in 
being able to disentangle the complexity of plant hydraulic risk toler-
ance, especially in humid environments. 

Optimal water use strategies explain fundamental patterns of rainfall 
partitioning into evapotranspiration and percolation or runoff, and how 
the water balance is linked to plant drought responses ranging from 
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stress-tolerant to stress-averse (Fig. 8). Furthermore, transpiration 
weighted by water stress risks captures spatial variability in gross pri-
mary productivity and, despite its parsimony, proves a useful perfor-
mance metric contrasting costs and benefits of water uptake under a 
wide variety of soil and climatic conditions (Fig. 7a). Our optimality 
criteria to identify Π groups complements previous ecohydrological 
models under stochastic rainfall and findings inferring grass-tree dis-
tributions (Caylor et al., 2006), optimal rooting depths (Guswa, 2010, 
2008), coordination of stomatal and xylem vulnerability (Manzoni et al., 
2014), and stomatal responses (Lu et al., 2016). Different from ap-
proaches optimizing single traits, quantifying Π groups provides a more 
holistic view of eco-evolutionary outcomes that accounts for expected 
co-variations across plant organs and between traits and the environ-
ment. Furthermore, while our framework is focused here on water use 
strategies in terms of the shape of β(s), it can be extended to also assess 
optimal rooting depths and further improve the inference of tradeoffs 
between eco-physiological traits, rooting strategies, and vegetation 
distribution from ecosystem-scale data (Yaling Liu et al., 2021; Stocker 
et al., 2023) that emerge as adaptations to water availability. 

Given known long-term climate characteristics, Π groups summarize 
ranges of possible trait combinations that can achieve similar functions 
and co-exist in an ecosystem. The framework offers further avenues to 
assess the evolutionary stability of resulting water use strategies. 
Therefore, Π groups can be useful to explain relations between trait 
diversity and local water availability (Trugman et al., 2020). The pro-
posed optimality-based inference of water use strategies provides op-
portunities to investigate broad spatial patterns of optimal Π groups, 
how they relate to distributions of global ecosystems and potential 
vulnerability or adaptation to climate change, especially in ecosystems 
most vulnerable to increased water limitations. 

4.3. Tractable quantification of plant water use strategies 

Leveraging dimensional analysis and optimality theory, we address 
the need for parsimonious and more transferable descriptions of water 
use strategies to bridge the gap between top-down data-driven ap-
proaches and bottom-up trait-based approaches. Scaling and aggre-
gating individual plant traits to describe ecosystem-level transpiration 
with a bottom-up approach is complex and uncertain because tissue- 
level traits have nonlinear dependencies on plant size, and ecological 
performance and survival mechanisms shape community composition 
(Enquist et al., 2015; Mencuccini et al., 2019). Indirect inference ap-
proaches, using flux tower and satellite data, extend the representation 
of ecohydrological processes beyond plant-level measurements and 
provide ecosystem-scale parameters defining water use strategies glob-
ally (Bassiouni et al., 2020; Dralle et al., 2020; Fu et al., 2022; Konings 
and Gentine, 2017; Liu et al., 2020; Yaling Liu et al., 2021; Yanlan Liu 
et al., 2021; Stocker et al., 2023). However, results from inverse 
modeling can be conflated by their many assumptions and are still 
constrained by the coverage, uncertainty and quality of numerous data 
inputs. We therefore take a step forward and propose a complementary 
dimensionless optimality framework to infer water use strategies using 
minimal but realistic assumptions grounded in eco-physiological theory 
and requiring few readily available parameters (soil texture, mean 
growing season atmospheric water demand, rainfall characteristics, and 
leaf area index). 

Non-dimensional Π groups summarize water use strategies by 
collapsing variability in traits into a minimal number of parameters, 
reducing the complexity of representing detailed SPAC hydraulics at the 
ecosystem level. Two non-dimensional groups (plant water flux control 
ΠF and hydraulic risk tolerance ΠR) are key in determining the func-
tional relation between transpiration, soil moisture and atmospheric 
water demand. This relation, β(s, Π), uniquely determines our metrics of 
plant water uptake capacity (fww, s*, sw, and σ). Therefore, despite un-
certainty in individual trait estimates, metrics of plant water uptake 
capacity are well constrained, robustly estimated, and accurately 

describe water use strategies adapted to the given soil and climate. The 
simplified eco-physiological model explains key ecological information 
encoded in hydrological observations and complements the data-driven 
approach. 

Parametrizing existing empirical relations such as β(s, Π) using 
optimality principles and Π groups offers a promising avenue for next- 
generation models to incorporate ecological mechanisms and princi-
ples of community ecology (Harrison et al., 2021; Scheiter et al., 2013) 
without sacrificing model robustness or increasing complexity (as 
advocated by Prentice et al. (2015)). Ecosystem-scale relations between 
transpiration and soil moisture can potentially preserve their practical 
and parsimonious forms while approaching predictive capacity of full 
hydraulic models (Sloan et al., 2021). Optimality-based approaches, 
such as the one proposed here, can also provide useful constraints to 
reduce the uncertainty and enhance the interpretation of future 
data-driven, including satellite-based, estimates of ecosystem func-
tioning and sensitivity to climate. 

5. Summary and conclusions 

Improved characterization of trait-based water use strategies is 
necessary as models shift from using coarse plant functional types to-
ward incorporating plant traits, to better represent vegetation-climate 
feedbacks and ecological mechanisms in a changing climate (Matheny 
et al., 2017). Characterizing water use strategies remains uncertain, 
especially when aiming at effectively capturing ecosystem-scale water 
fluxes. This uncertainty is both conceptual, due to a lack of theoretical 
frameworks defining these strategies based on ecologically-meaningful 
outcomes, and operational, because eco-physiological models are com-
plex and difficult to parameterize (Mencuccini et al., 2019). 

We reduce the dimensionality of the problem by modeling long-term 
average dynamics of water fluxes through the SPAC using non- 
dimensional groups. We therefore define water use strategies without 
specifying individual traits, while still accounting for key eco- 
physiological mechanisms. These Π groups combine traits with envi-
ronmental variables, thereby identifying fundamental axes of variation 
along which diverse trait-environment combinations can lead to similar 
outcomes in terms of water uptake capacity and water use performance. 
As such, our approach generalizes current metrics for water use strate-
gies based solely on traits and improve our ability to effectively capture 
ecosystem-scale water fluxes. Furthermore, a primary Π group charac-
terizing synchronization of plant water transport and atmospheric water 
demand, defines water use strategies. 

Parameter estimates capturing observed soil moisture variability are 
consistent with those maximizing transpiration weighted by risks of 
water stress. This result supports ecohydrological optimality as a 
parsimonious guiding principle to assess water use strategies. We can 
thus infer water use strategies that are consistent with those encoded in 
soil moisture observations, and with more mechanistic underpinnings 
compared to exploratory data analysis. Using Π groups to link vegeta-
tion, soil and climatic conditions to optimal plant water use perfor-
mance, we propose and validate a minimalist but transferable approach 
describing ecohydrological processes across climates and independently 
of scale. 
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