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Abstract 

Genomic prediction (GP) or genomic selection is a method to predict the accumulative effect of all quantitative trait 
loci (QTLs) in a population by estimating the realized genomic relationships between the individuals and by capturing 
the linkage disequilibrium between markers and QTLs. Thus, marker preselection is considered a promising method 
to capture Mendelian segregation effects. Using QTLs detected in a genome‑wide association study (GWAS) may 
improve GP. Here, we performed GWAS and GP in a population with 904 clones from 32 full‑sib families using a newly 
developed 50 k SNP Norway spruce array. Through GWAS we identified 41 SNPs associated with budburst stage (BB) 
and the largest effect association explained 5.1% of the phenotypic variation (PVE). For the other five traits such as 
growth and wood quality traits, only 2 – 13 associations were observed and the PVE of the strongest effects ranged 
from 1.2% to 2.0%. GP using approximately 100 preselected SNPs, based on the smallest p‑values from GWAS showed 
the greatest predictive ability (PA) for the trait BB. For the other traits, a preselection of 2000–4000 SNPs, was found to 
offer the best model fit according to the Akaike information criterion being minimized. But PA‑magnitudes from GP 
using such selections were still similar to that of GP using all markers. Analyses on both real‑life and simulated data 
also showed that the inclusion of a large QTL SNP in the model as a fixed effect could improve PA and accuracy of GP 
provided that the PVE of the QTL was ≥ 2.5%.
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Introduction
Genomic prediction (GP) or genomic selection using 
genome-wide dense markers has been widely adopted 
in animal breeding and extensively studied in crops 
[1] and tree plant species [2] in the last decade. GP 
assumes that individual quantitative trait loci (QTLs) 

are linked with at least one DNA marker. Consequently, 
linkage disequilibrium (LD) between QTLs and mark-
ers plays an important role in increasing genomic pre-
diction efficiency [3]. It has also been suggested that 
GP model training encompassing multiple generational 
populations (tracing LD) also will increase GP effi-
ciency. Several previous GP results have shown that 
markers in stronger LD, or even coinciding with causa-
tive mutations, implies higher accuracy of GP. This is 
because there is no need to trace the causative muta-
tions with LD markers when the causative mutations 
are among the genotypes [4]. Therefore, the inclusion 
of markers tightly associated with a few large-effect 
QTLs, detected by genome-wide association (GWAS) 
or validated by gene transformation, could be incor-
porated into the GP model development [5]. Including 
such large-effect SNPs as fixed effects in GP modelling 
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is also considered as an ideal approach to increasing 
GP efficiency, which has been verified by several stud-
ies in crops, including simulations [6–8]. GWAS is con-
sidered a powerful approach to dissecting the genetic 
architecture of different traits in animals and plants [9, 
10]. Usually, a locus accounting for 1–15% of pheno-
typic variation is detected by GWAS if population sizes 
are large enough, from a few hundred to a few thousand 
in plants [11], and a few thousand to a few million in 
humans [12].

Several studies in trees have shown, that GP using a few 
thousand randomly selected SNPs may capture most of 
the variation and achieve a similar GP accuracy as using 
all available markers [13–16]. It has also been reported 
that marker preselection could slightly-to-moderately 
improve GP accuracy in tree species [17–19]. In theory 
it is desirable that GP captures all QTL effects by LD 
between markers and causative loci. But provided that 
one or two of several strongly linked markers for each 
QTL is selected, the model should capture the QTL 
effects almost in their entirety.Recently, following the 
development of high throughput genotyping techniques 
and tools, more than several hundred thousand markers 
have been commonly and easily produced by several gen-
otyping platforms, such as SNP array, exome capture, and 
genotyping-by-sequencing (GBS). Thus, marker preselec-
tion could become a very useful and common pre-step 
for GP.

Norway spruce (Picea abies (L.) Karst.) is one of the 
most important economic species in Europe, especially in 
the Nordic countries and Northwestern Russia [20]. The 
current breeding program of Norway spruce, similar to 
other conifer species, mainly focuses on the use of addi-
tive genetic effects (i.e. breeding values). However, the 
non-additive genetic effects are considered important if 
a clonal deployment is considered as a deployment strat-
egy in the future [21–23]. Recent several studies on the 
cost, benefit and genetic diversity with the deployment of 
clonal forestry for Norway spruce indicated that a con-
siderable productivity increase of planted forests could 
be achieved with an acceptable genetic diversity [23–30].

In Norway spruce breeding, traditional breeding val-
ues, dominance, and epistatic genetic effects were pre-
dicted for seedling or clonally propagated progenies, 
based on the theoretical expectation using pedigree data 
[23]. When genome-wide dense markers are available, the 
estimates of genetic parameters for additive, dominance, 
and epistatic effects may be more accurate since the real 
genomic relationships were captured by alleles [31, 32]. 
Several studies in tree species have demonstrated an 
increase in the accuracy of genetic parameters estimates 
using genomic models [33–35]. The accurate estimation 
of non-additive effects, as well as additive effects, should 

therefore be an important objective to increase genetic 
gains and improve the efficiency of the Norway spruce 
tree breeding program.

In this study, we explored the use of detected GWAS 
QTLs by including the most closely associated SNPs in 
GP for tree breeding value prediction through empirical 
experiments and simulations. The detailed aims of this 
study were to: 1) dissect the total genetic component into 
additive and non-additive variances using genomic-based 
relationship matrix models and compare with the cor-
responding dissection using traditional pedigree-based 
relationship models; 2) test the efficiency using different 
number of SNPs, different number of clones per fam-
ily with informative marker preselection; 3) investigate 
the impact of training population size and relatedness 
between training and validation populations on GP effi-
ciency; and 4) test whether GP could be improved by 
including the most significant GWAS-marker as a fixed 
effect in the GP model.

Results
Genetic parameter comparisons between models
We compared the goodness of fit of four models which 
each could utilize traditional pedigree data (PBLUP) or 
genomic data (GBLUP). In brief, the models included 
one simple additive model (PBLUP-A, GBLUP-A), one 
additive model where a residual genotypic (non-additive 
clonal) effect was included (PBLUP-AR, GBLUP-AR), 
one model where a dominance term was included on 
top of the additive and residual clonal terms (PBLUP-
ADR, GBLUP-ADR) and finally a model where one spe-
cific epistatic term also was added (PBLUP-ADR-xx, 
GBLUP-ADR-xx). Please see Material and Methods sec-
tion Eqs.  (1–4), Table  1 and Table S1 for more detailed 
information. For all traits, the GBLUP-AR model had the 
smallest Akaike information criterion (AIC) value, except 
for frost damage (FD) with a zero non-additive variance 
(i.e. GBLUP-A). This indicates that the fitting of GBLUP-
AR was generally better than all other models, both 
pedigree-based and genomic-based, and implies that the 
genetic parameters of the GBPLUP-AR models should 
be better estimated than for the other models. Based on 
the AIC, we did not see that models with a dominance 
term (PBLUP-ADR and GBLUP-ADR) or first-order epi-
static effect terms (PBLUP-ADR-xx and GBLUP-ADR-
xx) showed any better fit than the simpler GBLUP-AR or 
even GBLUP-A (for FD) models.

Estimates of variance components and heritability
We found that the additive genetic variance under PBLUP-
AR and GBLUP-AR decreased compared to that under 
PBLUP-A and GBLUP-A for HT6, HT12, DBH, and BB, 
respectively (Table  1). Given that the PBLUP-AR and 
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GBLUP-AR exhibited the best fit for all these traits, the 
previously observed patterns indicate that the additive 
genetic variance in the PBLUP-A and GBLUP-A may be 
inflated due to the inadvertent inclusion of non-additive 
effects within σ 2

a . For the growth traits (HT6, HT12 and 
DBH), the estimates of the non-specific non-additive 
genetic variance ( σ 2

r  ) were substantial in size relative to the 
additive genetic variance estimates ( σ 2

r > 0.2σ 2
a ) under the 

model with lowest AIC (GBLUP-AR). For BB and PILO 
the non-additive variance estimates were relatively small in 
comparison to the additive variance ( σ 2

r < 0.2σ 2
a ). Finally, 

FD did not exhibit any non-additive effects regardless of 
whether the pedigree- or genome-based matrix models 
were used. Taken together, we conclude that non-additive 

effects are important for all growth traits, whereas non-
additive effects had a limited impact on non-growth traits 
BB and PILO and were absent in FD. Estimates of domi-
nance variance were generally small and non-significant 
and most of the first-order epistatic interactions under 
PBLUP-ADR-xx and GBLUP-ADR-xx were in boundary 
close to zero based on Equation [4] (Table S1). Thus, we do 
not discuss the result of the PBLUP-ADR, GBLUP-ADR, 
PBLUP-ADR-xx and GBLUP-ADR-xx models any further.

Summary of Norway spruce 50 K SNP array, LD decay, 
and association mapping
For the Piab50K SNP array, 41,236 of the total 47,445 
SNPs were mapped and evenly distributed across the 12 

Table 1 Ratios of additive, dominance, and residual of genetic variance component to the total phenotypic variance for different 
PBLUP and GBLUP models

σ 2
a , σ

2
as , σ

2
r , σ

2
rs , σ

2
e represents variances of additive, additive-by-site, residual of genetic, residual of genetic-by-site, and the average of residual effects, respectively. 

h
2
i
 and H2

i
 represent the narrow-sense and broad-sense heritabilities, respectively. AIC represents the Akaike information criterion. * represents that the model 

showed the smallest AIC value compared to all other GBLUP and PBLUP models

Model σ 2
a σ 2

as σ 2
r σ 2

rs σ 2
e   h

2
i
(SE) H

2
i
(SE) AIC

HT6

 PBLUP‑A 6.48 (0.58) 1.13 (0.30) 28.99 (0.48) 0.18 (0.01) 43,680.9

 PBLUP‑AR 4.44 (1.33) 0.60 (0.23) 0.92 (0.78) 1.36 (0.39) 28.24 (0.50) 0.13 (0.04) 0.15 (0.02) 43,670.3

 GBLUP‑A 6.37 (0.56) 1.08 (0.28) 29.05 (0.47) 0.17 (0.01) 43,672.7

 GBLUP‑AR* 4.02 (0.84) 0.62 (0.23) 1.13 (0.49) 1.31 (0.39) 28.24 (0.50) 0.11 (0.02) 0.15 (0.02) 43,656.4

HT12

 PBLUP‑A 30.7 (5.0) 125.2 (4.0) 0.20 (0.03) 16,649.4

 PBLUP‑AR 13.0 (5.2) 12.5 (4.3) 123.6 (4.0) 0.09 (0.03) 0.17 (0.02) 16,646.2

 GBLUP‑A 26.6 (4.5) 127.0 (4.0) 0.17 (0.03) 16,651.1

 GBLUP‑AR* 12.9 (4.5) 12.28(4.0) 123.6 (3.7) 0.09 (0.03) 0.17 (0.02) 16,644.6

DBH

 PBLUP‑A 60.0 (5.5) 8.8 (2.8) 313.4 (1.9) 0.16 (0.01) 64,017.5

 PBLUP‑AR 57.4 (5.7) 5.9 (2.6) 0 (0) 8.1 (4.3) 313.8 (5.8) 0.15 (0.01) 0.15 (0.01) 64,017.9

 GBLUP‑A 56.8 (5.6) 8.7 (2.7) 319.6 (5.3) 0.15 (0.01) 64,023.2

 GBLUP‑AR* 31.2 (7.3) 6.4 (2.6) 14.8 (4.7) 7.5 (4.3) 313.7 (5.8) 0.09 (0.02) 0.13 (0.01) 64,011.3

PILO

 PBLUP‑A 1.78 (0.14) 1.51 (0.05) 0.54 (0.02) 4583.2

 PBLUP‑AR 1.78 (0.14) 0 (0) 1.51 (0.05) 0.54 (0.02) 4585.2

 GBLUP‑A 1.73 (0.14) 1.53 (0.05) 0.53 (0.02) 4580.9

 GBLUP‑AR* 1.33 (0.20) 0.25 (0.11) 1.51 (0.05) 0.43 (0.05) 0.51 (0.02) 4576.9

BB

 PBLUP‑A 1.30 (0.07) 0.14 (0.01) 0.33 (0.007) 0.73 (0.01) 2671.3

 PBLUP‑AR 0.98 (0.23) 0.09 (0.02) 0.15 (0.12) 0.04 (0.01) 0.33 (0.007) 0.62 (0.11) 0.71 (0.02) 2667.5

 GBLUP‑A 1.25 (0.07) 0.13 (0.01) 0.33 (0.007) 0.73 (0.01) 2591.5

 GBLUP‑AR* 1.05 (0.12) 0.08 (0.02) 0.09 (0.05) 0.04 (0.01) 0.32 (0.007) 0.66 (0.04) 0.72 (0.01) 2579.1

FD

 PBLUP‑A 0.014 (0.004) 0.201 (0.006) 0.06 (0.02) ‑1354.3

 PBLUP‑AR 0.014 (0.004) 0 (0) 0.208 (0.006) 0.06 (0.02) 0.06 (0.02) ‑1352.3

 GBLUP‑A* 0.015 (0.004) 0.208 (0.006) 0.07 (0.02) ‑1357.0

 GBLUP‑AR 0.015 (0.005) 0 (0) 0.208 (0.007) 0.07 (0.02) 0.07 (0.02) ‑1355.0
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chromosomes (Fig.  1a) in the Norway spruce genome 
v2 (In preparation). The number of SNPs in each chro-
mosome varied from 3158 to 3991 SNPs (Table S2). 
The physical extent of LD (r2 > 0.2) within each chromo-
some varied from 33.7 kb in chromosome 2 to 54.6 kb in 
chromosome 9, with an average of 42.9 kb for the whole 
genome based on the SNP array in the studied full-sib 
family population (Fig. S1). The family clusters were 
clearly separated by the first two principal components 
of a marker-based principal components analysis (PCA) 
(Fig. S2). In total, GWAS identified 41, 11, 2, 4, 4, 11, and 
13 SNPs as having a significant effect on BB, DBH, FD, 
HT12, HT6, and PILO, respectively, under a false discov-
ery rate (FDR) of 0.05 (Fig.  1b). The largest effect sizes 
for trait-associated SNPs explained 5.1, 1.6, 1.7, 2.0, 1.2, 
and 1.4% of the phenotypic variation of clonal means in 
BB, DBH, FD, HT12, HT6, and PILO, respectively (Table 
S3). There were six highly significant SNP-trait associa-
tions with considerable PVE (> 2.5%) for BB whereas such 
observations were not made for the other traits.

Predictive ability comparisons between PBLUP and GBLUP
We initially estimated predictive abilities (PAs) by a ten 
times tenfold cross-validations where PBLUP and GBLUP 
models were trained by the randomly selected portions 
of the population where phenotypic clonal means were 
made available whereas the validation was made on the 
other portion of the population where phenotypic data 
was kept hidden. The PA-estimates were then compared 
to the square root of the clone mean narrow-sense herit-
ability (hc, Table 2 and Table S4) because the latter can be 

interpreted as the theoretical PA and accuracy for mass 
selection entirely based on phenotypic clonal means. In 
agreement with previous comparisons between PBLUP 
and GBLUP in terms of AIC, we observed that PA-esti-
mates of GBLUP (0.23 – 0.67) were consistently higher 
than corresponding PA-estimates for PBLUP-C (0.21 – 
0.61). The increases in PA under GBLUP were the great-
est for HT6 and BB. For example, PA of GBLUP for HT6 
increased by 15.8% when compared to PBLUP. However, 
the PA-estimates for GBLUP in the tenfold cross-valida-
tion scheme were in turn consistently and considerably 
lower in comparison to the corresponding theoretical 
PAs (i.e. square root of heritability, hc in the range 0.37 
– 0.89).

The impact of the number of SNPs included in the G‑matrix
For all traits, the overall PA of the GBLUP model 
increased from 25 randomly selected SNPs to ca. 4000 
SNPs (Fig.  2a) and plateaued when even more SNPs 
were selected. Similarly, the standardized AIC values of 
the GP model decreased from the model with 25 SNPs 
to ca. 4000 SNPs and then the AIC stabilized when even 
more SNPs were selected (Fig. 2b). For example, for BB, 
PA under the GBLUP-model increased from 0.36 using 
25 SNPs to 0.63 using 4000 SNPs in the estimation of a 
genome-based relationship matrix.

When marker preselection was based on GWAS-anal-
yses, the resulting prediction models showed two types 
of trends for the traits. First, for BB, the genomic predic-
tion model (GBLUP-S) with 100–200 preselected SNPs 
with the smallest p-values obtained a higher PA than that 

Fig.1 Marker density of this SNP array and Manhattan plots. a Marker density of the 50 k Norway spruce array based on a 10 Mb window size 
for each of 12 chromosomes. b Manhattan plots for six traits. The red dashed line represents the significant threshold of p = 1.7 ×  10–6 after the 
Bonferroni correction. The red dots represent that the SNPs passed the false discovery rate test threshold of 0.05 based on Benjamini and Hochberg 
(1995). SNPs not mapped into the Norway spruce genome v2 (In preparation) were grouped into a region assumed as chromosome 13 in this study. 
BB, bud burst stage; DBH, diameter at breast height; FD, frost damage; HT12, tree height at field tree age 12; HT6, tree height at field age six; PILO, 
Pilodyn penetration
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using all other numbers of SNPs (Fig.  2a). To check if 
GP with a marker preselection by GWAS captured more 
Mendelian segregation effects, we also calculated the cor-
relation between estimated breeding value deviations 
from family mean of EBVs and within-family pheno-
typic variation (clone mean-family mean). We found that 
GBLUP-S using 100–200 informative markers captured 
more of the phenotypic variation of BB and exhibited 
the lowest AIC value (Fig. 2c). This suggests that using all 
available SNPs for a trait that was strongly associated by 
GWAS to a considerable but finite number of markers, 
may introduce misleading noise in the prediction models.

Second, for the other five traits (DBH, FD, HT12, HT6, 
and PILO), we found that the PA of GP using a prese-
lected set of SNPs with the smallest p-values did not out-
perform random marker selection unless the numbers 
of SNPs selected were less than a few hundred. Further-
more, for these traits preselecting more markers beyond 
a few hundred still increased the PA with the highest 
value being reached when all markers were used (Fig. 2a). 
For traits DBH, FD, HT12, HT6, and PILO, within-fam-
ily PA for marker selection based on low p-values was 
higher than for random selection when smaller numbers 
of markers were selected all ranging from 25 to 2000 
SNPs. But random selections of markers showed equal 
or higher within-family PA than GWAS-based preselec-
tion for these traits when more than 10,000 SNPs were 
selected. The trends of PA when selecting more and 
more markers for DBH, FD, HT12, HT6, and PILO were 
not obvious where a flat within-family PA optimum for 
GWAS-based preselection was observed for HT12 and 
DBH (at 1000 and 200 markers respectively) whereas for 
the other traits more markers resulted in higher within-
family PA. AIC values for all traits except BB showed 
a similar trend (Fig.  2c) where the lowest AIC value 
occurred at 2000–4000 preselected markers.

Predictive ability comparisons between advanced GBLUP 
models
As indicated in Fig.  2, only BB showed appreciable 
increases in overall PA from 0.61 for GBLUP to 0.72 
for GBLUP-S when only 100 high-significance SNPs in 
GWAS were included in the Ga-matrix (Table 2). For all 
other traits the GBLUP-S model including 2000 high-
significance SNPs showed similarly or lower PA than the 
conventional GBLUP including all SNPs. In addition, we 
attempted the fitting of a single SNP showing the smallest 
p-value (the highest significance) in GWAS as an addi-
tional fixed regression effect in the model (GBLUP-F). 
For HT12, BB, and FD, the GBLUP-F model produced a 
slightly higher PA than GBLUP (by 0.02 – 0.03) but for 
DBH, HT6, and PILO, GBLUP-F and GBLUP showed 
similar values. Furthermore, we calculated an approxima-
tion of cross-validation accuracy in the absence of phe-
notypic data as the PA of PBLUP and GBLUP divided by 
hc and we found that the overall accuracy of GP for all 
traits ranged from 0.58 for HT6 to 0.81 for BB.

Simulations of including a large effect SNP as fixed 
in the GBLUP
To verify whether including a major gene locus as a 
fixed effect in the GBLUP model (GBLUP-F) would 
increase PA of GP, we also performed 10 repeats of 
tenfold cross-validations on simulated data where 
single SNPs exerting a range of PVE were included 
(Table  3). Simulation data is easier to interpret than 
real-life data since it offers the possibility to robustly 
estimate GP accuracies merely by calculating the cor-
relations between predicted and true breeding val-
ues. Results showed that the overall accuracies of the 
GBLUP-F model were higher than that of GBLUP 
when provided a major-effect SNP with PVE >  = 2.5% 
(0.66–0.71 and 0.60–0.63 for GBLUP-F and GBLUP 

Table 2 Overall predictive ability (PA) for different types of pedigree‑ and genome‑based prediction models following a tenfold cross‑
validation procedure

The prediction models showing the highest PA for a trait have their PA-estimated highlighted in italic bold. The hc is the square root of the clonal mean narrow 
sense heritability ( h2e ) based on PBLUP-AR model. PBLUP-C is the traditional pedigree-based best linear unbiased prediction (BLUP) including marker-based pedigree 
correction; GBLUP is the genomic-based BLUP; GBLUP-S is genomic-based BLUP and with marker-preselection based on the smallest p-values from genome-wide 
association analyses (GWAS) for each training population. In this table, the 100 smallest p-value SNPs were preselected for the budburst stage (BB) and 2000 SNPs 
were preselected for the other traits. GBLUP-F is a genomic-based BLUP model plus the SNP with the smallest p-value fitted as an additional fixed regression effect. 
This SNP was also selected based on GWAS for each training population. The accuracy for the model showing the highest PA is here roughly estimated as PA/hc

Model HT6 HT12 DBH PILO BB FD

hc 0.72 0.42 0.69 0.87 0.89 0.37

PBLUP‑C 0.38 (0.01) 0.22 (0.01) 0.44 (0.01) 0.62 (0.01) 0.61 (0.01) 0.21 (0.01)

GBLUP 0.42 (0.01) 0.24 (0.01) 0.44 (0.01) 0.63 (0.01) 0.67 (0.01) 0.23 (0.01)

GBLUP‑S 0.35 (0.01) 0.22 (0.01) 0.37 (0.01) 0.58 (0.01) 0.72 (0.01) 0.20 (0.01)

GBLUP‑F 0.42 (0.01) 0.26 (0.01) 0.44 (0.01) 0.63 (0.01) 0.70 (0.00) 0.25 (0.01)
Accuracy 0.58 0.62 0.64 0.72 0.81 0.68
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respectively). Following a similar trend, the overall PA 
of the GBLUP-F model increased from 0.31 to 0.35 for 
a fixed SNP explaining 0% to 5% of the phenotypic vari-
ation whereas no increasing trend was observed for the 
model without the major QTN included.

The within-family accuracy of the GBLUP-F model 
increased from a very low level (0.10) when the fitted 
fixed-effect SNP explained 0% of the variation (i.e. 
fitting a false-positive QTL) to 0.42 for a SNP with 
a PVE at 5% (true major gene, Table 3). In contrast, 

Fig. 2 Predictive ability estimates (PA) for six traits using GBLUP‑A models based on 10 repeats of tenfold cross‑validations (n = 100) and 904 clone 
means. a) PAs for traits’ phenotypic values based on GBLUP‑A using different numbers of SNPs randomly selected (blue longdashed line), SNPs 
selected based on lowest p‑values in GWAS performed on each training dataset using BLINK method (red twodashed line), and PAs of within family 
variation (clone mean—family mean) using different number of SNPs based on both randomly selected (purple solid line) and the lowest p‑values 
based on GWAS (green dotted line). The black horizontal dashed line in a) is the square root of narrow‑sense clone mean heritability estimated 
based on the PBLUP‑AR model. Matching to GBLUP‑A models in a), the standardized Akaike information criterion (AIC) values for each model is 
shown in b) based on randomly selected SNPs and in c) based on SNPs selected by smallest p-values
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for the model where the assumed major SNP was 
not fitted as a fixed effect, within-family accuracies 
remained at very low levels (0.09–0.11) regardless of 
the PVE of the major SNP. The trends of within-fam-
ily PA were similar as those for accuracy but were 
all lower due to the environmental noise that always 
influences PA-estimates. The above results indicate 
that including a large-effect SNP (PVE >  = 2.5%) as 
a fixed effect in the GBLUP model may improve the 
accuracy and PA, especially with respect to predic-
tions within family.

Number of clones per family
To test the effect of the number of clones per family avail-
able to the training dataset on the PA using PBLUP and 
GBLUP (Fig. 3), we sampled 5, 10, 15, 20, 25, or 30 clones 
from each of the ten largest families as a training data set 
and the rest of clones in those families as a validation set. 
We found that the PA of both PBLUP and GBLUP con-
sistently increased from 5 clones per family to 30 clones 
per family for all traits except for PBLUP for BB where 
an optimum was reached at 20 offspring clones per fam-
ily. Based on the trends and with GP in mind (GBLUP), 

Table 3 Predictive abilities and accuracy estimates with genomic prediction model with and without adding an SNP with the largest 
effect size as a fixed effect (GBLUP and GBLUP‑F) based on simulated data using a trait with a heritability of 0.25 and evaluated using 
tenfold cross‑validations

PVE is the percentage of phenotypic variance explained by a large effect size SNP. QTN represents the quantitative trait nucleotide with a large effect size where-
and + signifies the absence (GBLUP) and presence (GBLUP-F) respectively, of this QTN in the genomic prediction model as a fixed effect. The presumed major-effect 
locus/QTN is fixed for each training population. The value in parenthesis indicates the standard deviation across replicate simulations

PVE (%) Overall
predictive ability

Within‑family
predictive ability

Overall accuracy Within‑family accuracy

‑ QTN  + QTN ‑ QTN  + QTN ‑ QTN  + QTN ‑ QTN  + QTN

5 0.31 (0.06) 0.35 (0.06) 0.03 (0.07) 0.17 (0.07) 0.60 (0.05) 0.71 (0.04) 0.11 (0.08) 0.42 (0.06)

2.5 0.33 (0.07) 0.34 (0.06) 0.07 (0.08) 0.11 (0.07) 0.63 (0.06) 0.66 (0.05) 0.12 (0.09) 0.29 (0.07)

1.25 0.31 (0.06) 0.31 (0.07) 0.02 (0.06) 0.07 (0.07) 0.63 (0.05) 0.64 (0.05) 0.09 (0.07) 0.20 (0.08)

0.25 0.30 (0.07) 0.30 (0.06) 0.05 (0.06) 0.06 (0.07) 0.61 (0.05) 0.60 (0.06) 0.11 (0.07) 0.13(0.08)

0 0.32 (0.06) 0.31 (0.07) 0.05 (0.07) 0.05 (0.07) 0.62 (0.06) 0.61 (0.07) 0.11 (0.08) 0.10 (0.08)

Fig. 3 Predictive abilities (PAs) for six traits using PBLUP‑A and GBLUP‑A models using all available SNPs but employing different number (5, 10, 15, 
20, 25, and 30) of clones per family for model training leaving the remainder number of clones for validation purposes. Only ten families comprising 
the largest numbers of offspring were included in this analysis
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more than 30 clones would be better regardless of the 
trait under study. Following the increase of the number 
of clones per family, GBLUP showed a higher PA than 
PBLUP, except for DBH where PA-estimates were similar.

Number of clones per family and marker preselection 
by GWAS also affect the within‑family variation
To further test whether combining GWAS p-value based 
marker preselection and the number of clones per fam-
ily would affect the predictive ability (PA) within families, 
we performed tenfold cross-validations using GBLUP 
within the largest ten families only (Fig.  4). We found 
that the PA within the ten largest families using GBLUP 
with GWAS-based preselection of a number of mark-
ers produced similar trends (Fig. 4a) as the correspond-
ing PA values estimated for the population as a whole 
(Fig. 2a). In similarity to the results of the whole popula-
tion, GBLUP of BB with 100–200 preselected SNPs pro-
duced higher predictive ability and lower AIC than using 

a lesser or greater number of SNPs for Ga-matrix cal-
culation (Fig. 4a and b). For the other traits, 2000–4000 
preselected SNPs produced the lowest AIC in agree-
ment with the whole-population analysis. The trends for 
within-family PA, although less obvious, indicated that 
some sort of SNP preselection resulted in higher PA than 
uncritically using all SNPs in the model.

These results could imply that more within-family vari-
ation linked to Mendelian segregation could be captured 
by preselecting influential markers for GP and that the 
capture of such segregation variation is likely easier in a 
population where families are fewer and larger thus offer-
ing a higher average relationship. Based on the marker 
preselection results for within-family prediction (Fig. 4c), 
we also found that PA increased quickly from 5 clones 
per family to 30 clones per family for all traits, except 
for FD, which showed a slight decrease for within fam-
ily prediction after 25 clones per family. For example, 
PA within-family variation for BB increased from 0.07 at 

Fig. 4 a Predictive ability (PA) for within‑family variation using tenfold cross‑validation for the ten largest families with 482 clones. b the 
standardized Akaike information criterion (AIC) values for different simulation strategies based on different numbers of SNPs with the smallest 
p values from GWAS. c PA for within‑family variation based on the GBLUP model with the G‑matrix estimated from 100 SNPs for budburst and 
2000 SNPs for the other traits. Marker preselection based on p-values was exclusively based on GWAS performed on the training portion of the 
population only
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family size 5 to 0.54 when 30 clones per family were avail-
able for model training.

In practical breeding, GP may be performed for a 
new full-sib family which does not offer close relation-
ships with existing families in a training dataset. Thus, 
we also evaluated one special type of cross-validation 
in which the clonal mean data for each of 32 families 
were in turn held out from the GBLUP training dataset, 
while the family for which clonal mean data was miss-
ing was used for the prediction validation (across-family 
validation). As previously, we performed the GBLUP 
with 1) all markers for Ga -matrix calculation (GBLUP), 
2) 100 preselected SNPs for BB and 2000 preselected 
SNPs for the rest of the six traits based on significant 
SNP-trait associations (GBLUP-S), and 3) all mark-
ers for the Ga -matrix plus the marker with the highest 
GWAS significance fitted as a fixed regression effect in 
the model (GBLUP-F). We found that marker preselec-
tion increased PAs for some traits (HT12, PILO, BB, and 
FD), but not for others (HT6 and DBH). The PA-esti-
mates across families were very low for most traits (0.03 
to 0.11) but for BB the GBLUP PA was 0.19, increased 
to 0.24 when fitting the most powerful SNP as a fixed 
effect (GBLUP-F), and increased further to 0.25 when 
using GBLUP-S (Table 4).

Discussion
Genomic‑based BLUP model could enhance the accuracy 
of the estimated additive and non‑additive genetic 
variances
In tree or conifer breeding programs, a control-polli-
nated clonal test provides an opportunity to simultane-
ously estimate the additive, non-additive, dominance, 
and epistatic variances using pedigree. However, most 
heritability estimates in many traditional tree breeding 
programs were based on open-pollinated or control-pol-
linated progeny trials without vegetative propagation. In 
this context, such estimates of additive genetic variation 
may be biased due to the difficulty of separating the addi-
tive genetic variance from parts of the dominance and 

epistatic variances [36]. Using vegetatively propagated 
material in combination with a genome-based model, the 
additive and dominance variances may still show bias if 
the model does not include a residual genetic effect [32, 
35]. Potentially, genome-based models could capture and 
discriminate between the different sources of the non-
additive genetic variance such as dominant effects within 
a locus and epistatic interaction effects among loci. 
Among different GP models, GBLUP-AR showed the 
smallest AIC values for most of the traits, indicating that 
non-additive genetic effects are significant for all traits, 
with frost damage being the only exception. Also, the fact 
that GBLUP-AR model AIC values for these traits were 
systematically lower than the corresponding PBLUP-AR 
AIC, implies that GP models perform better with respect 
to separating additive and non-additive variances from 
each other than pedigree-based models. For example, 
PILO showed non-significant and negligible non-additive 
effects under PBLUP-AR but showed nonetheless signifi-
cant non-additive effects under the GBLUP-AR model, 
indicating that the GBLUP-AR model with a realized 
relationship matrix could better capture and separate the 
additive genetic variation thus improving genetic param-
eter estimates.

Significant marker‑trait associations and genomic 
prediction
Recently, several studies on tree species reported that 
selecting markers with particular influence over a trait 
could improve PA [16]. Tan and Ingvarsson (2022) [19] 
reported that a careful 1% preselection of markers could 
improve the estimate of heritability and GP in a Eucalyp-
tus population. For Pinus contorta Douglas ex Loudon 
var. latifolia, Cappa et al. (2022) [17] reported that select-
ing informative markers, in particular markers capturing 
ancestry/population structure, can improve PA.

The recently developed 50  k SNP array for Norway 
spruce included several QTLs per trait detected in our 
previous GWAS [37–40]. In this study, GWAS identi-
fied 44 associated SNPs for the budburst stage and one 

Table 4 Predictive ability for clone mean phenotypic variation and their standard errors in parenthesis for different models where the 
validation procedure was performed across different families

In this scenario (GBLUP), each of the 32 full-sib families were separately cross-validated using the phenotypic data of the remaining 31 families as training sets. In 
total, 32 cross-validations were repeated to calculate the predictive ability of phenotypic clonal means. GBLUP-All is a model with all SNPs; GBLUP-S is a model with 
preselected SNPs (100 SNPs for budburst stage (BB), 2000 SNPs for all other traits); GBLUP-F is a model with the most significant p-value SNP included as a fixed effect. 
The preselected SNPs for GBLUP-S and GBLUP-F were all based on genome wide analyses performed on each training population

Model HT6 HT12 DBH PILO BB FD

GBLUP‑All 0.11 (0.05) 0.03 (0.04) 0.05 (0.04) 0.05 (0.04) 0.19 (0.05) 0.03 (0.04)

GBLUP‑S 0.03 (0.04) 0.07 (0.04) ‑0.02 (0.04) 0.08 (0.03) 0.25 (0.06) 0.04 (0.03)

GBLUP‑F 0.09 (0.04) 0.02 (0.04) 0.04 (0.04) 0.04 (0.04) 0.24 (0.06) ‑0.01 (0.04))
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SNP (MA_12842_2274, Table S3), having the second 
highest PVE (> 4%) of all SNP-BB associations, was 
located within 400 base pairs from a QTL for BB previ-
ously detected by GWAS in a different population of 
ca. 4000 individuals [40]. We also observed two to 13 
SNPs significantly associated to the other five traits, 
offering the opportunity to test if including the most 
significant SNP in GP model improves PA.

Marker preselection and inclusion of a large effect QTL 
as a fixed effect could enhance GP predictive ability
For BB, we found that a Ga-matrix built from 100 pre-
selected markers resulted in GBLUP-models having 
lower AIC values and being better at predicting the 
genetic value in the absence of phenotypic data than 
did a Ga-matrix model using all available markers. 
Such preselected SNPs were also observed to capture a 
considerable amount of within-family variation/Men-
delian segregation effects. However, for other more 
polygenic traits, genomic models using ca. 4000 pre-
selected markers showed a comparable PA compared 
to the model using all markers, even though such mod-
els exhibited lower AIC values. This indicates that the 
preselection of influential markers is more likely to 
be successful when applied to a limited set of markers 
showing highly significant associations to a trait where 
a relatively limited number of trait-associated SNPs 
are indicated to exhibit considerable individual effects 
(PVE > 1%).

In this study, we also investigated a GP model for 
BB where a large-size QTL with a PVE of ca. 5% was 
explicitly included as a fixed regression effect and we 
observed a 4.4% improvement in overall PA (Table  2) 
in comparison to a GP model without such a modifica-
tion. Such enhancement was also observed in several 
empirical crop studies [41, 42] and a simulation study 
conducted by Bernardo (2014) [6]. Our finite-locus 
simulations also showed a similar result with 13% 
and 18% of improvement, in terms of PA and accu-
racy respectively, for the model including a locus of 
large effect size (PVE at 5%) as a fixed effect compared 
with the model without this model term. The model 
improvement was particularly notable when the objec-
tive was the capture of within-family Mendelian seg-
regation variation (Table 3). However, if the QTL PVE 
was less than ca. 1.25%, the simulated data analyses did 
not indicate any such advantage for the model includ-
ing the locus as a fixed effect. Based on more than 
dozens of GWAS results in tree species [11], SNPs 
detected with a PVE > 1.25% are not uncommon, indi-
cating that GP appropriately utilizing a large-size QTL 
should be very useful to improve PA and accuracy.

Family size matters for the efficiency of genomic prediction
Model training using higher numbers of clones per fam-
ily, is usually expected to capture more Mendelian seg-
regation effects [43] and improves the PA and accuracy 
of genetic parameter estimates [44]. In this study, we 
observed that increasing the family size was important to 
improve the PA, both with respect to overall phenotypic 
prediction (Fig.  2) but also to within-family prediction 
(Fig. 4). This was especially obvious when the family size 
was small (less than 15 clones per family).

Relationship between training and validation datasets 
highly important for genomic prediction
Forward-selection tree breeding usually entails the selec-
tion of a few elite candidates within a progeny test pop-
ulation (F1) and the candidates are in turn crossed to 
produce a new batch of progenies (F2). Thus, when using 
existing F1 as a training dataset to predict F2, the aver-
age relationship between F1 and F2 will be lower com-
pared with relationships within the same F1 generation 
as was used for tenfold random cross-validations in this 
study. We therefore also investigated the situation where 
training and validation datasets contained individuals 
from separate families, and we produced a 32-fold cross-
validation scheme by removing phenotypic data for one 
family at a time. The relationships between the validation 
family and the training dataset were thus restricted to the 
level of half-sibs or weaker. Thus, the PA across families 
was considerably lower than for conventional random 
cross-validation (Table  4), which was a result similar to 
that in Pinus taeda L. [35]. However, it is notable that 
BB also in this case offered an appreciable PA estimate 
(0.19) and this estimate was further improved if a marker 
preselection was performed for calculating the Ga-matrix 
of the model (GBLUP-S, 0.25) or by fitting the most sig-
nificant marker as a fixed effect in the model (GBLUP-F, 
0.24).

Marker density and LD affects predictive ability 
of phenotypic variation and within‑family variation
Marker density (i.e. the number of markers) is usually 
considered as one of the most important factors affect-
ing GP performance [45]. However, in forest tree breed-
ing, the capture of the expected pedigree relationships 
(e.g. 0.25 among half-sib siblings), only requires a few 
thousand SNPs. Literature indicates that such a number 
of markers would also be enough to achieve an overall 
predictive ability similar to models utilizing all markers 
in the same batch of markers [13, 17, 46]. In such situa-
tions, a few thousand SNPs preselected based on GWAS 
or other prior information could instead improve the 
PA, especially for traits where several large-effect QTNs 
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have been found [17, 19, 40]. In theory, coefficients of the 
pedigree relationship matrix describe additive genetic 
relationships between individuals at quantitative traits 
loci [47], but in reality, it is not obvious to what extent the 
genomic relationship matrix explains a genetic covari-
ance matrix between individuals for QTLs, especially for 
a targeted trait.

In animal breeding, for example in cattle breeding, 
using imputed whole-genome markers appeared to cap-
ture similar phenotypic variation as using a ~ 60  k SNP 
array due to strong LDs between markers and QTL. 
But such observations were made only within a few cat-
tle breeds for a species with a moderate genome size, ca. 
3.1G [5]. Conifers usually have a much larger genome 
size, such as Norway spruce with 20G of the total 
genomic content [48]. And also, LD decay in tree-breed-
ing populations is much faster than in cattle-breeding 
populations. In this study, the extent of LD (r2 ≥ 0.2) was 
observed to be 42.9 kb when based on the 50 k SNP array 
used in this population (Fig. S1). Based on such an extent 
of LD between markers and QTLs, the 50  k SNP array 
only covered ca. 25% of genome size. This could be one 
of the reasons why the PA of GP did not reach the stand-
ard value of the square root of additive clone mean herit-
ability (Table 2) and why within-family and across-family 
PA was low for most of the studied traits (Table  4 and 
Fig. 4). In order to capture more Mendelian segregations 
between QTLs and makers, we would then need more 
markers for a successful marker preselection. For BB, as 
an example, the model with 100 pre-selected markers 
based on GWAS may have captured LD between markers 
and QTLs, and indeed captured a considerable amount of 
within-family variation in agreement with a few studies 
on other tree species [17, 19, 49].

Conclusion
Genomic selection with a marker preselection is consid-
ered an efficient approach in animal and tree breeding. 
For the budburst stage (BB), whose character within this 
study appeared to be oligogenic, a preselection of approx-
imately 100 SNPs based on the smallest p-values from 
GWAS, showed the highest predictive ability (PA). But 
for the other traits, approximately 2000–4000 preselected 
SNPs, indicated by the smallest Akaike information crite-
rion to offer the best model fit, still resulted in PA being 
similar to that of GP models using all markers. Analyses 
on both real-life and simulated data also showed that 
the inclusion of a large QTL SNP in the model as a fixed 
effect could improve PA and the accuracy of GP provided 
that the PVE of the QTL was ≥ 2.5%. Currently, most of 
the published marker resources designed for genomic 
selection in tree species, such as exome capture, geno-
typing-by-sequencing (GBS), and commonly designed 

SNP arrays did not consider the potential redundancy of 
some of the markers. Therefore, within such marker pan-
els, many markers could be in strong LD with each other, 
but still not being closely associated to QTLs. Therefore, 
using all available markers in a genomic model will not 
necessarily improve genomic prediction, and may even 
decrease the prediction power, such as was observed 
for the studied trait BB. Thus, we encourage perform-
ing a marker preselection step for genomic prediction, 
especially when whole genome sequencing data or whole 
genome-imputed markers data becomes available. Mean-
while, the inclusion of a large QTL SNP in the model as 
a fixed effect is also recommended in genomic selection.

Materials and methods
Plant materials
A Norway spruce breeding population using 32 control-
pollinated families from 49 parents was established in 
2007 at four different field sites. A total of 1430 unique 
clones were derived from the 32 families with an aver-
age of about 45 clones per family and about three ramets 
per genotype were originally planted in each site. The 
detailed descriptions of the four sites in this breeding 
population were presented in the published paper [21]. 
Generally, the field site series were established using a 
randomized incomplete block design with single-tree 
plots. Meanwhile, 98% of clones were replicated among 
the four sites. In this study, we selected all available 
clones from ten families (ca. 50 clones per family) and 
20 clones from each of the remaining 22 families (a total 
of 904 clones) from a single site S1389 (Rössjöholm) for 
genotyping (Table S5).

Phenotyping
Tree height was measured at field age six (HT6) at all four 
sites and at twelve years (HT12) at one of the sites. Diam-
eter at breast height (DBH) was measured at field age 
twelve at all four sites. Budburst stage (BB) was scored at 
field age six at three sites based on eight categories [50]. 
Pilodyn penetration (PILO) as a proxy of wood density 
was measured at a single site by Pilodyn 6 J Forest (PRO-
CEQ, Zurich, Switzerland) at field age twelve. Frost dam-
age (FD) was quantified at a specific single site because 
that site was exposed to a severe frost event at field age 
six. FD was scored as a categorical variable from zero 
(without frost damage) to three (the most severe dam-
age). The detailed descriptions of traits measured in each 
of the four sites are shown in Table S6.

Genotyping
Newly fresh needles were sampled from 904 clones in 
the spring of 2018. Total genomic DNA was extracted 
using the Qiagen plant DNA extraction protocol with 
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DNA quantification performed using the Qubit® ds 
DNA Broad Range Assay Kit (Qiagen, Oregon, USA). 
Genotypic data were generated using the Norway spruce 
Piab50K SNP array chip [51]. Genotype calling of the 
50 k Axiom array was performed as the description in the 
paper [51]. Here, missing SNPs were imputed by Beagle 
v4.0 [52].

Pedigree correction
Since a couple of clear discrepancies between the additive 
relationship and the genomic relationship matrices (A 
and Ga, respectively) were detected for some individuals, 
we performed a pedigree correction for this population 
based on A and a heatmap of Ga. The number of parents 
increased from 49 based on the documented pedigree to 
55 based on Ga and the number of families also increased 
from the original 32 to 56 (Table S5). Finally, the number 
of clones per family after correction varied from 1 to 56.

Spatial analysis
Spatial analysis based on a two-dimensional separable 
autoregressive (AR1) model was used to fit the row and 
column directions for phenotypic data from each site 
using ASReml v4.1 (Gilmour et  al., 2015). Block effects 
were estimated simultaneously. Adjusted data, where all 
significant block and spatial effects were removed, were 
used for downstream analyses.

Variance component and heritability estimates
Four univariate models were used to estimate variance 
components for each trait based on pedigree-based best 
linear unbiased prediction (PBLUP) and genomic-based 
best linear unbiased prediction (GBLUP) as following:

where y is the vector of adjusted phenotypic observa-
tions of a single trait; β is the vector of fixed effects, 
including a grand mean and site effects; a and d are 
the vectors of random additive and dominance effects, 
respectively;as and ds are the vectors of random additive-
by-site and dominance-by-site effects, respectively; exx is 
one of eaa, ead , andedd , which are the vectors of random 
additive-by-additive, additive-by-dominance, and dom-
inance-by-dominance epistatic effects, respectively; r is 
the vector of residual genotypic effects, referring to an 

(1)y = Xβ + Z1a+ Z2as + ε

(2)y = Xβ + Z1a+ Z2as + Z6r + Z7rs + ε

(3)y = X� + Z1a + Z2as + Z3d + Z4ds + Z6r + Z7rs + �

(4)
y = X� + Z1a + Z2as + Z3d + Z4ds + Z5exx+Z6r + Z7rs + �

un-dissectable combination of dominance and epistatic 
effects in Eq.  (2), epistatic effects in Eq.  (3), epistatic 
effects excluding exx effects in Eq.  (4); rs is the vector of 
residual genotypic-by-site effects; ε is the vector of ran-
dom residual effects. X, Z1 , Z2 , Z3 , Z4, Z5, Z6, and Z7 
are the incidence matrices for β , a, as , d, ds, exx , r, and 
rs, respectively (detailed descriptions in Supplemen-
tary methods S1).

Pedigree-based BLUP (PBLUP) models based on 
Eqs.  (1) to (4) are called as PBLUP-A, PBLUP-AR, 
PBLUP-ADR, and PBLUP-ADR-xx, respectively. PBLUP-
ADR-xx included three models of different epistatic 
effects called as PBLUP-ADR-aa, PBLUP-ADR-ad, and 
PBLUP-ADR-dd, respectively. Genomic-based BLUP 
models based on Eqs.  (1–4) could be called GBLUP-
A, GBLUP-AR, GBLUP-ADR, and GBLUP-ADR-xx, 
respectively.

The pedigree-based additive (A) and dominance (D) 
relationship matrices were produced using the AGH-
matix package [53]. The genomic-based additive ( Ga ) and 
dominance ( Gd ) relationship matrices were constructed 
based on imputed SNP data as described by [54] for Ga 
and by [55] for Gd using AGHmatrix package in R [53]. 
The relationship matrices due to the first-order epistatic 
interactions were computed using the Hadamard product 
(cell by cell multiplication, denoted #) and trace (tr) [56]. 
Due to the fact that several parents were represented 
only in a single controlled cross, a hypothetical unique 
rare allele present in such a parent (heterozygote) would 
only be passed to about half of its progeny. Thus, SNPs 
with a minor allele frequency (MAF) less than M/(2n) 
were filtered when calculating all the genomic matrices 
for GBLUP-models, where M is the harmonic number 
of clones per family and n is the total population size in 
each GP model. When applied to the whole population 
as in this case (n = 904), we filtered away SNPs with a 
MAF < 0.006. More detailed descriptions of the matrices 
are shown in Supplementary methods S2 whereas the 
estimates of genetic variance parameters are shown in 
Supplementary methods S3.

Association mapping
To check the additive genetic architecture of the six traits 
in the breeding population, we also performed GWAS 
based on clone mean values across-site for all traits using 
the multi-locus BLINK model [57] conducted in GAPIT 
V3.0 R Software package [58]. Huang et al. [57] consid-
ered that BLINK could simultaneously control the rates 
of false positives and false negatives even without add-
ing principal components or a genomic relationship in 
the model. Thus, we used a genomic inflation factor (i.e. 
λ, which is defined as the median of the resulting χ2 test 
statistics based on p-values from GWAS divided by the 



Page 13 of 16Chen et al. BMC Genomics          (2023) 24:147  

expected median of the χ2 distribution [59]) to check if 
BLINK has controlled both errors without adding both 
principal components and relationship matrix in the 
model. Because the observed genomic inflation factors 
(IF) all fell within the range 1 ± 0.05 (see QQ-plots in Fig. 
S3), we did not add any extra model terms to control a 
population structure and cryptic relationships. Also here, 
we filtered SNPs with MAF < 0.006 for the purpose of 
GWAS and thus, 46,482 SNPs were kept. The genome-
wide significance of associations was determined at an 
experiment-wise false discovery rate 0.05 according to 
Benjamini & Hochberg (1995) [60]. The percentage of 
phenotypic variance explained (PVE) for each significant 
association was obtained from results using a mixed lin-
ear model (MLM) conducted in GAPIT V3.0 R software 
package [58].

Linkage disequilibrium
Genome-wide analysis of linkage disequilibrium (LD) 
was conducted in the F1 full-sib progeny population. 
All SNPs were mapped onto the Norway spruce genome 
v2.0 (In preparation). Out of the 47,445 SNPs available 
from the Piab50K SNP array, 43,267 SNPs were success-
fully mapped and were evenly distributed across the 12 
chromosomes (Fig. 1a). The remainder 4,178 SNPs could 
not be correctly mapped to any chromosome. Therefore 
they were instead grouped together in a created dummy 
“chromosome 13” (Table S2). LD values for pair-wise 
SNPs within each chromosome were calculated using 
VCFtools [61]. A non-linear model was used to fit an LD 
decay trend based on the Hill and Weir formula [62].

Cross‑validation test
Due to the negligible effects of dominance, dominance-
by-site, and also first-order epistatic effects for all traits 
(Table S1), clone means calculated across-site were used 
as phenotype values to perform cross-validations. Ten 
sets of tenfold cross-validations were performed. In sum-
mary, we employed a model as below:

where y’ is the vector (904, 1) of the clonal means across-
site, β is the vector of fixed effects (grand mean and an 
eventual single-locus SNP effect), a is the vector of addi-
tive effects and ε is the vector of random residual effects. X 
and Z1 are the matrices related to the β and a. The random 
additive effects ( a ) were assumed to follow a ∼ N 0,Aσ 2

a  
with σ 2

a being the additive variance in PBLUP-A whereas 
the matrix A will be replaced by Ga in the GBLUP-A model.

The prediction ability (PA) was defined as the Pearson 
correlation between predicted breeding values (EBVs) 
and clonal means. Furthermore, we calculated the PA 

(5)y′ = Xβ + Z1a+ ε

for within-family predictions as Pearson correlations 
between the EBVs deviation from EBV family mean and 
the clonal mean deviation from the family means used as 
benchmark validation values. An estimate of the selec-
tion accuracy was calculated by dividing PA with the 
square root of the pedigree-based narrow-sense clonal 
mean heritability (PA/hc).

Testing the efficiency of genomic prediction
Marker density and maker preselection
To test the impact of the number of SNPs on the over-
all and within-family PA of GBLUP, we performed GPs 
using 14 subsets of SNPs (25, 50, 100, 200, 500, 1 K, 2 K, 
4 K, 8 K, 10 K, 20 K, 30 K, 40 K, and all SNPs) and using 
two different types of sampling strategies: 1) randomly 
selected SNP subsets and 2) SNP subsets selected based 
on the smallest p-values shown in the GWAS for addi-
tive effects using BLINK in the training population. We 
performed these steps in both the whole population with 
tenfold cross-validation replicated 10 times (n = 100) and 
in a subset population with 482 clones from the 10 largest 
families. The general model fit was evaluated by inspect-
ing their Aikake Information Criterion values (AIC) 
and the subset sample of markers showing the small-
est AIC-values were selected for further investigations 
(henceforth called GBLUP-S). In the subset population 
(n = 482), we filtered SNPs according to the previously 
mentioned principles thus filtering out all SNPs with 
MAF < 0.025. Consequently, 42,665 SNPs were kept for 
the GWAS used for marker preselection.

Different statistical models
For in depth investigations of the impact of marker prese-
lection, we tested and compared the efficacy for four dif-
ferent modelling approaches:

1) PBLUP-C: the traditional pedigree-based BLUP 
including pedigree correction.

2) GBLUP: a genome-based BLUP with a relationship 
matrix (Ga) estimated from all markers.

3) GBLUP-S: a genome-based BLUP with a Ga matrix 
estimated from a subset of preselected markers 
selected based on GWAS results generated for each 
training population separately. The number of pre-
selected markers depended on the perceived genetic 
architecture of each trait.

4) GBLUP-F: a genome-based BLUP with a Ga matrix 
estimated from all markers, except for the marker 
with the greatest significance (smallest p-value) 
which instead was included as a fixed regression 
effect. This single marker was selected from GWAS 
results based on each training population.
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ASReml-R v4.0.5 was used to perform cross-validations 
for the above four models. The Wald-F statistics was used 
to test the significance of the fixed regression/covari-
ate effect. In addition to the four approaches mentioned 
above, we also performed several extra strategies.

Relationship between training and validation sets
Compared with the previously random cross-validation 
strategy, another validation method entailed the predic-
tion of genomic breeding values of all progenies within a 
specific full-sib family based on model training using all 
the other families using GBLUP. In all, there were 32 such 
across-family cross-validation repeats and the relation-
ships between training and validation sets were thus con-
sistently weak (unrelated or half-sib). The PA within the 
validated family therefore largely depends on whether the 
model could capture the Mendelian segregation effects.

Family size (i.e. number of clones per family)
To test if an increase in family size could improve the PA 
of PBLUP-C and GBLUP, we randomly selected five to 
30 clones per family as a training set for the largest ten 
families with 48–56 clones per family (Fig. S4), using the 
remaining clones in the ten families as a validation set. 
This evaluation was performed both for regular PA and 
within-family PA and cross-validation was performed 
based on the corrected pedigree where the number of 
clones per family varied from 32 to 56 (Table S5).

Simulations of large‑effect SNPs and their inclusion 
in the genomic prediction model
To verify whether the inclusion of a major-effect locus 
as a fixed effect in the model would improve PA, we 
conducted finite-locus model simulations of a simpli-
fied breeding population undergoing one generation 
of directional selection. We used the software Meta-
gene [63] to simulate a genomic architecture of 15,000 
biallelic loci distributed along 12 chromosomes 
roughly like that of Norway spruce (see Supplemen-
tary methods S4 for details). The simulated breeding 
population comprised the crossing of 100 founders 
according to a single-pair-mating design produc-
ing 50 families and 2000 offspring individuals in the 
 F1-testing population. The heritability of the studied 
virtual trait was kept at 0.25 and an additional “major-
gene locus” was introduced into simulations where 
the PVE of this locus was set throughout the range 
0% (false-positive QTL), 0.25% (minor effect), 1.25%, 
2.5% and 5% (major true QTL). GP-models (according 
to Eq. 1) were trained and predictions were cross-vali-
dated according to the methods described in previous 
subsections. One set of models where the presumed 
major-effect locus was included as a fixed regression 

effect (GBLUP-F) was compared to a correspond-
ing set of models were the major-effect locus was not 
included (GBLUP).
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