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Abstract
Key message Linkage disequilibrium (LD)-based haplotyping with subsequent SNP tagging improved the genomic 
prediction accuracy up to 0.07 and 0.092 for Fusarium head blight resistance and spike width, respectively, across 
six different models.
Abstract Genomic prediction is a powerful tool to enhance genetic gain in plant breeding. However, the method is accom-
panied by various complications leading to low prediction accuracy. One of the major challenges arises from the complex 
dimensionality of marker data. To overcome this issue, we applied two pre-selection methods for SNP markers viz. LD-based 
haplotype-tagging and GWAS-based trait-linked marker identification. Six different models were tested with preselected 
SNPs to predict the genomic estimated breeding values (GEBVs) of four traits measured in 419 winter wheat genotypes. Ten 
different sets of haplotype-tagged SNPs were selected by adjusting the level of LD thresholds. In addition, various sets of 
trait-linked SNPs were identified with different scenarios from the training-test combined and only from the training popula-
tions. The BRR and RR-BLUP models developed from haplotype-tagged SNPs had a higher prediction accuracy for FHB 
and SPW by 0.07 and 0.092, respectively, compared to the corresponding models developed without marker pre-selection. 
The highest prediction accuracy for SPW and FHB was achieved with tagged SNPs pruned at weak LD thresholds (r2 < 0.5), 
while stringent LD was required for spike length (SPL) and flag leaf area (FLA). Trait-linked SNPs identified only from 
training populations failed to improve the prediction accuracy of the four studied traits. Pre-selection of SNPs via LD-based 
haplotype-tagging could play a vital role in optimizing genomic selection and reducing genotyping costs. Furthermore, the 
method could pave the way for developing low-cost genotyping methods through customized genotyping platforms targeting 
key SNP markers tagged to essential haplotype blocks.

Background

Increased accessibility and cost-effectiveness of high 
throughput genomic data of various crops has revolution-
ized plant breeding shifting from phenotypic to genomic-
based selection. In the last four decades, the development 
of several DNA marker genotyping systems has allowed 
using a higher number of molecular markers in genotyping 

platforms (Crossa et al. 2017). Genomic-assisted breeding 
soon became a feasible approach through characterization of 
allelic variations underlying important agronomic traits of 
several crops and their efficient integration in the germplasm 
improvement and varietal development processes (Varshney 
et al. 2021).

Linkage-based QTL mapping has been playing a huge 
role to identify QTL with large effect and positional cloning 
of associated functional genes, which are instrumental for 
marker-assisted selection in crop improvement (Bernardo 
2020; Gupta et al. 2013; Röder et al. 1998; Su et al. 2018; 
Uga et al. 2013). Genome-wide association study (GWAS) 
has lately established overcoming the mapping resolution 
and other limitations of the linkage mapping and extensively 
used in several crops to identify QTL or quantitative trait 
nucleotides (QTNs) (Alemu et al. 2021b,  2022; Challa and 
Neelapu 2018; He et al. 2021; Tibbs Cortes et al. 2021; Yano 
et al. 2016). However, the sheer amount of identified QTL 
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with minor to major effect hindered the immediate imple-
mentation of GWAS results for cultivar improvement. For 
instance, considering 30 unlinked QTL, the chance of a 
recombinant inbred accumulating the favorable allele of all 
QTL would be 1 in 1.07 billion (Bernardo 2016).

Genomic selection (GS) has emerged as a powerful 
genomic-assisted breeding method overcoming several of 
the limitations in QTL mapping approaches. Genomic selec-
tion was proposed nearly two decades ago (Meuwissen et al. 
2001) but has been routinely applied in plant breeding only 
recently enabled by the reduced costs of high-throughput 
genotyping technologies. Genomic selection, over pheno-
typic selection, reduces both the cost per cycle and required 
time/breeding cycle (rapid selection cycle) and improves the 
development of crop varieties in several breeding programs 
(Crossa et al. 2017; Heffner et al. 2009). Genomic predic-
tion estimates the breeding values of individual genotypes 
based on their overall molecular marker information or 
genetic merits. Therefore, unlike QTL mapping methods, 
the goal of genomic prediction is to predict the breeding or 
genetic values of candidate genotypes. In genomic predic-
tion, a regression model is trained with molecular markers 
and phenotypic data from a population called training/cali-
bration and used to predict the genomic estimated breeding 
values (GEBV) of individuals in the breeding/validation/test 
set having only molecular marker information (Hastie et al. 
2009). Then, selection of candidate individuals in the breed-
ing population could be done solely based on their predicted 
genetic merit without the need to test on field for phenotypic 
evaluation.

For the last couple of decades, several statistical methods 
have been proposed for genomic prediction in both animal 
and plant breeding programs such as GBLUP, RR-BLUP, 
BayesA, BayesB, BayesC, Bayesian LASSO (BL), Bayes-
ian Ridge Regression (BRR) and Reproducing Kernel Hil-
bert Space (RKHS) (De Los Campos et al. 2009; Endelman 
2011; Meuwissen et al. 2001; Pérez and De Los Campos 
2014). Several factors contribute to the performance of 
genomic prediction models in plant breeding, such as the 
genetic architecture of a trait, heritability, sample size and 
diversity of the training population, genetic relatedness 
between the training and breeding population, span and 
extent of linkage disequilibrium between markers and QTL 
and distribution of SNP markers (Crossa et al. 2017; Pérez 
and De Los Campos 2014).

In genomic prediction, the number of predictors (i.e., 
SNP markers) (p) is generally much larger than the num-
ber of observations (n) (p >  > n). Genome-wide markers 
covering the entire genome are critical in this method to 
attest inclusion of all major- and minor-effect QTL of a tar-
get trait (Desta and Ortiz 2014). However, the presence of 
several markers with no effect increases noise in genomic 
prediction models and reduces the accuracy as evidenced 

in previous studies (Meher et al. 2022; Pang et al. 2021; 
Schulz-Streeck et al. 2011). Besides, studies have shown 
that increasing marker density could negatively affect the 
prediction accuracy of Bayesian-based models due to the 
slow or non-convergence of the Markov Chain Monte Carlo 
(MCMC) iterations (Zhang et al. 2019). The other major 
challenge arises from the high dimensionality and multicol-
linearity of marker data used to develop genomic predic-
tion models. Adjacent markers tend to have a high correla-
tion that leads to multicollinearity in the prediction models 
(Crossa et al. 2017; Neves et al. 2012; Wang et al. 2015). 
Statistical models such as partial least square (PLS) (Boul-
esteix and Strimmer 2006), principal components regression 
(PCR) (Du et al. 2018) and sparse partial least square regres-
sion (SPLS) (Chung and Keles 2010) proposed to reduce the 
high dimensionality and multicollinearity of SNP markers in 
genomic prediction. However, these models have not been 
widely used as various studies have shown a similar or low 
prediction accuracy compared to the commonly used BLUP- 
or Bayesian-based models (Lorenz et al. 2011; Thavamani-
kumar et al. 2015; Xu et al. 2017).

Haplotyping of SNP markers and fitting haplotype blocks 
in prediction models instead of single SNPs could alleviate 
the different shortcomings mentioned previously. A haplo-
type is a set of SNP markers, or other genomic structural 
variants, found nearby on a particular chromosome and is 
under linkage disequilibrium (Bhat et al. 2021; Nordborg 
and Tavaré 2002; Qian et al. 2017). These alleles of various 
polymorphisms existing on a segment of chromosome are 
inherited together with a minimum chance of contempo-
rary recombination (Garg 2021; Sehgal et al. 2020). The 
majority of genomic selection models in plant breeding 
programs account for all SNP markers generated from high 
throughput genotyping technologies. However, haplotype-
based genomic prediction has proven an efficient method 
to improve the prediction accuracy in animal breeding 
programs (Cuyabano et al. 2014; Li et al. 2021; Won et al. 
2020). The use of haplotypes could improve genomic predic-
tion accuracy because it can capture the LD between mark-
ers and QTL more efficiently, make the genomic similarity 
in different lines more clear and also capture local high-order 
allelic interactions or local epistatic effects (Bhat et al. 2021; 
Habier et al. 2007; He et al. 2019; Jiang et al. 2018).

A multi-allelic haplotype-based genomic prediction 
study has shown its potential to improve the genomic pre-
diction accuracy of different traits in wheat (Sallam et al. 
2020). However, the method is based on grouping of SNP 
markers to particular haplotype blocks creating haplotype 
alleles that does not overcome the problems of over-fitting 
and other biases caused by the higher numbers of markers. 
To overcome this problem, the current study developed 
genomic prediction models based on SNP markers tagged 
to haplotype blocks selected by fine-tuning to 10 different 
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LD thresholds and tested the accuracy in five Bayesian-
based and RR-BLUP models. For this purpose, 419 win-
ter wheat genotypes comprising two separate populations 
were exploited with different cross-validation scenarios to 
estimate the genomic breeding values of Fusarium head 
blight (FHB), spike length (SPL), spike width (SPW) and 
flag leaf area (FLA). Identification of various sets of SNPs 
linked to a particular trait via GWAS was the other marker 
pre-selection method applied on the current genomic pre-
diction models. Finally, the prediction accuracy within 
and between populations was compared for models using 
haplotype-tagged, trait-linked, and all SNP markers.

Materials and methods

Plant material and phenotypic data

The current study utilized 419 winter wheat genotypes, 
including 272 advanced breeding lines developed by the 
breeding company Lantmännen Lantbruk, Svalöv, Sweden 
and 147 old cultivars and landraces (genebank lines here-
after) preserved in the Nordic Genetic Resource Center 
(NordGen) gene bank, Alnarp, Sweden. The collection was 
previously evaluated by Zakieh et al. (2021) for Fusarium 
head blight resistance and other yield-related traits (i.e., 
spike length, spike width and flag leaf area) under acceler-
ated growth conditions in a controlled environment with 
subsequent QTL identification. The current genomic pre-
diction analysis used the adjusted mean of the phenotypic 
data from this experiment recorded for the four traits. The 
details on the experimental design and phenotypic data 
analysis can be found in Zakieh et al. (2021). Briefly, 
genotypes were tested in an augmented design replicated 
four times. The four well known winter wheat cultivars 
Nimbus, Stigg, Norin, and Julius were included within 
each block as checks making a total of 11 and 6 blocks/
replicate for breeding and genebank lines, respectively.

Genotypic data

The genebank lines were genotyped for SNP markers with 
a 20 K SNP assay as described by Odilbekov et al. (2019) 
followed by quality checks by Alemu et al. (2021a). The 
breeding lines were genotyped with 25 K SNP assay as 
described by Zakieh et al. (2021) and applied the same 
quality checking standards as for genebank lines. After 
the quality checking, 6421 SNP markers common to both 
populations were identified and applied for genomic pre-
diction model development.

Genomic prediction models

Six different genomic prediction models were tested with 
various sets of SNP markers including SNPs preselected 
through GWAS, haplotype-tagged SNPs with ten selected 
LD thresholds and with non-preselected SNPs making 15 
different scenarios (Table 1). The rrBLUP package (Endel-
man 2011) in R environment (R Core Team 2022) was used 
to develop the RR-BLUP model fitting the basic linear mixed 
model:

where Y is the N × 1 vector of adjusted phenotypic means 
(BLUPs) of each of the four tested traits (i.e., FHB, SPL, 
SPW, FLA); β is the intercept; Z is the N × Nm SNP markers 
matrix developed from either haplotype-tagged, trait-linked 
or non-preselected SNPs; N and Nm stand for number of 
genotypes and SNP markers, respectively; μ is the Nm × 1 
vector of random SNP effects obtained in the “mixed.solve” 
function following μ∼N (0, I �2

m
 ) where �2

m
 is the genetic vari-

ance component contributed in each SNP marker and I is the 
identity matrix; and ε is the N × 1 vector of residual effects.

Five different Bayesian-based models available in the 
BGLR package (Pérez and De Los Campos 2014) were 
tested with the same sets of SNP markers mentioned above. 
The majority of Bayesian models parameterize the effect of 
markers differently and assume non-equal genetic variance 
for markers effect across chromosomes in order to consider 
QTL with major effects. The different prior assumptions 
implemented in these models play an essential role in defin-
ing the type of shrinkage or variable selection imposed on 
the estimates of effects induced (Pérez and De Los Campos 
2014). The BRR model follows a Gaussian prior that shrunk 
markers effect with similar extent. The scaled-t density prior 
used in BayesA (Meuwissen et al. 2001) and double expo-
nential densities or Laplace prior used in the BL models are 
with higher mass at zero and thicker tails than the normal 
density that induces a size-of-effect dependent shrinkage 
estimates (Gianola 2013). The BayesC and BayesB models 
implement two finite mixture priors: the earlier use a mix-
ture of a point of mass at zero and a Gaussian slab (Habier 
et al. 2011), and the later implements a mixture of a point of 
mass at zero and a scaled-t slab (Meuwissen et al. 2001). All 
BGLR analyses were computed with Markov Chains Monte 
Carlo sampler with chain length of 12,000 iterations and 10 
thinning interval with the first 2000 used as burn-in.

Selection of SNP markers for genomic prediction

The SNP markers were preselected with two approaches: 
I) Haplotyping by fine-tuning to 10 selected linkage 

Y = 1� + Z� + �
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disequilibrium thresholds with subsequent SNP tagging 
for each haplotype block and II) Various sets of GWAS-
identified SNP markers significantly linked to a particular 
trait (Table 1).

Haplotyping and SNP‑tagging

Haplotyping of SNP markers was done separately for each of 
the 21 chromosomes using Haploview (Barrett et al. 2005) 

with default parameters but fine-tuning the extent of LD 
to ten selected thresholds. The chromosome-wide LD was 
measured as pairwise r2 values. A haplotype “SNP-Tagger” 
function (De Bakker et al. 2005) plugged into the haploview 
algorithm was applied to tag and select a representative SNP 
marker through prioritizing tags. The method considered all 
alleles that can serve as a proxy at a given linkage disequilib-
rium extent, followed by prioritizing a SNP marker tagged 
per haplotype block. Ten different linkage disequilibrium 

Table 1  The various genomic prediction analysis scenarios applied with marker pre-selection methods and training-test combinations

BL Breeding lines; GL Genebank lines; TRS Training set; TS Test set; RR-BLUP Ridge-regression best linear unbiased prediction; BL Bayesian 
LASSO; BRR Bayesian ridge regression

Scenarios Cross-validation Training set 
(TRS)

Test set (TS) SNP pre-selec-
tion method

Selected SNPs Genomic predic-
tion models

Cross-validation 
reps

1 Combined popu-
lation: 80/20 
split

BL and GL 
(80%)

BL and GL 
(20%)

Haplotyping Haplotype-
tagged

RR-BLUP, BL, 
BRR, BayesA, 
BayesB, 
BayesC

100 for all models 
except RR-
BLUP & 500 for 
RR-BLUP

2 Combined popu-
lation: 80/20 
split

BL and GL 
(80%)

BL and GL 
(20%)

GWAS with 
TRS-TS com-
bined

Trait-linked RR-BLUP 500

3 Within popula-
tion: 80/20 
split

BL (80%) BL (20%) Haplotyping Haplotype-
tagged

RR-BLUP, BL, 
BRR, BayesA, 
BayesB, 
BayesC

100 for all models 
except RR-
BLUP & 500 for 
RR-BLUP

4 Within popula-
tion: fivefold

BL (4 folds) BL (onefold) GWAS with TS Trait-linked RR-BLUP 5

5 Within popula-
tion: fivefold

BL (4 folds) BL (onefold) GWAS with 
TRS-TS com-
bined

Trait-linked RR-BLUP 5

6 Between popula-
tions

BL GL Haplotyping Haplotype-
tagged

RR-BLUP –

7 Between popula-
tions

GL BL Haplotyping Haplotype-
tagged

RR-BLUP –

8 Between popula-
tions

BL GL GWAS with 
TRS-TS com-
bined

Trait-linked RR-BLUP –

9 Between popula-
tions

GL BL GWAS with 
TRS-TS com-
bined

Trait-linked RR-BLUP –

10 Between popula-
tions

BL GL GWAS with TS Trait-linked RR-BLUP –

11 Between popula-
tions

GL BL GWAS with TS Trait-linked RR-BLUP –

12 Combined popu-
lation: 80/20 
split

BL and GL 
(80%)

BL and GL 
(20%)

– – RR-BLUP, BL, 
BRR, BayesA, 
BayesB, 
BayesC

100 for all models 
except RR-
BLUP & 500 for 
RR-BLUP

13 Within popula-
tion: fivefold

BL (4 folds) BL (onefold) – – RR-BLUP, BL, 
BRR, BayesA, 
BayesB, 
BayesC

5

14 Between popula-
tions

BL GL – – RR-BLUP –

15 Between popula-
tions

GL BL – – RR-BLUP –
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threshold levels (r2 = 0.1–1.0) were selected for haplotyping 
and subsequent tagged SNPs selection to develop genomic 
prediction models. The haplotyping and SNP tagging analy-
sis was conducted for breeding and genebank lines sepa-
rately, and the common tagged markers were selected for 
the two populations combined genomic prediction analysis. 
In addition, the tagged SNPs identified only from the breed-
ing lines were separately tested in the genomic prediction 
models.

Trait‑linked SNP markers

The multi-locus GWAS model, Fixed and random model 
Circulating Probability Unification (FarmCPU) (Liu et al. 
2016) in GAPIT (Wang and Zhang 2021) was employed to 
identify SNP markers linked to a specific trait. FarmCPU 
took the advantage of both the mixed linear model and the 
linear regression model and overcome their disadvantages by 
using them iteratively (Liu et al. 2016). In FarmCPU, a spe-
cial kinship matrix is created from markers associated with 
the causal QTL, also called pseudo-quantitative trait nucleo-
tides, in the mixed model. The identified set of pseudo-quan-
titative trait nucleotides are then fitted as covariates in the 
linear model to test markers effect to traits of interest (Liu 
et al. 2016). The GWAS analysis was performed with (I) the 
whole set of genotypes including both the 272 breeding lines 
and 147 genebank lines, (II) from the two populations sepa-
rately and later used to train the genomic prediction model 
on the other population and (III) from only 80% of the 272 
breeding lines used as training population (Table 1). The 
third method was tested only for breeding lines since the 
number of genotypes in the genebank lines is inadequate to 
conduct GWAS from 80% of the 147 genotypes. The GWAS 
analysis for trait-linked SNPs selection was done from only 
training populations as well as from the training-test com-
bined populations. The later was done to demonstrate the 
inflation of genomic prediction accuracy when the GWAS 
and genomic prediction analysis are non-independent due to 
the overfitting of the genomic prediction analysis and lead 
an increased prediction accuracy. Genomic prediction mod-
els were tested with only selected SNP markers linked to a 
particular trait separately based on their significance level.

Cross‑validation analysis

Within populations

The within (BL) and combined populations (BL and GL) 
GP accuracy was computed through cross-validation by 
randomly setting 80% and 20% of the genotypes as training 
and test sets, respectively (Table 1). Preselected markers 

identified from the two pooled populations along with non-
preselected/all SNP markers were tested in the five Bayes-
ian and RR-BLUP models via 80–20% cross-validation 
method (Scenarios 1, 2 and 12). In addition, genomic pre-
diction accuracy of haplotype-tagged SNPs identified only 
from breeding lines was computed through this method 
(Scenarios 3 and 13). With tagged SNPs, the five differ-
ent Bayesian-based and RR-BLUP models were tested 
with the identified sets of selected markers in 10 different 
LD thresholds separately. For trait-linked SNPs, markers 
identified from the two combined populations (Scenario 2) 
were first arranged based on their significance (i.e., from 
low to high P-values) in the GWAS analysis to a particular 
trait. Then, the RR-BLUP model was evaluated with sets 
of significant SNP markers located at 1–100, 101–201, 
1–200, 201–300, 1–300, all except the first 300 GWAS 
SNPs and two randomly selected 100 SNP markers.

The cross-validation analysis was repeated for 100 
and 500 times in the five Bayesian and RR-BLUP mod-
els, respectively. The predictive abilities of models were 
assessed from the correlation between the GEBVs of 
individuals in the test set and their BLUPs resulted from 
phenotypic data analysis. The prediction accuracy was 
estimated as a fraction of the predictive ability from the 
square root of the broad-sense heritability of the traits 
(Legarra et al. 2008).

Between populations

The independent population genomic prediction accu-
racy was tested among breeding and genebank lines using 
the RR-BLUP model. The between-populations predic-
tion analysis was established with eight different sce-
narios resulted from the two populations and two SNP 
pre-selection methods combinations (Scenarios 6, 7, 8, 9, 
10, 11, 14 and 15). Haplotype-tagged SNPs shared with 
the breeding and genebank lines were tested for genomic 
prediction across the two independent populations using 
the six models. Three sets of trait-linked SNP markers 
identified from the pooled as well as only from the training 
population were used to test across population genomic 
prediction accuracy using the RR-BLUP model (Scenarios 
8, 9, 10 and 11). In all the independent population cross-
validation analysis, one was used to train the model, while 
the other population serve as test set and the analysis was 
repeated the other way around. Moreover, within popula-
tion genomic prediction was tested with several sets of 
trait-linked SNPs (200–3000) identified only from the 
training sets (Scenario 4) of 272 breeding lines following 
the five-fold cross-validation genomic prediction scheme 
or with GWAS-SNPs identified from the population com-
prising both the training and test individuals (Scenario 5).
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Results

Comparing genomic prediction models 
with non‑preselected SNPs

The breeding and genebank lines were pooled and tested 
with non-preselected or all available SNP markers via 
80–20% training-test set cross-validation analysis with six 
different prediction models. The five Bayesian and the RR-
BLUP models estimated the GEBVs of FHB and SPL with 
inconsiderable prediction accuracy differences. The RR-
BLUP model predicted the genomic estimated breeding val-
ues of FHB and SPL slightly better than the five Bayesian 
models with 0.46 and 0.80 prediction accuracy, respectively 
(Table 2). The BayesA model predicted the GEBVs of SPW 
better than the other five tested models with 0.38 predic-
tion accuracy and was improved by 0.058 compared to the 
RR-BLUP model. However, the RR-BLUP model predicted 
the GEBV of FLA with 0.59 prediction accuracy improving 
by 0.33 and 0.3 compared to BayesA (0.26) and BayesC 
(0.29), the lowest and highest scorings from Bayesian mod-
els, respectively (Table 2).

Genomic prediction with haplotype‑tagged SNPs

The haplotype analysis conducted from the two populations 
separately identified different sets of tagged SNPs common 
to both populations across the ten selected LD thresholds 
(Table 3) and only from breeding lines (Supplementary 
Table S1). All the results of haplotyping and SNP tagging/
haplotype blocks in the two populations can be found in 
Supplementary File 1. The number of identified tag-SNP 
markers from the combined population varied from 83 with 
the LD threshold at r2 = 0.1 to 6098 with r2 = 1.0, repre-
senting 1.29–94.97% of the total SNP markers, respectively. 
The average number of SNP markers in a haplotype block 
ranged from 1.05 to 77.36 identified at the applied minimum 
and maximum LD thresholds, respectively. A single SNP 
marker was identified as a haplotype across all LD thresh-
olds, while the maximum ranged from 50 (r2 = 1.0) to 167 
SNPs/haplotype block (r2 = 0.1) suggesting uneven distribu-
tion of SNPs density across chromosomes (Table 3). The 

number of tagged SNPs in breeding lines was ranged from 
566 (r2 = 0.1) to 6098 (r2 = 1.0) (Supplementary Table S1).

With haplotype-tagged SNPs shared with the two popu-
lations, the genomic prediction accuracy of the four traits 
was improved compared to the non-preselected mark-
ers in the Bayesian models (Scenario 1). In these models, 
tagged SNPs improved the genomic prediction accuracy up 
to 0.082, and except in a single case, the highest accuracy 
was recorded from tagged markers compared to fitting non-
preselected SNPs (Fig. 1, Supplementary Table S2). The 
prediction accuracy improvement stretched up to 0.092 in 
RR-BLUP model for SPW with 459 haplotype-tagged SNPs 
selected at r2 = 0.3 (Fig. 1, Supplementary Table S2). Over-
all, tagged markers improved up to 0.012, 0.033, 0.07 and 
0.092 in SPL, FLA, FHB and SPW, respectively, across all 
models and LD thresholds. The extent of LD threshold for 
optimum genomic prediction varied across models and the 
three traits (i.e., FHB, SPL and FLA). However, the highest 

Table 2  Genomic prediction 
accuracy with non-preselected 
SNP markers tested in the two 
combined populations using six 
models across the four traits

FHB Fusarium head blight; SPL Spike length; SPW Spike width; FLA Flag leaf area; RR-BLUP Ridge-
regression best linear unbiased prediction; BL Bayesian LASSO; BRR Bayesian ridge regression

Traits RR-BLUP BL BRR BayesA BayesB BayesC

FHB 0.462 0.459 0.433 0.452 0.448 0.441
SPL 0.796 0.795 0.786 0.783 0.783 0.793
SPW 0.321 0.336 0.358 0.379 0.370 0.330
FLA 0.593 0.272 0.267 0.259 0.265 0.285

Table 3  Haplotyping at ten selected LD thresholds, haplotype-tagged 
SNPs, minimum, maximum and average numbers of SNPs per hap-
lotype identified from the genebank-breeding lines combined popula-
tions

a The LD thresholds applied to select haplotype-tagged SNP markers
b The average LD recorded at a particular threshold
c The number of tagged SNP markers identified in a particular LD-
threshold that subsequently used in the genomic prediction models

LD 
thresh-
olds (r2)a

Mean LD 
(r2)b

Haplo-
type-
tagged 
 SNPsc

SNPs distribution/haplotype

Minimum Maximum Average

0.1 0.50 83 1 162 77.36
0.2 0.61 270 1 101 23.78
0.3 0.71 459 1 98 13.99
0.4 0.8 690 1 96 5.12
0.5 0.84 943 1 91 9.31
0.6 0.88 1195 1 83 5.37
0.7 0.89 1542 1 72 4.16
0.8 0.95 2714 1 72 2.37
0.9 0.99 3090 1 52 2.08
1.0 1.0 6098 1 50 1.05
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genomic prediction accuracy of SPW was achieved with 459 
haplotype-tagged SNPs selected at threshold of r2 = 0.3 in 
all the five Bayesian and RR-BLUP models (Supplemen-
tary Table S2). From the Bayesian models, BRR was the 
topmost to predict the GEBVs of FHB and FLA with 943 
(r2 = 0.5) and 3090 (r2 = 0.9) haplotype-tagged SNPs with 
prediction accuracy of 0.503 and 0.3, respectively. The BRR 
and BayesB models with 1195 (r2 = 0.6) and 3090 (r2 = 0.9) 
haplotype-tagged SNPs, respectively, and BL with 6421 
none-preselected SNPs predicted the GEBVs of SPL equally 
with highest prediction accuracy. The BayesB model was the 
best to predict the GEBVs of SPW using 459 (r2 = 0.3) hap-
lotype-tagged SNP markers with 0.424 prediction accuracy. 
In the RR-BLUP model, the highest prediction accuracy of 
SPW, FHB and SPL was achieved at 459 (r2 = 0.3), 690 
(r2 = 0.4) and 2714 (r2 = 0.8) haplotype-tagged SNPs with 
prediction accuracy of 0.413, 0.494 and 0.799, respectively. 
However, the none-preselected SNP markers performed bet-
ter than tagged SNPs to predict for FLA with 0.593 accuracy 
(Supplementary Table S2).

Using only breeding lines (Scenario 3) for model train-
ing resulted a more stable trend of prediction accuracy 
scores with tagged SNPs pruned at the ten LD thresh-
old compared to the combined populations (Fig. 2). For 
instance, except BayeB, all the other four Bayesian mod-
els as well as the RR-BLUP model achieved the highest 
prediction accuracy with 1425 tagged SNPs selected at 
LD of r2 = 0.4 for FHB. For SPW, the four different mod-
els reached their highest prediction accuracy at LD of 
r2 = 0.1 with 566 tagged SNP markers. Overall, tagged 

SNPs selected with weak LD thresholds (r2 < 0.5) allowed 
models to reach their highest prediction accuracy for SPW 
and FHB. However, the FLA and SPL required either a 
stringent or non-preselected SNPs for maximum genomic 
prediction accuracy. Generally, the haplotype-tagged SNPs 
increased the prediction accuracy of SPL, FHB and SPW 
with 0.011, 0.044 and 0.069, respectively, but did not 
improve for FLA (Supplementary Table S1).

Haplotype‑based genomic prediction 
with independent populations

A principal component analysis of the breeding and gen-
ebank lines displayed a distinct population structure (Sup-
plementary Fig. 1) that lead to a low genomic prediction 
accuracy across the two populations (Scenarios 14 and 15) 
(Supplementary Table S3). Pre-selection of SNPs via hap-
lotype-tagging (Scenarios 6 and 7) did not help to improve 
the prediction accuracy of SPL, SPW and FLA. However, 
tagged SNPs appeared to improve the accuracy for FHB in 
both training-test directions (Fig. 3). For instance, when the 
model trained in breeding lines and validated with genebank 
lines, the prediction accuracy improved from 0.10 with all 
6421 non-preselected SNP markers to 0.24 with only 1195 
LD pruned (r2 = 0.6) tagged SNPs (Fig. 3A). Similarly, 
the accuracy increased from 0.09 to 0.22 through tagged 
markers pruned at a similar LD threshold with the model 
trained in genebank lines and validated in the breeding lines 
(Fig. 3B).

Fig. 1  Distribution of the genomic prediction accuracy measured 
with haplotype-tagged SNP markers selected at ten different LD 
thresholds and tested in the five Bayesian and with RR-BLUP models 

(scenarios 1 and 12). PA Prediction accuracy; LD Linkage disequi-
librium; FHB Fusarium head blight; SPL Spike length; SPW Spike 
width; FLA Flag leaf area
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Fig. 2  Performance of haplotype-tagged SNPs pruned at 10 selected 
LD thresholds in the genomic prediction of four traits with six dif-
ferent models tested in breeding lines (scenarios 3 and 13). PA Pre-

diction accuracy; LD Linkage disequilibrium; FHB Fusarium head 
blight; SPL Spike length; SPW Spike width; FLA Flag leaf area

Fig. 3  Genomic prediction 
with haplotype-tagged SNPs 
across the two independent 
populations tested in RR-BLUP 
model. A Prediction accuracy 
of models trained with breeding 
lines and tested in genebank 
lines (scenario 6 and 14). B 
Prediction accuracy with the 
genebank lines used as train-
ing and breeding lines as test 
sets (scenario 7 and 15). FHB 
Fusarium head blight; SPL 
Spike length; SPW Spike width; 
FLA Flag leaf area; LD Linkage 
disequilibrium
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Trait‑linked markers from combined populations

Except in FLA, the first 100 significant SNP markers iden-
tified from the combined training-test sets comprising the 
breeding and genebank lines (Scenario 2) improved the 
genomic prediction accuracy with 0.45, 0.42 and 0.13 for 
FHB, SPW and SPL, respectively (Fig. S2). The prediction 
accuracy dropped when the next 100 SNP markers, viz. sig-
nificant SNPs located from 101 to 201, fitted in the predic-
tion models of the three traits. The first 200 significant SNPs 
only improved the prediction accuracy of SPW compared 
to only using the first 100 SNP markers (Fig. S2). None of 
the significant SNP sets applied in the models improved the 
genomic prediction accuracy of the FLA trait.

Trait‑linked SNPs identified only in training 
population

Genomic prediction with trait-linked SNPs identified from 
the combined training-test sets was compared with predic-
tions only from training set; hence, the former could inflate 
the accuracy due to the non-independence of the genomic 
prediction and GWAS analysis methods. Therefore, differ-
ent sets of trait-linked SNPs were identified only from the 
training population adapting the five-fold cross-validation 
scheme using the 272 breeding lines (Scenario 4). The 

GWAS analysis results including the Manhattan and Q-Q 
plots conducted following the five-fold cross-validation 
scheme can be found in Supplementary File 2. The average 
values from the five genomic prediction analysis iterations 
revealed that employing the various sets of GWAS-identified 
trait-linked SNPs did not improve the prediction accuracy of 
the four tested traits. However, an inflated prediction accu-
racy was recorded with GWAS-SNPs identified from the 
combined training-test populations (Scenario 5) in the four 
traits (Fig. 4). The genomic prediction accuracy improved 
as the number of trait-linked SNPs increased from 200 to 
3000, but the highest was recorded with all SNP markers 
(Supplementary Table S4).

Across populations genomic prediction 
with trait‑linked SNPs

The genomic prediction accuracy across the two independ-
ent populations with non-preselected SNPs was very low 
(Fig. 5). Trait-linked SNPs identified from the combined 
breeding- genebank lines (Scenarios 8 and 9) improved the 
prediction accuracy of the four traits significantly regard-
less of the type of populations used as training and testing 
populations viz. trained with breeding lines and validated in 
genebank lines (Fig. 5A) or the other way around (Fig. 5B). 
However, when trait-linked SNPs were identified only from 

Fig. 4  Genomic prediction accuracy with different sets of GWAS-
identified trait-linked SNP markers in breeding lines tested in the RR-
BLUP model. The genomic prediction accuracy with GWAS-SNPs 
identified from the combined training-test populations (scenario 5) 
was compared with those identified only from training populations 

(scenario 4) to show the inflation when GWAS and GP analysis are 
non-independent. FHB Fusarium head blight; SPL Spike length; SPW 
Spike width; FLA Flag leaf area; TS Training set; VS test set; GP 
Genomic prediction; GWAS Genome-wide association analysis; PA 
Prediction accuracy
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the training population (Scenarios 10 and 11), preselected 
markers did not show a similar trend of genomic prediction 
accuracy improvement across tested traits with different sets 
of trait-linked markers. For instance, the first 100 significant 
SNP markers did not improve the genomic prediction accu-
racy of FHB when the model was trained with breeding lines 
and validated in genebank lines (Fig. 5C), but a beneficial 
improvement was recorded when the two populations were 
used the other way around, improving the accuracy from 
0.08 to 0.33 (Fig. 5D). Both the first 250 and 500 SPW-
linked SNPs significantly improved the genomic prediction 
accuracy in both training-test directions with the breeding 
and genebank lines (Fig. 5C, D).

Discussion

Comparing genomic prediction accuracy 
across models

A moderate to high genomic prediction accuracy was 
recorded from the current study across six different statis-
tical models, four traits and various sets of preselected and 
non-preselected SNP markers tested within the combined 

populations and across independent population cross-
validation analysis. From the within population analysis, 
the five different Bayesian models predicted the GEBVs 
of FHB and SPL in similar range with the RR-BLUP 
model but a slightly higher accuracy for SPW. However, 
RR-BLUP appeared to outperform the Bayesian models 
for FLA improving the accuracy by 0.33 when non-prese-
lected markers fitted in the model and by 0.29 compared 
to the highest predicted value scored in the Bayesian ridge 
regression model using 3090 haplotype-tagged (r2 = 0.9) 
SNP markers. Several empirical studies conducted in dif-
ferent crops have shown a slight or non-significant dif-
ferences in genomic prediction accuracy between statis-
tical models grouped in the Bayesian and BLUB-based 
approaches (Meher et al. 2022; Merrick and Carter 2021; 
Roorkiwal et al. 2016; Semagn et al. 2022a; Thavamani-
kumar et al. 2015; Tsai et al. 2020; Wang et al. 2015). 
None withstanding, these models could perform differently 
depending on various factors, such as genetic architec-
ture of the trait (i.e., whether controlled by few or several 
QTL), sample size, heritability, extent of LD between the 
marker and QTL, and density of the marker data (Habier 
et al. 2007; Lorenz et al. 2011; Wang et al. 2015; Zhong 
et al. 2009).

Fig. 5  Genomic prediction with trait-linked SNPs across the two 
independent populations with the RR-BLUP model. In the first case, 
trait-linked SNPs was identified through GWAS from the two popula-
tions combined followed by genomic prediction analysis trained with 
breeding lines and tested in genebank lines (A) (scenario 8); trained 
with genebank lines and tested in breeding lines (B) (scenario 9). In 

the second case, the GWAS analysis was conducted only from the 
training population and the genomic prediction model was trained 
with identified trait-linked SNP markers using the breeding lines and 
tested in genebank lines (C) (scenario 10) and with the other way 
around (D) (scenario 11)
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Genomic prediction for Fusarium head blight 
resistance

Fusarium head blight (FHB or scab) is one of the most 
important fungal diseases of wheat that leads to a substantial 
loss in grain yield and quality by infecting the spike (Mcmul-
len et al. 2012). Genotypes resistance to FHB is quantita-
tive in nature, and multiple QTL have been identified with 
major to minor effects (Liu et al. 2009). Venske et al. (2019) 
compiled 556 QTL distributed across the three genomes and 
21 chromosomes from 76 different studies. The enormous 
number of identified QTL coupled with other non-identified 
minor-effect QTL across the entire genome makes marker-
assisted selection intricate. Instead, evaluation of individual 
genotypes with their overall genetic merit toward resistance 
to the disease through genomic prediction models is a more 
efficient and feasible approach. In addition, the difficulty of 
phenotypic screening of the disease in both controlled con-
ditions and field trials (Zhang et al. 2022) makes genomic 
selection the best option in FHB resistance breeding. Pre-
vious studies have shown the potential of genomic predic-
tion in FHB resistance in wheat (Arruda et al. 2015; Dong 
et al. 2018; Herter et al. 2019; Rutkoski et al. 2012; Verges 
et al. 2020; Zhang et al. 2022). However, these investiga-
tions were a non-haplotype-based genomic prediction analy-
sis and focused on optimizing the accuracy with different 
sets of training and test combinations via testing in various 
models and with the inclusion of GxE and other covariates. 
For instance, Zhang et al. (2022) investigated genomic pre-
diction for percentage of FHB damaged kernels and FHB 
disease index using 476 elite and advanced winter wheat 
breeding lines from South Dakota State University, USA, 
and reported a prediction accuracy between 0.32–0.40 and 
0.32–0.42, respectively, from five different models and two 
years field trials. Rutkoski et al. (2012) reported a genomic 
prediction accuracy ranging from 0.34 to 0.45 from differ-
ent models for FHB damaged kernels in 322 winter wheat 
breeding lines collected from different public and private 
breeding line across the eastern USA and Canada. With non-
preselected SNPs, we predicted slightly higher than these 
reports for FHB with a range of 0.44–0.46 from the six dif-
ferent models regardless of the several factors that could 
lead to prediction accuracy differences across these studies 
such as environment, applied experimental designs, the size 
and genetic relatedness of the training-test populations. The 
BRR model with LD-based haplotype-tagged SNP markers 
improved the accuracy to 0.50, while the accuracy stretched 
up to 0.90 when the first 100 significantly associated SNPs 
identified from the combined populations and fitted in the 
RR-BLUP model. Nonetheless, GWAS was conducted from 
the combined training-test populations that could lead to an 
inflated accuracy since the genomic prediction and GWAS 
analysis were not independent (McGowan et  al. 2021). 

Beneficial genomic prediction accuracy improvements could 
not be recorded for FHB when the model was trained with 
various sets of trait-linked SNPs identified only from 80% 
of the 272 breeding lines and validated with the remaining 
20% masked individuals during the GWAS analysis. Hoff-
stetter et al. (2016) reported a genomic prediction accuracy 
of 0.35 to FHB resistance when all 4858 SNPs and 28,311 
silicoDArT markers fitted to the RR-BLUP model. However, 
the accuracy increased up to 0.64 when only 1556 most sig-
nificant markers (P < 0.05) applied in the prediction analysis.

Genomic prediction with haplotype‑tagged SNP 
markers

The Bayesian-based models were initially proposed to opti-
mize the accuracy of the BLUP-based models since the 
former apply different prior assumptions for predictors and 
assign different weights based on their effect, while the latter 
assume all markers contributes to the trait (De Los Campos 
et al. 2013; Endelman 2011; Habier et al. 2011). The Bayes-
ian models should especially be robust enough to overcome 
issues raised from noise from non-effect markers since they 
either shrink these variants effect toward zero or exclude 
from the model. However, the current analysis specified 
that marker reduction via haplotyping could yet improve 
these models. This indicates one should not solely rely upon 
models with the built-in type of marker selection applied in 
Bayesian models and approaches such as haplotype-tagging 
could be an invaluable tool for selecting markers to leverage 
genomic prediction accuracy.

The haplotype-based genomic prediction has been widely 
applied in animal breeding, and results have shown its poten-
tial to improve the genomic prediction accuracy of several 
traits with economic relevance (Cuyabano et al. 2014, 2015; 
Li et al. 2021; Won et al. 2020). However, the method is 
not commonly applied in plant breeding and very few stud-
ies have shown its potential to optimize prediction models 
(Bhat et al. 2021; Matias et al. 2017). Werner et al. (2018) 
applied pre-selection of SNPs via LD-based haplotype-tag-
ging at r2 > 0.8 and selected markers reduced into subsets 
of tagged SNPs from 9793 to 50 for genomic prediction of 
six different traits in Asian semi-winter rapeseed diversity 
panel. They concluded that marker reduction via tagging 
could improve the prediction accuracy and can be used as 
a cost-effective genotyping tool which is easily producible 
from available high-density SNP arrays. The current study 
exploited haplotype-based SNP tagging with ten selected 
LD levels aimed at finding the optimum threshold to pre-
dict GEBVs of four different traits with highest accuracy. 
Except for SPW, results from the combined populations 
indicated several different LD thresholds are required to 
capture the optimum genomic prediction accuracy across 
traits and statistical models. However, with only breeding 
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lines, most of the optimum genomic prediction accuracy of 
a particular trait was achieved from a distinct LD threshold 
across models (Fig. 2). The variation in LD patterns between 
the breeding lines and genebank genotypes in the combined 
analysis could have risen due to the fact that two populations 
have distinct genetic background making a distinct popula-
tion structure. The advanced breeding lines developed from 
Lantmännen made the first group while the other comprised 
predominantly cultivars with some historical landraces pre-
served in Nordgen represented a century of winter wheat 
breeding history of the Scandinavian region (Odilbekov 
et al. 2019). Flint-Garcia et al. (2003) pointed out that the 
extent of LD is strongly influenced by population structure 
and the origin and/or genetic basis of genotypes. Previous 
study has shown a higher level of heterogeneity in the extent 
of LD across the wheat genome and the LD between neigh-
boring SNPs and size of haplotype blocks were higher in 
cultivars than landraces (Cavanagh et al. 2013).

In the current study, with the two populations combined, 
the majority of highest prediction accuracy with haplotype-
tagged SNPs was obtained with LD thresholds ranged from 
r2 = 0.3 to 0.8, whereas the LD thresholds at the two extreme 
sides did not lead to an improved genomic prediction accu-
racy. This is because increasing haplotype length could 
improve the probability of capturing the LD between mark-
ers in blocks with QTL of a particular trait (Sallam et al. 
2020). However, a highly stretched length of haplotypes 
could severely reduce the number of variables in the model, 
which ultimately lead to a reduced prediction accuracy (Hess 
et al. 2017). Ben Hassen et al. (2018) reported an overall LD 
level of 0.49–0.64 resulted in higher prediction accuracy 
for three agronomic traits in rice advanced inbred acces-
sions. Notwithstanding, with breeding lines, four different 
models achieved their highest genomic prediction accuracy 
of SPW with the weakest applied LD threshold (r2 = 0.1, 
566 tagged-SNPs) while the other two reached their peak 
at r2 of 0.2 and 0.3 using 899 and 1171 haplotype-tagged 
SNPs, respectively. A previous simulation study conducted 
in animals suggested an LD at r2 = 0.2 as optimum threshold 
for haplotype-based genomic prediction (Calus et al. 2008). 
Overall, our study has revealed that the linkage disequilib-
rium thresholds for optimum genomic prediction accuracy 
varied across traits. Both SPW and FHB required weak LD 
(r2 < 0.5) to achieve the highest genomic prediction accuracy 
while a stringent LD thresholds was suitable for SPL and 
FLA across the six tested prediction models.

In this study, the five Bayesian models exhibited a slightly 
different performance across the various haplotype-tagged 
SNP markers. For instance, the BRR model performed better 
than other Bayesian models with haplotype-tagged SNPs and 
had the highest prediction accuracy for FHB, SPL and FLA. 
Ballesta et al. (2019) reported an increased accuracy with 
haplotype-based genomic prediction for low-heritability 

traits in Eucalyptus globulus (Labill.) and pointed out that 
the BRR model performed better with haplotypes compared 
to the other Bayesian models. Matias et al. (2017) reported 
haplotype-based genomic prediction for grain yield and 
plant height in maize improved the accuracy significantly 
compared to SNP-based prediction but did not increase in 
rice for the same traits. In contrary, Jiang et al. (2018) stated 
that haplotype-based GBLUP model improved the accuracy 
of protein content and flowering time in rice but failed to 
give any significant benefits to the five different agronomic 
traits tested in a maize panel. He et al. (2019) indicated a 
significant prediction improvement with haplotype-based 
genomic prediction for wheat screenings percentage and 
grain yield with haplotype blocks constructed with 3–10 and 
2–4 SNP markers, respectively. Sallam et al. (2020) stated 
a constant prediction accuracy improvement was recorded 
with multi-allelic haplotype-based genomic prediction mod-
els constructed from 15 adjacent SNP markers in yield and 
quality-related traits of hard red spring wheat tested in multi-
environments. However, these studies used haplotype alleles 
constructed from all SNPs in haplotype blocks unlike the 
current study that were represented with single haplotype-
tagged SNPs.

Trait‑linked SNP markers for genomic prediction

GWAS-assisted genomic prediction to fit the most signifi-
cant SNP markers as fixed-effect covariates has been a com-
mon method to optimize the prediction accuracy of several 
traits in crop plants (Alemu et al. 2021a; Gaikpa et al. 2021; 
Juliana et al. 2022; Moore et al. 2017; Odilbekov et al. 2019; 
Semagn et al. 2022b; Spindel et al. 2016). However, this 
method accompanied with some setbacks. The overlapping 
of the GWAS and genomic prediction validation popula-
tions that leads to an overfitting and inflated genomic pre-
diction accuracy is the most common shortcoming (Wray 
et al. 2013). Moreover, a simulation study showed that trait-
linked SNP markers fitted as fixed effect could only improve 
the genomic prediction accuracy when they are linked to 
major effect QTL accounting ≥ 10% of the total genetic vari-
ance and few major genes present to the target trait (Ber-
nardo 2014). Fitting few major effect SNP markers as fixed 
and treat others as random effect could yet accompanied 
with problems raised from marker dimensionality-related 
issues. Excluding the non-effect SNP markers and utilize 
only markers significantly linked to a trait on the training 
population is the other option to predict the breeding values. 
This approach could alleviate several of the aforementioned 
hindrances arising from merely fitting the most significant 
SNP markers as a fixed effect. Recent studies have revealed 
applying the most significant markers in the model improved 
the genomic prediction accuracy (Filho et al. 2019; Ling 
et al. 2021; Tan and Ingvarsson 2022). In addition, selection 
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of trait-linked SNP markers through association analysis 
or other machine learning methods in genomic prediction 
analysis is a commonly applied method in animal breeding 
(Li et al. 2018; Veerkamp et al. 2016; Zhang et al. 2014). 
The current study discovered significant prediction improve-
ments with the genomic prediction model trained with the 
first 100 significantly linked SNP markers identified from 
the pooled training-validation populations. Except for FLA, 
the other traits prediction accuracy improved by 0.45, 0.42 
and 0.13 for FHB, SPW and SPl, respectively. However, the 
GWAS analysis was conducted from the combined breed-
ing and genebank lines comprising both the training and 
validation sets. This phenomenon usually leads an inflated 
prediction accuracy since the two analysis methods were 
non-independent (McGowan et al. 2021). To circumvent 
this, trait-linked markers were identified from only training 
population of breeding lines following the five-fold cross-
validation scheme masking 20% of the population used to 
validate the prediction. Then, different sets of trait-linked 
markers ranged from 200 to 3000 significant SNPs were 
used to predict the GEBVs of the four traits. However, any 
of tested sets of trait-linked markers did not improve the 
genomic prediction accuracy of the four traits.

Genomic prediction with genetically distant 
training and test populations

The other aim of the current study was to evaluate the per-
formance of preselected SNPs with distantly related train-
ing and test genotypes. For this purpose, the 272 breed-
ing lines and 147 genebank lines procured from different 
sources were used as independent training and test sets. The 
80–20% training-test cross-validation analysis after merging 
the breeding and genebank lines appeared to lead a moder-
ate to high genomic prediction accuracy for the four tested 
traits. The maximum prediction accuracy was 0.42, 0.50, 
0.59 and 0.80 for SPW, FHB, FLA and SPL, respectively, 
across the six models and haplotype-tagged SNP markers. 
However, treating genebank lines as a training population 
to predict the GEBVs of FHB and the other three yield-
related traits in advanced breeding lines lead to a very low 
genomic prediction accuracy. Efforts to estimate the GEBVs 
of 147 genebank lines from the genomic prediction model 
trained with 272 breeding lines did not show any significant 
improvement, and the highest prediction accuracy was only 
0.18 for FLA. The higher genetic dissimilarity coupled with 
strong population structure probably contributed to a low 
genomic prediction accuracy when the two populations used 
as independent training and test sets as supported in previ-
ous studies (Lozada et al. 2019; Michel et al. 2021; Norman 
et al. 2018). Pre-selection of SNP markers through trait-
dependent linked SNPs with GWAS and trait-independent 
haplotype-tagging did not show a promising improvement in 

prediction accuracy across the two populations, and genetic 
relatedness remains the key factor for a successful genomic 
prediction model.

Conclusion

The current study applied pre-selection of SNPs for genomic 
prediction through trait-independent haplotyping followed 
by SNP-tagging and trait-linked SNPs identification via 
GWAS analysis. The haplotype-tagged SNPs increased the 
genomic prediction accuracies of tested traits in six differ-
ent models. The level of LD thresholds required to prune 
tagged SNPs for optimum prediction accuracy varied across 
the four different traits. Genomic prediction models exhib-
ited a stable LD threshold for the topmost prediction accu-
racy of a particular trait in breeding lines compared to the 
genebank-breeding lines combined analysis. The trait-linked 
SNP marker-assisted genomic prediction could be efficient 
only when individuals on the training and test population are 
genetically very close. Overall, marker pre-selection meth-
odologies would be invaluable methods in genomic selection 
as the numbers of SNP markers are expected to increase due 
to the advancement of whole genome sequencing methods. 
Furthermore, the haplotyping method could pave the way to 
a potential low-cost genotyping method for breeders via cus-
tomized platforms targeting a few key SNP markers tagged 
to important haplotype blocks.
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