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A B S T R A C T   

The estimation of species composition and species-specific stem volumes are critical components of many forest 
inventories. The use of airborne laser scanning with multiple spectral channels may prove instrumental for the 
cost-efficient retrieval of these forest variables. In this study, we scanned a boreal forest using two channels: 532 
nm (green) and 1064 nm (near infrared). The data was used in a two-step methodology to (1) classify species, 
and (2) estimate species-specific stem volume at the level of individual tree crowns. The classification of pines, 
spruces and broadleaves involved linear discriminant analysis (LDA) and resulted in an overall accuracy of 91.1 
% at the level of individual trees. For the estimation of stem volume, we employed species-specific k-nearest 
neighbors models and evaluated the performance at the plot level for 256 field plots located in central Sweden. 
This resulted in root-mean-square errors (RMSE) of 36 m3/ha (16 %) for total volume, 40 m3/ha (27 %) for pine 
volume, 32 m3/ha (48 %) for spruce volume, and 13 m3/ha (87 %) for broadleaf volume. We also simulated the 
use of a monospectral near infrared (NIR) scanner by excluding features based on the green channel. This 
resulted in lower overall accuracy for the species classification (86.8 %) and an RMSE of 41 m3/ha (18 %) for the 
estimation of total stem volume. The largest difference when only the NIR channel was used was the difficulty to 
accurately identify broadleaves and estimate broadleaf stem volume. When excluding the green channel, RMSE 
for broadleaved volume increased from 13 to 26 m3/ha. The study thus demonstrates the added benefit of the 
green channel for the estimation of both species composition and species-specific stem volumes. In addition, we 
investigated how tree height influences the results where shorter trees were found to be more difficult to classify 
correctly.   

1. Introduction 

Species-specific stem volume is a commonly requested forest attri-
bute of high importance for both timber estimations and biodiversity 
monitoring. From an industry standpoint, it contains crucial information 
for estimating the forest value, its potential use, and for what manage-
ment decisions to take. Ecologists can use species-specific volumes to 
assess biodiversity and map wildlife habitats (Löfstrand et al., 2003). 

Airborne laser scanning (ALS) captures the 3-dimensional structure 
of trees and is now used as a standard technology for retrieving forest 
variables in the Nordic countries. The National Land Survey in Sweden 
has scanned most of the country from high altitude resulting in point 
densities of 0.5–1.0 pulses/m2. These data have been used to produce 
raster maps (12.5 × 12.5 m2 cell size) of mean tree height, basal area, 
stem volume, and above ground tree biomass (Nilsson et al., 2017). Tree 

species mapping is more difficult, and often seen as a bottleneck in forest 
inventories using remote sensing (Michałowska & Rapiński, 2021). 
Species classification is commonly conducted using multi- or hyper-
spectral imagery, sometimes in combination with ALS (Fassnacht et al., 
2016; Shi et al., 2020). For example, Sentinel-2 imagery combined with 
ALS were utilized for the nationwide mapping of land cover including 
forest types in Sweden at a cell size of 10 × 10 m2 (Ahlcrona et al., 
2019). Passive optical sensors can capture differences in foliage reflec-
tance across multiple wavelengths, as well as differences in phenology in 
the case of multi-temporal imagery (Axelsson et al., 2021). 

The emergence of multispectral laser scanners brings the possibility 
to capture both the geometry and reflectance features of the scanned 
trees from a single platform. This technology could prove ideal for 
retrieving species-specific stem volumes of the scanned forest. Several 
studies have shown promising results for species detection using 
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multispectral ALS (Axelsson et al., 2018; Budei et al., 2018; Leclère 
et al., 2022; Yu et al., 2017). The potential to detect tree species accu-
rately depends on the heterogeneity of the forest and whether some 
species are grouped together. In general, conifers have proven easier to 
classify than distinguishing between a mixture of broadleaf species 
(Prieur et al., 2022). Boreal forests in the Nordic countries are relatively 
homogenous with a high dominance of Scots pine and Norway spruce. 
These two species also hold the highest commercial value from a forest 
industry standpoint. Species detection in these forests often focuses on 
separating between pines, spruces, and a general category of broad-
leaves (Kukkonen et al., 2019). Both the geometry and reflectance of the 
tree crowns contain important species-related information. Holmgren 
et al. (2008) showed that the crown base height was useful for detecting 
Scots pine, and treetop sharpness contributed to distinguishing between 
Scots pine, Norway spruce and broadleaved trees. The intensity of the 
backscattered signal depends on the reflectance, density, and orienta-
tion of the foliage (Korpela et al., 2010), and has proven valuable for 
distinguishing between species. In addition, multispectral ALS enables 
the creation of intensity features from the combination of intensities in 
multiple channels. Budei et al. (2018) found that spectral vegetation 
indices based on backscattered intensities in the green and infrared 
channels were the most important predictors of species in a Canadian 
forest. 

While species-detection from multispectral ALS can be conducted 
using area-based approaches (Lindberg et al., 2021), it is often carried 
out at the level of individual tree crowns (ITC). ITC also necessitates 
higher point densities. While the cost of high point densities can be 
inhibitory, technological improvements in laser scanners have led to 
higher pulse repetition frequency. This development has enabled 

scanning with high point densities from increasingly higher altitudes 
and over larger areas. Analysis at the level of individual trees is preceded 
by a segmentation step that partitions the canopy into individual crown 
segments. This usually results in some level of systematic over- or under- 
segmentation. Since the tree crown structure varies with species, a 
segmentation algorithm may over-segment some species while under- 
segmenting others. This could potentially lead to biased results (Peuh-
kurinen et al., 2011), where systematic errors at the level of individual 
trees propagate as trees are aggregated to larger areas. It is therefore 
important to use methods that do not assume that crowns are segmented 
correctly and are insensitive to these errors. In this context, Breidenbach 
et al. (2010) proposed the semi-ITC method where segments may 
contain any number of trees. To predict the content of target segments, 
the method imputes ground truth data from the most similar reference 
segments. The semi-ITC method has proved to reduce biases when 
compared to traditional ITC, and has also outperformed area-based 
models for species-specific volume (Kandare et al., 2017). 

The main objective of this study was to investigate the utility of dual- 
wavelength ALS using green and near infrared (NIR) channels for esti-
mating species-specific stem volumes in a boreal forest in central Swe-
den. A second objective was to determine the additional contribution of 
the green wavelength, and thus the benefit of using a dual-wavelength 
scanner. 

2. Materials and methods 

An overview of the main steps in the methodology is presented in 
Fig. 1. We employed a two-step modelling approach: (1) linear 
discriminant analysis (LDA) to classify segments into dominant species, 

Fig. 1. Workflow of the main steps in the analysis. White boxes represent processing steps and gray boxes represent datasets.  
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and (2) species-specific k-nearest neighbors models for the estimation of 
stem volumes. The estimated species-specific stem volumes were vali-
dated at the plot level for 256 field plots. The analysis followed the semi- 
ITC method where each segment may contain any number of trees 
(Breidenbach et al., 2010). 

2.1. Study area and field data 

The Siljansfors experimental forest is situated in central Sweden 
(60◦53́ N, 14◦24́ E) and covers an area of 1520 ha. It is dominated by 
Scots pine (60 %) and Norway spruce (35 %) mixed with some broadleaf 
species (5 %), of which most are birches. The field work was carried out 
between September 2019 and June 2020. Field data were collected at 
291 circular plots distributed in a systematic sampling pattern (Fig. 2). 
Most of these had a radius of 10 m, but in some cases with dense young 
forest they were given a smaller radius. At each field plot center, the 
position was recorded using an R8 GNSS receiver (Trimble, USA) that 
used corrections from permanent reference stations to improve the ac-
curacy. The accuracy, as reported by the receiver, was often in the cm 
range and in all cases less than 50 cm. Stem diameters at 1.3 m above 
ground (DBH) and stem positions relative the plot center were measured 
using a DP II caliper with the DP PosTex add-on (Haglöf, Sweden). Tree 
species, DBH, and stem position were recorded for all trees with a DBH 
of at least 4 cm. In addition, the height of some of the trees were 
measured with a Vertex Laser Geo range finder (Haglöf, Sweden). Of the 
original 291 plots, we used data from 256. Plots were excluded where 
the plot radius was less than 10 m (for consistency), contained lodgepole 
pines or larch trees (which are normally very rare in Swedish forests), 
and where the field data could be matched reliably to the ALS data. 

Stem volumes were calculated from DBH and height using species- 
specific models for northern Sweden (Brandel, 1990). The heights (H) 
were estimated from DBH according to Equation (1) (Persson & Frans-
son, 2017), where the species-specific coefficients, β0, β1 and β2 were 
calibrated using the field data trees where height had been measured (n 
= 1223). 

ln(H) = β0 + β1DBH + β2ln(DBH) (1)  

2.2. Airborne laser scanning 

The study area was scanned from an airplane at an altitude of 800 m 
and at a speed of 213 km/h on June 27, 2019. The Riegl VQ-1560i-DW 
scanner used two wavelengths: 532 nm (green) and 1064 nm (near 
infrared). The field of view was 40◦ and each wavelength was scanned 
with a pulse rate of 1 MHz and a scan rate of 206 lines per second. The 
average point densities were 40.5 and 48.8 points per m2 for the green 
and near infrared wavelengths respectively. The densities of first returns 
were 26.6 and 29.7 points per m2. The ALS data were delivered with 
intensity values calculated from the amplitude of the returned signal. In 
addition to x, y, z coordinates and intensity values, each point had a 
return number and the total number of returns from the emitted laser 
pulse. 

During pre-processing of the ALS point cloud, we used the TerraScan 
software (Terrasolid, Finland) to derive a digital terrain model (DTM) 
with 0.5 m cell size, which was used to calculate the normalized 
elevation (height above ground) for all points. The DTM together with a 
canopy height model (cell size 0.25 m) were used to identify and remove 
underground and above-canopy noise. 

2.3. Segmentation and linking of field data 

The segmentation algorithm used was developed by Holmgren et al. 
(2022) and creates a model fit surface raster (cell size 0.25 m) by 
matching the ALS data in each cell to a tree crown density model derived 
from reference trees of different species. This step was followed by a 
watershed algorithm that delineated the segments (Fig. 3). The field 
data at each sample plot were then overlaid with the local segments and 
a canopy height model. This enabled us to manually rectify the position 
of the field inventoried trees and to spot potential errors in the field data. 
Links between field measured trees and segments were established 
where it was clear which tree belonged to which segment. When several 
trees were linked to the same segment, the species of the segment was set 
to that of the tree with the largest stem diameter. The mean number of 
tree stems per segment was 1.6. The linked tree segments (n = 5,163) 

Fig. 2. Map of the Siljansfors experimental forest in central Sweden with the 291 sample plots distributed in a systematic pattern.  
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constituted the training data during the modelling of tree species and 
volume. The tree population was composed of Scots pine, Norway 
spruce, birch, and a small number of other broadleaf species. The 
broadleaves were combined into a single category (Table 1) in order to 
get a sufficient sample size for each species class. 

2.4. Feature extraction 

Several features were extracted from the point cloud of the reference 
segments and evaluated as predictors for species classification and stem 
volume estimation. The following descriptions provide examples of the 
different types of features used in the analysis. They can be categorized 
into geometric features (relating to spatial variation), intensity features 
(radiometric variation), and return type features (based on proportions 
of different return types). The geometric features were derived from the 
combined point clouds of green and near infrared data points. Some 
geometric features were used with the aim to capture the shape of the 
crown, for example relative height percentiles, vertical skewness, and 
height-to-width ratio of the crown. We also used geometric features that 
captured variation inside the crown structure, such as the standard de-
viation of the number of points in voxels. Other geometric features were 
aimed at capturing tree size, e.g., maximum height, crown volume, 
profile and footprint area of the crown. Intensity features included the 
maximum and standard deviation of the intensity, and the ratio between 
the mean intensity in the near infrared channel and the mean intensity in 
the green channel. Features based on return number included the pro-
portion of first returns among all returns and the proportion of single 
returns among all first returns. There were also features using both in-
tensity and return number, e.g. the summarized intensity of first returns 
divided by the summarized intensity of all returns. Before calculating 
any of the features, we removed all points below two meters from the 
ground. 

2.5. Selection of features for modelling species and volume 

When extracting features from the reference segments, some smaller 
segments contained too few points for the calculation of some features. 
Since robust features are preferable, we excluded those that could not be 
calculated for more than 1 ‰ of all reference segments. To identify the 
most important features for classifying species, we employed stepwise 
feature selection for an LDA-model (stepLDA method in caret R pack-
age). We excluded non-normalized geometric features, such as height 
and crown volume, since we wanted the species classification to be in-
dependent of tree size. Features that were important for modelling the 
volume were identified using stepwise linear regression with forward 
selection (leapForward method in caret R package). 

In order to investigate the contribution of the green wavelength we 
also created feature sets for species classification and volume estimation 
that were solely based on the NIR wavelength. All features based on 
intensity or return type of the green wavelength were excluded during 
this selection process. These second feature sets represented the use of a 
monospectral NIR scanner in the analysis. 

2.6. Classification of tree species and estimation of stem volume 

Prediction of species-specific volume followed a two-step approach: 
(1) classification of the dominant species of each segment using LDA 
(MASS R package), and (2) estimation of stem volume using species- 
specific k nearest neighbors models (yaImpute R package). We set the 
parameter k to 5, meaning the estimated tree volumes are a weighted 
mean of the five nearest neighbors. Both the total and species-specific 
volumes were simultaneously imputed from the most similar neigh-
bors. While a segment was classified according to the species of the most 
dominant tree, it may thus contain stem volumes of several species. 

The distance to the neighbors can be calculated using different 
methods. We compared results for Euclidean distance, most similar 
neighbor (MSN) distance, and random forest distance to identify which 
method performed best. The Euclidean distance is calculated using the 
normalized independent variables and the MSN distance is calculated in 
a projected canonical space. Random forest distance depends on the 
proportion of random forest trees that contain both the target segment 
and reference segment in the same leaf node. 

2.7. Validation 

The imputation was validated at the plot level for the 256 plots using 
leave one plot out cross-validation. This approach was selected as it 
maximizes the use of the available data for model training. Although we 
did have many samples in total, the number of broadleaf reference trees 
was relatively small. For a specific sample plot, an LDA model was 
trained using reference data from all the other plots and applied to 
predict the species of each segment. The procedure was then repeated 
for all sample plots. Species-specific knn models were applied to impute 
the stem volumes using reference segments from all the other plots. 
Predictions were made for all segments with centroids inside the plot. 
The combined imputed species-specific volumes at each plot were then 
compared to the volumes of all the field-measured trees within the plot 
boundaries. 

The results of the species classification are presented in graphs and 
confusion matrices. We added confusion matrices for data sets with 
balanced sample sizes for a better comparison between the species. 
Here, we used all 388 broadleaf samples and added the same number of 
randomly selected pine and spruce samples. All the other results are, 
however, based on the full dataset with imbalanced sample sizes. To 
quantify the accuracy of the volume estimates we used root-mean- 
square error (RMSE) and bias (estimated volume minus observed vol-
ume). Relative RMSE and relative bias were calculated through division 
by the mean of the observations. 

Field plot
Segments

Fig. 3. ALS data and segments for one of the field plots. The colors of the ALS 
point cloud represent height. 

Table 1 
The reference segments (n = 5,163) divided into species groups.  

Group Pine Spruce Broadleaf 

Species Scots pine Norway spruce Birch Other broadleaf 

Number 3,506 1,269 371 17  
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3. Results 

3.1. Feature selection 

To evaluate how many features to use we ran the models with an 
increasing number of features and plotted the results (Figs. 4 and 5). For 
species classification (Fig. 4), we chose to use 10 features as there was 
only a minor accuracy improvement with additional features. De-
scriptions of the selected features and their selection order are detailed 
in Table 2. The high number of pines meant that the model was more 
inclined to classify uncertain cases as pine (Graves et al., 2016), and 
producer’s accuracy for pines stayed at a high level throughout the 
range of features. 

In the case of stem volume estimation (Fig. 5), we chose to use five 
features. These five features were the same whether utilizing the green 

wavelength or not (Table 3), and additional features provided only small 
improvements in stem volume estimations. There was only a small dif-
ference in performance between the three methods for calculating the 
distance to the neighboring reference segments. We decided to continue 
with the MSN method, which performed equally well or better than 
Euclidean distance and random forest distance. One drawback with the 
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Fig. 4. Producer’s accuracy (left) and user’s accuracy (right) for the three species groups in relation to the number of features used during classification. Dashed lines 
represent results from only using features based on the NIR channel. Based on these results, 10 features were used in the species modelling. 
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Fig. 5. Variation in stem volume RMSE in relation to the number of features 
used in the imputation. We compared three methods for finding the nearest 
neighbors: MSN, Euclidean and random forest distance. The estimations were 
made on the individual tree segments after classification of species. The reason 
for the marginally lower error when using the full dual-wavelength (DW) 
dataset was the more accurate species classification that also improved the 
estimation of stem volume. 

Table 2 
Features used as predictors during the species classification for the predictions 
based on dual-wavelength data (DW) or only the NIR channel data. The numbers 
to the right show in which order the features were selected and thus their 
relative importance.  

Geometric features DW NIR 

Standard deviation of the number of points in 20 cm voxels in the 
crown top1. 

(7)  

Standard deviation of the number of points in 40 cm voxels in the 
crown top1. 

(9)  

L-transformed Ripley’s K at 20 cm calculated on the profile (x and z 
coordinates) of the crown top1.  

(4) 

The height at which 50 % of the points fall below divided by the 
maximum height. 

(2) (2) 

The height at which 80 % of the points fall below divided by the 
maximum height.  

(10) 

Crown height divided by crown width of the crown top1, where the 
width was calculated as the diameter of the smallest enclosing 
circle.  

(8) 

Skewness of the z coordinates in the crown top1.  (9) 
Skewness of the z coordinates in the top 2 m of the crown. (10) (7)  

Return type and intensity based features DW NIR 
Proportion of single returns among first returns in the NIR data. (6) (5) 
Proportion of points with NumberOfReturns2 above two among all 

NIR points. 
(8) (6) 

The summarized intensity of single returns divided by the 
summarized intensity of all first returns in the NIR data. 

(5) (3) 

The summarized intensity of first returns divided by the summarized 
intensity of all returns in the green data. 

(4)  

Mean intensity among NIR points.  (1) 
Standard deviation of the intensity among both green and NIR points. (1)  
Ratio between the mean intensity per emitted pulse in the NIR and 

green channels. The mean intensity per emitted pulse was 
calculated as the summarized intensity of all points divided by the 
number of first returns. 

(3)   

1 Crown top refers to points located above half of the maximum height. 
2 NumberOfReturns refers to the number of returns that were registered for a 

single emitted pulse. 
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random forest method was the longer model training time, which can 
become an issue due to the many iterations of leave one plot out cross- 
validation. 

3.2. Species classification of individual tree crown segments 

The overall classification accuracy for the DW dataset when using 10 
features was 91.1 %. Pines had the highest user’s and producer’s 

accuracies, followed by spruces and broadleaves (Table 4). However, the 
balanced dataset with the same number of samples per species resulted 
in similar accuracies for the three species. Classification results from 
using 10 features and only information in the infrared channel resulted 
in an overall accuracy of 86.8 %. In relation to using both channels, the 
largest difference was the significantly lower accuracy for broadleaves. 
(Table 4). The green wavelength is thus especially important for sepa-
rating broadleaf trees from coniferous trees. The lower classification 
accuracies when excluding the green channel also negatively affected 
the estimation of stem volume, which used species-specific models that 
relied on the initial species classification (Fig. 5). 

Fig. 6 shows the relationship between tree height and classification 
accuracy. In general, shorter trees (<10 m) were the most difficult to 
classify correctly but there were differences between the species. In the 
case of spruces, classification accuracy increased with tree height. Pines 
had the highest producer’s accuracy in the medium height categories 
(10–20 m), reflecting the distribution of the reference trees. 

3.3. Estimation of stem volumes at the segment and plot levels 

Predictions of stem volumes at the level of individual tree segments 
(Table 5, Fig. 7) resulted in relative RMSE of 38 % (total volume), 70 % 
(pine volume), 136 % (spruce volume), and 291 % (broadleaf volume). 
For the species-specific volumes, misclassifications appeared as points 
falling on or close to one of the axes (Fig. 7). The biases were consistently 
low, which is crucial for scaling up the predictions to the plot and stand 
level. At the plot level (Table 6, Fig. 8) the relative errors were lower 

Table 3 
Features used as predictors for the estimation of stem volume. The numbers to 
the right show at which position the features were selected and thus their 
importance. For both DW and NIR, the profile area was the most important 
feature for modelling stem volume.  

Geometric features DW NIR 

Maximum height. (4) (4) 
Volume of an alpha shape created from the crown top1. (2) (2) 
Profile area of the crown top1. The mean area of convex hulls around 

the x and z coordinates and the y and z coordinates. 
(1) (1) 

Coefficient of variation of the z coordinates. (5) (5)  

Return type and intensity based features DW NIR 
Mean NumberOfReturns2 of all infrared points. (3) (3)  

1 Crown top refers to all points that were located above the maximum height/ 
2. 

2 NumberOfReturns refers to the number of returns that were registered for a 
single emitted pulse. 

Table 4 
Confusion matrices for species classification using 10 features and evaluated on the reference trees using leave one plot out cross-validation. The results are calculated 
for the full dual-wavelength dataset (top), and only the NIR channel data (bottom). We also added results for balanced sample sizes where each tree species had 388 
samples (right). PA is producer’s accuracy and UA is user’s accuracy.  

Dual-wavelength Dual-wavelength, balanced sample sizes  

Pine Spruce Broadleaf UA (%)  Pine Spruce Broadleaf UA (%) 

Pine 3325 144 47 95 Pine 347 21 23 89 
Spruce 157 1079 41 84 Spruce 30 346 24 86 
Broadleaf 23 46 300 81 Broadleaf 11 21 341 91 
PA (%) 95 85 77 91.1 PA (%) 89 89 88 88.8  

NIR NIR, balanced sample sizes  
Pine Spruce Broadleaf UA (%)  Pine Spruce Broadleaf UA (%) 

Pine 3330 197 219 89 Pine 323 18 58 81 
Spruce 137 1040 59 84 Spruce 19 325 58 81 
Broadleaf 38 31 110 61 Broadleaf 46 45 272 75 
PA (%) 95 82 28 86.8 PA (%) 83 84 70 79.0  
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sification accuracy where the largest differences in producer’s accuracy were observed among spruces. b. shows differences in the height distribution of the species 
groups among the reference trees. 
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Table 5 
Results for stem volume estimations of tree segments.  

Data Channels RMSE (m3) Bias (m3) 

Total DW 0.128 (38.2 %) − 0.00496 (− 1.48 %) 
Pine DW 0.154 (70.2 %) − 0.00719 (− 3.28 %) 
Spruce DW 0.132 (136.0 %) 0.00289 (2.98 %) 
Broadleaf DW 0.053 (291.4 %) − 0.00057 (− 3.12 %) 
Total NIR 0.140 (41.7 %) − 0.00084 (− 0.25 %) 
Pine NIR 0.185 (84.5 %) 0.00565 (2.58 %) 
Spruce NIR 0.127 (131.4 %) 0.00264 (2.73 %) 
Broadleaf NIR 0.082 (444.8 %) − 0.00889 (− 48.48 %)  
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Fig. 7. Volume predictions at the segment level using the full dual-wavelength dataset. Species misclassifications appear as points close to the x- and y-axes.  

Table 6 
Results for stem volume estimations at the plot level.  

Data Channels RMSE (m3/ha) Bias (m3/ha) 

Total DW 36.2 (15.9 %) 3.80 (1.67 %) 
Pine DW 39.7 (27.2 %) 0.45 (0.31 %) 
Spruce DW 31.7 (47.8 %) 2.06 (3.11 %) 
Broadleaf DW 13.1 (87.0 %) 0.66 (4.36 %) 
Total NIR 40.7 (17.9 %) 6.81 (3.00 %) 
Pine NIR 56.4 (38.7 %) 10.21 (7.00 %) 
Spruce NIR 30.5 (46.0 %) 2.96 (4.47 %) 
Broadleaf NIR 25.7 (170.8 %) − 6.83 (− 45.34 %)  
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compared to the relative errors of predictions of the individual tree 
segments. There were only a few indications of misclassifications. The 
estimates of species-specific volumes thus improved as trees were 
aggregated to larger areas. 

Estimation errors for total stem volume from only using features 
based on the infrared channel (Tables 5 and 6) were marginally higher 
but comparable to using both channels. The largest difference when 
excluding the green channel was related to the inferior estimation of 
broadleaf volumes, which reflected the poor classification accuracy of 
broadleaves. 

4. Discussion 

This study demonstrates the use of dual-wavelength ALS for classi-
fying species and estimating species-specific stem volumes. To the best 
of our knowledge, this is the first study to utilize dual- or multi- 
wavelength ALS to estimate species-specific stem volumes for individ-
ual tree crown segments. One novelty was the two-step approach with 
an initial segment level species classification followed by species- 
specific stem volume estimations using the MSN method. We tested a 
variety of ALS features for their ability to classify species, including 
geometric, intensity-based, and features using the return number and 
total number of backscattered returns. All these types of features proved 
useful for separating between pines, spruces, and broadleaves. The 
intensity-based features were the most important for identifying species 
with four of the first five features making use of the intensity (Table 2, 

DW case). 
The classification model using both channels resulted in producer’s 

accuracies of 95 %, 85 % and 77 % for pines, spruces and broadleaves, 
respectively (Table 4). These results reflected the varying number of 
samples for the species. When we used a dataset with balanced sample 
sizes, there was little difference in user’s and producer’s accuracies 
between the three species. For the NIR dataset, the broadleaf user’s and 
producer’s accuracies were however clearly lower also in the case of 
balanced sample sizes. 

The estimation of species-specific volumes was based on the com-
plete imbalanced dataset and resulted in lower relative errors for pines 
than for spruces and broadleaves. Similar to the study by Breidenbach 
et al. (2010), we achieved low levels of bias which might be due to the 
use of the semi-ITC method. The relative errors were lower when trees 
were aggregated to the plot level, and the low levels of bias were key for 
accurate estimates at larger areas. 

Models created using data only from the NIR channel produced good 
results for total, pine, and spruce volumes, but underestimated broadleaf 
volumes due to difficulties in separating them from the coniferous spe-
cies. This resulted in negative biases for the estimation of broadleaf 
volumes (− 48 % and − 45 % at the segment and plot level respectively). 
Features based on the green wavelength thus proved especially impor-
tant for the identification of broadleaves and estimation of broadleaf 
stem volumes in the forest. 

Similar results were observed in Kukkonen et al. (2019) which 
compared monospectral and multispectral ALS and how the inclusion of 
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Fig. 8. Species-specific stem volumes at the plot level using the full dual-wavelength dataset. When trees were aggregated to the plot level, the errors shrank and 
there were few signs of misclassification. 
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aerial imagery improved the classification results. They found that the 
use of multispectral ALS (including the 532 nm green channel) signifi-
cantly improved the classification of broadleaved trees and they 
concluded that multispectral ALS is comparable in performance to the 
combination of monospectral ALS and aerial imagery for estimating 
species-specific volumes. It is clear that multispectral ALS is suitable for 
species classification, and it also offers some benefits over the fusion of 
monospectral ALS with multi- or hyperspectral imagery. These include 
avoiding potential misregistration between the datasets, which is espe-
cially important when estimations are conducted at the individual tree 
level, and the fact that aerial imagery is dependent on daylight and 
favorable weather conditions (Kukkonen et al., 2019). 

One factor that influences overall classification results is the tree size 
distribution (Fig. 6). Shorter trees are generally more difficult to classify 
correctly and a height distribution skewed towards smaller trees can 
negatively affect classification results. While the overall classification 
accuracies were lowest for the short trees (less than10 m), pines had 
reduced accuracy for the tallest trees (greater than20 m). This may be a 
result of the lower proportion of pines in that range. Most of the refer-
ence trees were between 10 and 20 m and the models were optimally 
tuned for classifying trees of that size. 

In this study, we extracted a large number of features from an ALS 
point cloud and tested them for their ability to predict species-specific 
stem volumes in a relatively small study area. A greater goal, howev-
er, is to apply the methodology in operational forest inventories over 
larger areas. This requires the utilization of robust features that are 
transferable between different acquisitions and over varied forest con-
ditions (Navarro et al., 2020; Rana et al., 2022). In future research, we 
therefore aim to combine and compare data from multiple geographi-
cally distant sites. 

5. Conclusions 

This paper demonstrates the estimation of species composition and 
species-specific volumes from dual-wavelength ALS data at the level of 
individual trees. We showed how ALS features from dual-wavelength 
NIR and green channels improved the species classification compared 
to using a monospectral infrared scanner. The added use of the green 
channel proved especially important for the classification of broadleaf 
trees, which in turn improved the estimation of broadleaf stem volumes 
in the forest. Furthermore, we showed how tree height influences the 
results with lower accuracies for the shorter trees. 
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