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A B S T R A C T   

Seaweed is considered a potentially sustainable source of protein for human consumption, and rapid, accurate 
methods for determining seaweed protein contents are needed. Seaweeds contain substances which interfere 
with common protein estimation methods however. The present study compares the Lowry and BCA protein 
assays and protein determination by N-ratios to more novel spectroscopic methods. Linear regression of the 
height or the integrated area under the Amide II band of diffuse reflectance infrared Fourier transform spec-
troscopy (DRIFTS) was used to predict seaweed protein with good prediction performance. Partial least squares 
regression (PLSR) was performed on both DRIFTS and near-infrared (NIR) spectra, with even higher prediction 
accuracy. Spectroscopy performed similar to or better than the calculated N-ratio of 4.14 for protein prediction. 
These spectral prediction methods require minimal sample preparation and chemical use, and are easy to 
perform, making them environmentally sustainable and economically viable for rapid estimation of seaweed 
protein.   

1. Introduction 

1.1. Seaweed as a food source 

Seaweed has gained much attention as an efficient producer of 
biomass with a wide array of applications, with particular interest aimed 
at edible varieties for use as a sustainable food source (Mohamed, 
Hashim, & Rahman, 2012). The characterisation of seaweed biomass, 
however, requires rapid and accurate quantification methods. For 
nutritional purposes, the overall quantities of proteins, carbohydrates, 
fats and minerals are of particular interest. The percentage of total 
protein content tends to range between 5 and 30 % of dry weight 
(Angell, Mata, de Nys, & Paul, 2015). In most seaweed, the carbohydrate 
content usually makes up about 30–50 %, while many brown macro-
algae, especially kelp, contain as much as 60 % or even 70 % carbohy-
drates (Rioux & Turgeon, 2015). Although the ash content is species 
dependent, it is also controlled by environmental conditions. It typically 
ranges between 10 and 30 %, with 40 % in extreme cases (Ruperez, 

2002). The overall distribution of these macronutrient compounds, as 
well as the relative presence of essential minerals and vitamins, deter-
mine the suitability of seaweed for human consumption. 

To meet the growing need for sustainable food products on a global 
scale, seaweed is considered a food source with high potential. Seaweed, 
as a marine organism, does not compete with land crops for arable land 
and does not require freshwater. Seaweed is known to contain numerous 
bioactive compounds of nutritional interest, including pigments, poly-
phenolic compounds with high antioxidant and radical scavenging 
properties, considerable quantities of A, B, C and E vitamins and vita-
mins, as well as minerals like magnesium, potassium, calcium, iron, 
copper and iodine, which have many potential health benefits (Mac-
Artain, Gill, Brooks, Campbell, & Rowland, 2007; Mohamed, Hashim, & 
Rahman, 2012). Naturally, excessive consumption of minerals like so-
dium and iodine can have negative health impacts, and so the type and 
quantity of seaweed consumed should be taken into consideration 
(MacArtain, Gill, Brooks, Campbell, & Rowland, 2007). For centuries, 
seaweed has been cultivated as a food source in enormous quantities in 
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Asia, with the largest present-day production taking place in China, 
Indonesia, the Philippines, Korea and Japan (Nayar, 2014). In contrast, 
the adoption of seaweed as a staple food has remained relatively un-
common in Western countries. 

For nutritional purposes, proteins are of particular interest. A high 
protein content, with amino acids being critical for many physiological 
and metabolic functions, is seen as a sign of high nutritional value. 
Therefore, protein deficiency leads to detrimental effects for human 
health, such as the loss of muscle mass, stunted growth in children and 
impairment of immune system responses (Arnold, Vladutiu, Kirby, 
Blakely, & Deluca, 2002; Li, Yin, Li, Kim, & Wu, 2007; Paddon-Jones & 
Rasmussen, 2009). Red meat, as one of the most common protein 
sources, however, is associated with an increase in the probability of 
cardiovascular disease and type-2 diabetes (Bernstein, Sun, Hu, 
Stampfer, Manson, & Willett, 2010; van Dam, Willett, Rimm, Stampfer, 
& Hu, 2002). Therefore, the replacement of protein from red meat with, 
for instance, plant-based sources, such as legumes and seaweed, is 
desirable to reduce the risk of these common diseases (Hu, 2003; Song, 
Fung, Hu, Willett, Longo, Chan, et al., 2016). Moreover, the carbon 
footprint of seaweed cultivation is considerably lower than that of ani-
mal farming, making it a more sustainable protein source (Rawiwan, 
Peng, Paramayuda, & Quek, 2022). 

1.2. Use of seaweed as a health additive 

The quality of seaweed proteins used as human health food has been 
the subject of extensive research in the last several decades (Fleurence, 
1999; Rawiwan, Peng, Paramayuda, & Quek, 2022). The bioavailability 
of proteins from seaweed varies from species to species and it is often 
relatively low due to the strong association of proteins with fibres 
(MacArtain, Gill, Brooks, Campbell, & Rowland, 2007). Seaweed protein 
bioavailability has been shown to be drastically improved by fermen-
tation or enzymatic treatments (Bleakley & Hayes, 2017). Moreover, 
studies showed that patients on diets such as the Okinawan diet, which 
incorporate considerable quantities of seaweed, legume and vegetable 
consumption in conjunction with low meat and dairy consumption, tend 
to have very low incidence of cardiovascular disease, cancer, diabetes 
and many other diseases (Willcox, Willcox, Todoriki, & Suzuki, 2009). 
Recent research also indicates a reduction in the glycaemic potential of 
refined grain foodstuffs, such as rice and bread, in diets supplemented 
with seaweed (Lu & Chen, 2022). This provides evidence of the health 
benefits of the regular consumption of seaweed, although further 
research into the exact health effects of seaweed consumption is still 
needed (Murai, Yamagishi, Kishida, & Iso, 2021). 

1.3. Protein content estimation 

Accurate protein content estimation in both plant and algal samples 
can be difficult due to the presence of numerous bioactive substances 
that interfere with the measurements and are co-extracted along with 
proteins (Barbarino & Lourenço, 2005; Lucarini & Kilikian, 1999). 
Furthermore, many algae species accumulate large quantities of salt, 
which may also interfere with protein solubility and reduction reactions 
with copper cations (Lucarini & Kilikian, 1999). There is also a potential 
problem of inefficient extraction from algae due to recalcitrant cell walls 
requiring extensive cell disruption methods to break and the presence of 
phycocolloidal substances that hinder protein solubility (Barbarino & 
Lourenço, 2005). Precipitation protocols are typically used to concen-
trate proteins while removing unwanted substances, rendering the 
sample more suitable for protein quantification. The choice of precipi-
tation method affects how well proteins are precipitated and what non- 
proteinaceous compounds will be removed from the extracts (Koontz, 
2014; Mechin, Damerval, & Zivy, 2007). 

There are a wide variety of methods for the quantification of proteins 
that rely on a great variety of mechanisms for detection. Although all 
available methods have advantages and disadvantages, colorimetric 

methods still tend to be commonly used due to low costs and ease of use. 
Despite the estimation by nitrogen (N) ratios being arguably-one of the 
quickest methods, it is unreliable due to the well-known differences in 
the protein-to-N ratio among species and even between different growth 
phases within one species (Forbord, Matsson, Brodahl, Bluhm, Broch, 
Handå, et al., 2020). Attempts have been made to define a relatively 
universal N-conversion factor for all algae (Finkel, Follows, Liefer, 
Brown, Benner, & Irwin, 2016), with a commonly accepted seaweed N 
ratio of 5 (Angell, Mata, de Nys, & Paul, 2015). For rapid estimation, a 
relatively accurate N ratio is highly useful if one has access to the 
necessary instrumentation for N analysis. Another rapid method of 
protein estimation is to measure the UV absorbance of a crude protein 
extract. This method, however, is also heavily prone to biases because 
the measurements at 280 nm are significantly influenced by the pres-
ence of nucleic acid residues, while the peptide absorbance band at 
200–210 nm can be affected both by the buffer and impurities in the 
extract (Goldring, 2012). The issue of nucleic acid interference can be 
compensated for using the 280/260 nm absorbance ratios (Groves, 
Davis, & Sells, 1968). The UV280 absorbance of proteins depends on the 
presence of tyrosine, tryptophan and, to a lesser extent, phenylalanine 
(Goldring, 2012). This means that the absorbance differs substantially 
from protein to protein, making an unknown mixture of protein hard to 
estimate. In seaweed, where tyrosine and tryptophan tend to be lacking 
and phenylalanine would be the main contributor to UV280 protein 
absorbance (Lourenço, Barbarino, Lavín, Lanfer Marquez, & Aidar, 
2004), this method is particularly unreliable. Acid hydrolysis and 
quantification of total amino acids by mass spectrometry are considered 
one of the most reliable methods for protein quantification and are 
typically used as the basis for calculating N-ratios (Angell, Mata, de Nys, 
& Paul, 2015; Finkel, Follows, Liefer, Brown, Benner, & Irwin, 2016; 
Forbord, et al., 2020; Lourenço, Barbarino, Lavín, Lanfer Marquez, & 
Aidar, 2004). The total quantity of bound amino acids corresponds to 
the total amount of proteins, but this method requires access to costly 
equipment, considerable labour time and chemicals, as well as technical 
knowledge of how to perform the analysis. 

1.4. Spectroscopy for quantitative analysis 

Various types of spectroscopy have also been used for the quantifi-
cation of biochemical compounds, including proteins, fatty acids and 
carbohydrates. The infrared spectrum is particularly useful for this 
purpose because it contains numerous distinct signatures of functional 
groups associated with these compounds (Schmitt & Flemming, 1998). 
Spectroscopic techniques can also be used for the quantitative analysis 
of individual substances, such as pharmaceuticals and specific poly-
saccharide species, as opposed to being useful only for broader com-
pound classes, such as total protein (Strachan, Rades, Gordon, & 
Rantanen, 2007). The use of these techniques in microalgae has also 
been widely explored within the past decade (Feng, Zhang, Cheng, Xu, 
Zhang, & Chen, 2013; Ferro, Gojkovic, Gorzsas, & Funk, 2019; Horton, 
Duranty, McConico, & Vogt, 2011), while less work has focused on the 
quantification of proteins in seaweed biomass. Studies have involved the 
use of nuclear magnetic resonance (NMR) spectroscopy techniques for 
measuring value-added compounds like pigments in seaweed extracts 
(Rajauria, Foley, & Abu-Ghannam, 2017). In contrast, only a few studies 
have used near-infrared (NIR) and Fourier-transform infrared (FTIR) 
spectroscopies for the analysis of seaweed samples. FTIR spectroscopic 
techniques have been applied to the quantification of the primary 
components of ulvan polysaccharides in extracts from Ulva spp., 
including rhamnose, xylose, glucuronic acid and sulphate (Robic, Ber-
trand, Sassi, Lerat, & Lahaye, 2008). Recently, the use of these tech-
niques for protein estimation has been demonstrated directly in seaweed 
samples (Campbell, Ortuño, Koidis, & Theodoridou, 2022), providing 
support for a more reliable method for protein measurements in seaweed 
with minimal sample preparation and chemical use. 

The present study evaluates the drawbacks of commonly used 
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colorimetric protein assays for protein content determination in five 
common, edible seaweed species harvested for human food. We inves-
tigated the use of N ratios for the estimation of protein content and 
compared it to spectroscopic prediction methods. Univariate, simple 
linear regression was used to predict the protein content based on the 
signal intensity of the Amide II band of the FTIR spectra, and multi-
variate partial least squares regression (PLSR) was used to create protein 
prediction models using both FTIR and NIR spectroscopic data. This 
study therefore presents one of the most comprehensive works to date on 
methods for the quantification of protein content in seaweed. We also 
evaluate the use of in situ (i.e., extraction free), non-destructive, fast, 
environmentally sustainable, easy-to-perform spectroscopic methods for 
high-throughput, low cost and accurate protein estimation as potential 
replacements for unreliable traditional methods. 

2. Materials and methods 

2.1. Chemicals 

Lowry reagent A (2 % (W/V) anhydrous Na2CO3 in 0.1 M NaOH), 
Lowry reagent B (1 % (W/V) NaK tartrate tetrahydrate) and Lowry re-
agent C (0.5 % (W/V) CuSO4 pentahydrate) were prepared and stored at 
room temperature (RT). Lowry reagent D was prepared fresh for each 
experiment by mixing reagents A:B:C in a ratio of 48:1:1. 
Folin–Ciocalteu’s phenol reagent was prepared fresh in a 1:1 dilution of 
a 2 N stock in MQ water. TCA water solutions were stored at 4 ◦C, while 
TCA acetone solutions were prepared fresh on the day of use to avoid 
acetone evaporation. When used, 2-mercaptoethanol (2ME) was added 
to precipitation solution stocks the same day as each experiment, as 2ME 
is unstable in the solution (Foroumadi & Saeedi, 2014). The acetone 
used for the assays was kept at − 20 ◦C whenever possible to ensure 
maximum precipitation efficiency. The bicinchoninic acid (BCA) assay 
was performed using the Pierce BCA Protein Assay Kit (Thermo Fisher, 
Waltham, MA, US). All chemicals were of analytical grade and were 
purchased from Merck Group (Darmstadt, Germany) unless otherwise 
specified. 

2.2. Seaweed cultivation and harvest 

Seaweed samples were collected primarily from Norway and the 
Faroe Islands, with some additional Alaria esculenta samples supplied 
from Connemara, Ireland. The sample set contained a mixture of wild 
and cultivated seaweed, dried by either freeze-drying or hot air drying. 

2.2.1. Norwegian seaweed sampling 
Wild Palmaria palmata, Laminaria digitata and A. esculenta samples 

from Tromsø were collected on the island of Tromsøya (69◦37′37′′ N, 
18◦54′55′′ E), Norway, in April 2021.. Cultivated Saccharina latissima 
samples were grown at Kvaløya (69◦45′36′′ N, 19◦2′56′′ E) and harvested 
in August 2017.. Precise conditions for cultivation and drying are 
described by Matsson et al. (2021). Dry samples were stored at room 
temperature until analysis. 

Samples of P. palmata, L. digitata, A. esculenta and S. latissima were 
collected from Mørkvedbukta (67◦16′32′′ N, 14◦34′10′′ E) in Bodø, 
Norway. The seaweed was rinsed with running seawater to remove 
epibionts, followed by freezing at − 80 ◦C prior to freeze-drying at −
55 ◦C. 

2.2.2. Faroese seaweed sampling 
Alaria esculenta and S. latissima were cultivated on Kaldbaksfjørður at 

TARI’s cultivation location (62◦03′33′’N, 6◦49′05′’W). The A. esculenta 
samples were harvested on 14 June 2019, 27 May 2020, 12 June 2020 
and 24 June 2020. S. latissima was harvested on 11 June 2020. 

Himanthalia elongata, L. digitata, P. palmata and Porphyra umbilicalis 
were all harvested from natural populations. H. elongata was harvested 
from Tjørnuvík (62◦17′49′’N, 7◦08′40′’W) on 20 July 2018 and from 

Gøtugjógv (62◦11′26′’N, 6◦44′49′’W) on 15 July 2020. L. digitata was 
harvested from Oyragjógv (62◦06′36′’N, 7◦09′37′’W) on 15 August 
2019. P. palmata and P. umbilicalis were harvested from Oyragjógv on 19 
August 2020 and 15 July 2020, respectively. 

All harvested biomass was transported in boxes to the commercial 
drying facility at Faroe Marine Products and dried in closed rooms with 
warm air blowing and temperatures below 30 ◦C for 48–72 h. 

2.3. Cell disruption and sample homogenisation 

To ensure sample homogeneity and effective cell disruption, the 
seaweed samples were submerged in liquid nitrogen (N2) and ground 
into flakes using a mortar and pestle. The flakes were loaded into a liquid 
N2-cooled, 50 mL stainless steel ball grinder chamber along with a steel 
ball with a diameter of 20 mm. The flakes were then milled using a Mixer 
Mill MM 400 (Retsch GmbH, Haan, Germany) at a frequency of 25 Hz for 
2–3 min until the full sample had reached a particle size small enough to 
pass through a 200 µm sieve. Milled samples were then stored in a dark, 
dry atmosphere in the presence of desiccants until analysis to prevent 
photodegradation and to reduce the moisture content that may have 
been absorbed by condensation during liquid N2-grinding. 

2.4. Precipitation and purification of proteins 

To evaluate the ability of common precipitation methods to reduce 
interference in the Lowry and BCA assays, two different protocols for 
protein precipitation from plants and algae were used. These two 
methods were also compared to the direct quantification of unprecipi-
tated samples. 

2.4.1. TCA precipitation 
A TCA precipitation protocol was adapted from Koontz (2014), with 

some alterations to the volumes of TCA and acetone, precipitation 
duration, and centrifugation parameters. Proteins were precipitated 
from 5 mg dried seaweed powder by suspension in 1.8 mL of a 6 % TCA 
solution in water (w/v), followed by incubation at 4 ◦C for 1 h. The 
samples were centrifuged at 14,000 × g for 20 min at 4 ◦C, and the 
supernatant was removed by vacuum aspiration through a thin needle, 
taking care not to disturb the pellet. The precipitated proteins were 
washed twice with 1.8 mL of ice-cold acetone to remove traces of TCA, 
which might affect later re-solubilisation. The acetone was vacuum- 
aspirated after centrifugation, and the remaining acetone traces were 
evaporated for 20 min. 

2.4.2. TCA–acetone–2ME precipitation 
TCA and acetone are commonly used in conjunction for protein 

precipitation, as they precipitate proteins by different mechanisms and 
because acetone is easier to remove from the resulting protein pellet 
than TCA using evaporation (Mechin, Damerval, & Zivy, 2007). The 
addition of 2ME to the precipitation mixture can further aid precipita-
tion by disrupting tertiary protein structures and exposing the hydro-
phobic amino acid residues that are normally unexposed to the polar 
solvent (Foroumadi & Saeedi, 2014). A TCA–acetone–2ME precipitation 
protocol was thus adapted from Méchin et al. (2007), with slight alter-
ations to ensure that the same solubilisation protocol was applied to all 
methods. Briefly, 5 mg dried seaweed powder was covered in 1.8 mL 
TCA–acetone–2ME solution (10 % TCA (w/v), 0.07 % 2ME (w/v) in 
acetone) and stored at − 20 ◦C for 1 h. The samples were centrifuged as 
above, and the supernatant was removed by vacuum aspiration. Pellets 
were washed twice with 1.8 mL of rinsing solution (0.07 % 2ME in 
acetone) to remove trace TCA. After vacuum aspiration, the residual 
acetone was evaporated for 20 min. 

2.4.3. Re-solubilisation 
For both the Lowry and BCA assays, the precipitated proteins and the 

non-precipitated seaweed powders were dissolved in 1 mL of the Lowry 
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D reagent. As this reagent is an alkaline suspension buffer that is largely 
identical to the one used in the BCA assay, albeit with differing CuSO4 
contents, it was determined to be a suitable initial solubilisation buffer 
prior to both assays. The samples were heated at 55 ◦C for 180 min with 
occasional vortexing to help disrupt clusters, as determined to be 
optimal by Slocombe et al. (2013) for full solubilisation without 
degradation. The samples were then allowed to cool to room tempera-
ture and centrifuged at 15,000 × g for 15 min at room temperature to 
pellet cell debris and other insoluble components. 

2.5. Lowry protein assay 

The Lowry assay used in this study was based on a modified protocol 
by Slocombe et al. (2013). Briefly, protein precipitates were re- 
solubilised in 1 mL Lowry reagent D. Twenty microliters of the protein 
extract was transferred to a fresh tube and 980 µL Lowry reagent D was 
added to reach a volume of 1 mL. After 10 min of incubation at RT, 100 
µL Folin–Ciocalteu reagent (diluted from 2 N in water, 1:1) was added, 
and the samples were vortexed immediately. This mixture was incu-
bated at RT for 30 min; 200 µL was transferred to a 96-well microplate 
and the absorbance was measured at 750 nm using an Epoch 2 micro-
plate reader (Biotek, Winooski, VT, USA). A calibration curve consisting 
of bovine serum albumin (BSA) with a concentration range from 250 to 
1500 µg mL− 1 was used to determine the protein concentration of the 
samples. This is a range that is likely sufficient for macroalgal samples, 
as it corresponds approximately to a protein content range of 5–30 % by 
DW, assuming a sample amount of 5 mg is used. This range needs to be 
adjusted to obtain higher amounts of protein or to use a larger sample. 
The calibration curve began to lose linearity at concentrations above 
2000 µg mL− 1. 

2.6. Bicinchoninic acid protein assay 

The BCA assay was performed using a Pierce BCA Protein Assay Kit 
(Thermo Fisher), according to the manufacturer’s instructions, with 
some minor adaptations. As previously mentioned, the proteins were 
initially solubilised in the alkaline Lowry D reagent prior to the assay. In 
brief, 100 µL of this protein solution was transferred to a 2 mL micro-
centrifuge tube, and 2 mL of the BCA Working Reagent was added. The 
reaction was carried out at 37 ◦C for 30 min, as recommended by the 
manufacturer. Samples were cooled to room temperature for 30 min 
prior to the transfer of 200 µL to a 96-well microplate. Absorbance was 
measured at 562 nm using an Epoch 2 microplate reader (Biotek). 

2.7. Nitrogen analysis 

Nitrogen analysis of all seaweed samples was undertaken using 
Elemental Analyser Isotope Ratio Mass Spectrometry (EA-IRMS). The 
linear relationship between nitrogen and protein in seaweed species was 
verified by simple linear regression. An average N-ratio was calculated 
from all samples and used to estimate the error of using this ratio for 
protein estimation. Species-specific N-ratios were also determined and 
analysed by ANOVA to determine whether there were statistically sig-
nificant differences in N-ratios between species. N-ratios were only 
calculated for species with three or more individual samples, and as 
such, P. umbilicalis was excluded, as these were from a single, bulk 
harvest. 

2.8. Amino acid analysis 

Bound and free amino acids were quantified by liquid chromatog-
raphy tandem mass spectrometry (LC-MS/MS) at the Swedish Metab-
olomics Centre, Umeå, Sweden. The sum of free and bound amino acids 
was used as an estimation of total protein, and this was used as a 
benchmark for comparing the other methods. For comparison to the 
colorimetric assays and for infrared spectroscopic modelling however, 

only bound amino acids were used. This was done as the colorimetric 
assays in principle should react primarily with peptide bonds, and the 
spectral signatures also depend on chemical structures specific to poly-
peptides rather than free amino acids. 

2.9. Diffuse reflectance Fourier transform infrared spectroscopy 
(DRIFTS) 

Fourier transform infrared (FTIR) spectroscopy was evaluated as a 
potential method for estimating protein content in dried macroalgae. 
Measurements were carried out using a previously described protocol 
(Gorzsas & Sundberg, 2014). The dried algae were mixed with potas-
sium bromide (KBr) to a ratio of approximately 1:10 algae:KBr and 
ground to a homogenous powder using an agate mortar and pestle. 
DRIFTS measurements were performed using an IFS 66 v/S vacuum 
spectrometer (Bruker Optik GmbH, Ettlingen, Germany), covering the 
4000–400 cm− 1 spectral region at a resolution of 4 cm− 1. A total of 128 
scans were co-added, and pure KBr was used as a background and 
automatically subtracted by the software operating the instrument 
(OPUS, version 5, Bruker Optik GmbH). 

The recorded spectra were exported as.mat files and processed using 
MCR-ALS GUI, available at the Vibrational Spectroscopy Core Facility, 
Department of Chemistry, Umeå University (v4c, https://www.umu.se/ 
en/research/infrastructure/visp/downloads/) in MATLAB (version 
R2017b, MathWorks, Natick, MA, USA). All spectra were cut to the 
800–1800 cm− 1 range (fingerprint region) to focus on specific bands 
strongly related to fatty acids, carbohydrates and proteins (the primary 
biochemical components of algal biomass) and to minimise potential 
baseline correction and normalisation difficulties over the unspecific 
-O–H vibrations in the high wavenumber region of the spectra. The cut 
spectra were baseline corrected using asymmetric least squares (AsLS) 
(lambda = 20 000, p = 0.001). Baseline-corrected spectra were nor-
malised for the total area in the cut spectral range. Processed DRIFTS 
spectra were used for both simple linear regression and PLSR modelling. 

FTIR spectra contain spectral bands that are more or less diagnostic 
of specific classes of compounds due to the unique vibrational signatures 
of their functional groups in a matrix of substances (e.g., amide func-
tions of proteins and carboxylic acid moieties of fatty acids). Typically, 
the strongest band for the quantification of protein using FTIR spectra in 
the fingerprint region is the Amide I band centred around 1650 cm− 1 

(largely due to the contribution from the -C––O stretching vibrations in 
the peptide bonds (Schmitt & Flemming, 1998)). In brown seaweed, 
however, this band is less suitable for rapid quantification purposes, as it 
heavily overlaps with large bands from alginate (Taha, Aiedeh, Al-Hiari, 
& Al-Khatib, 2005) (Fig. 1), a very abundant uronic acid polysaccharide 
typical of the cell walls of brown seaweed (Rioux & Turgeon, 2015). As 
such, univariate linear regression using Amide I band intensity was not 
possible in these seaweed samples. However, the Amide II band between 
approximately 1485 cm− 1 and 1565 cm− 1 (largely stemming from N–H 
and C–N bending vibrations within peptide bonds (Schmitt & Flem-
ming, 1998)) appeared to be relatively free from interference from 
alginate. Thus, while generally weaker and at times broader than the 
Amide I band, the Amide II band was chosen for univariate protein 
estimation for these samples. 

2.10. Near-infrared spectroscopy (NIR) 

Near-infrared (NIR) spectroscopy was also investigated as a rapid 
method of protein quantification. NIR spectra were measured on dry 
seaweed powder using a LabSpec ASD NIR spectrophotometer (Portable 
Analytical Solutions, Copacabana, NSW, Australia) equipped with a 
contact probe. Spectra were captured from 350 to 2500 nm at a reso-
lution of 1 nm, after blanking with pure white reference blank supplied 
by the manufacturer. The spectral region was trimmed to 1000–2500 nm 
to remove interference from the visible spectrum. Standard normal 
variate (SNV) normalisation was performed on the cut spectra to 
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normalise spectral intensities. Measurements were done in triplicate for 
each sample and the spectra were averaged. Processing was done using 
Evince software (Prediktera AB, Umeå, Sweden). 

The NIR spectrum is not as easily used for univariate prediction as 
the FTIR spectrum, as the absorbance bands are less characteristic of 
specific compound classes present in biological materials. As such, the 
NIR spectra obtained in this study were analysed using only PLSR. 

2.11. Statistical analyses 

2.11.1. ANOVa 
A one-way analysis of variance (ANOVA) was performed to deter-

mine the statistical significance of discrepancies between protein esti-
mation by amino acid quantification and colorimetric protein assays. A 
one-way ANOVA was also used to compare the median N ratios of the 
seaweed species assayed in the study. All ANOVA analyses were per-
formed using Excel (Microsoft, Redmond, WA, USA) with the Analysis 
ToolPak add-in (Microsoft). 

2.11.2. Simple linear and partial least squares regression (PLSR) 
Simple linear regression analysis was used to calculate a model for 

the prediction of protein content using either the integrated area under 
or the height of the Amide II band from the DRIFTS spectra and the 
experimentally determined amino acid concentrations. Regression 
analysis was performed using RStudio software (Rstudio, Boston, MA, 
USA). Figures were made using the ggplot2 package (https://ggplot2. 
tidyverse.org) and exported using the Cairo package (https://CRAN.R- 
project.org/package=Cairo). 

Complex biological samples tend to contain a wide variety of 

compounds with overlapping spectral signatures. For this reason, 
multivariate statistical methods are often used when quantification of a 
specific compound or compound class is desired, as they consider mul-
tiple variables or spectral bands rather than relying on one specific peak. 
PLSR is a robust method recommended in cases where the sample con-
tains unknown components and there are many variables (Strachan, 
Rades, Gordon, & Rantanen, 2007). Spectroscopic quantification by 
PLSR is typically done by constructing a model using a set of calibration 
samples with known concentrations of the target analyte. The model was 
then used to predict a set of external validation samples, and the accu-
racy of this prediction was used to judge the suitability of the model for 
the prediction of future samples. 

The optimal number of PLSR components was selected by leave-one- 
out cross-validation (CV). Component numbers from 1 to 10 were cross- 
validated and the one with the lowest root mean square error of cross- 
validation (RMSECV) was selected. No more than 10 components were 
investigated, as an exceedingly high component number in comparison 
to the number of samples used for calibration increases the likelihood of 
overfitting by including noise in the model, thereby decreasing the 
overall general predictive strength. For the DRIFTS data, 7 components 
were determined to be optimal, while 5 had the lowest RMSECV using 
NIR data. 

For both PLSR and simple linear regression analyses, 10 out of 45 
samples were set aside for validation, while the remaining 35 were used 
to calibrate the prediction model. Validation samples were selected 
through random number generation (each sample was assigned a 
random number from 1 to 45, and numbers 36–45 were used for vali-
dation). The calculated model was tested against these 10 validation 
samples to estimate the prediction accuracy. The resulting root mean 
square error of prediction (RMSEP), as well as the predicted R2 value 
was used to indicate the predictive capability of the model. PLSR anal-
ysis was performed using Rstudio software (Rstudio) with scripts from 
the PLS package (v. 2.8–0, https://CRAN.R-project.org/package=pls). 
The mean relative error of the predicted samples was also compared 
between the different protein prediction methods. 

3. Results 

3.1. Total protein and amino acid quantification 

Bound and free amino acids in seaweeds were determined by LC-MS/ 
MS, and the distribution of amino acids in five seaweed species is shown 
in Fig. 2. The quantity of each identified amino acid was summed up to 
determine total protein contents. The protein contents of the 45 samples 
analysed had a wide range from 3.19 % to 22.41 %, with a mean stan-
dard deviation of 0.22. The majority of samples were within a range of 
8.99 % to 13.75 % with a median of 10.20 %. The majority of amino 
acids were in bound form, which is to say incorporated into peptide 
chains. 

3.2. Colorimetric protein assays 

The comparability of the BCA and Lowry assays with the total amino 
acid by the LC-MS/MS analysis with respect to the protein quantification 
was investigated. Two methods of protein precipitation prior to colori-
metric analysis were also compared to the direct analysis of unprecipi-
tated samples. The ratio of the colorimetric estimates to the amino acid 
measurements was calculated to determine the degree of deviance from 
the expected result. Fig. 3 shows the calculated ratio of colorimetric 
protein estimation to total amino acid measurements. Compared to the 
amino acid contents, the protein contents of the three species of brown 
seaweed tended to be overestimated by the Lowry assay (1.79, 1.78 and 
1.54-fold in A. esculenta, H. elongata and S. latissima, respectively), an 
effect that was lessened by precipitation with TCA and further improved 
slightly by combined precipitation with TCA, acetone and 2ME. How-
ever, neither precipitation method was able to decrease the 

Fig. 1. Representative spectra of a brown and a red seaweed species. 
A. esculenta (dark blue line) from the Faroe Islands and P. palmata (light red 
line) from Bodø, Norway. a) Processed DRIFTS spectra. The overlapping bands 
of from proteins (Amide I) and alginate C––O stretches at approximately 1665 
and 1620 cm− 1, respectively, are indicated. b) SNV-corrected NIR spectra. (For 
interpretation of the references to colour in this figure legend, the reader is 
referred to the web version of this article.) 
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Fig. 2. Amino acid profiles of five Faroese seaweed species. Profiles are presented as percentage of total identified amino acids by weight. Error bars indicate 
standard deviation of triplicate analyses. 

Fig. 3. Ratios of total protein estimated by colorimetric assays compared to total amino acids. Protein contents estimated by the a) Lowry and b) BCA assays, 
using different precipitation methods in five different seaweed species. Y-axis indicates the ratio of estimated protein to AA content, and the dashed line indicates a 
1:1 ratio. Error bars indicate standard deviation of triplicate analyses. Asterisks show significant deviation from amino acid contents, * = p < 0.05, ** = p < 0.01. 
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overestimation to below 1.3-fold. The two species of red seaweed, in 
contrast, could be more accurately estimated by the Lowry method, with 
a relatively lower overestimation in both species (1.12-fold in P. palmata 
and 1.14-fold in P. umbilicalis). Precipitation with TCA led to underes-
timation (1.18-fold in both species), while TCA–acetone–2ME produced 
no significant difference from the amino acid measurements. The Lowry 
assay showed high repeatability, with a mean standard deviation of ±
0.44. 

The BCA assay resulted in an even greater overestimation in the 
brown seaweed species (approx. 2-fold in both A. esculenta and 
H. elongata), except for S. latissima, which was slightly underestimated 
by this method (1.08-fold). The underestimation was worsened by both 
precipitation methods (1.31-fold with TCA and 1.27-fold with 
TCA–acetone–2ME). The red seaweed species were more accurately 
estimated by the BCA assay than by the Lowry assay, showing no sig-
nificant difference from the amino acid measurements. However, pre-
cipitation had adverse effects on quantification in the red seaweed 
species, leading to significant underestimation (1.27 and 1.22-fold in P. 
palmata and P. umbilicalis, respectively, using TCA and 1.07 and 1.23- 
fold, respectively, using TCA–acetone–2ME). The BCA assay showed a 
somewhat higher mean standard deviation than the Lowry assay, at ±
0.53, implying slightly lower repeatability. 

3.3. Prediction of protein content by nitrogen ratio 

The ratio of protein to N content in five seaweed species was deter-
mined. The average N-ratio for all 45 samples was 4.14 (±0.43 SD) with 
a mean relative error of approx. ± 0.0211 %, indicating considerable 
differences between species. H. elongata had the lowest N-ratio (3.46 ±
0.42), while A. esculenta had the highest (4.49 ± 0.23), indicating quite 
a wide span depending on the species in question. All N-ratios are pre-
sented in Table 1. One-way ANOVA was performed to compare the N 
ratios of A. esculenta, S. latissima, H. elongata, L. digitata and P. palmata, 
which indicated that there was a statistically significant difference be-
tween at least two of the assayed species (F = 10.83935, P = 6.45•10− 6). 
Individual t-tests were performed on each pairwise combination, indi-
cating a significant difference between A. esculenta and S. latissima, as 
well as between A. esculenta and L. digitata. Thus, it appears that a 
universal N-ratio is not applicable due to certain differences between 
species. 

3.4. Seaweed protein estimation by FTIR and NIR spectroscopy 

Using univariate linear regression, a protein prediction model was 
constructed from amino acid data and the intensity of the FTIR Amide II 
band. Both the integrated area of the band (1485 to 1570 cm− 1) and the 

height of its apparent maximum (at 1540 cm− 1) were investigated as 
potential univariate predictors of protein content. The peak height and 
integral performed similarly, with RMSEP of 1.51 and 1.49, respectively. 
Judging by predictive error, it appears that peak height is more accurate 
for univariate prediction than peak area. The mean relative error was 
also calculated, and was approx. ± 0.0261 % and ± 0.0244 % for the 
peak height and integral, respectively, implying a somewhat higher 
experimental error for the peak height. Both univariate DRIFTS analyses 
were also slightly less accurate than the use of N-ratio for protein esti-
mation. The linear regression analysis of the DRIFTS data is summarised 
in Table 2. The unsuitability of the Amide I band for univariate protein 
estimation in brown seaweed is demonstrated in Fig. 1 and Fig. 4a, as it 
so heavily overlaps with an interfering peak from what is likely to be 
alginate. The example Palmaria palmata sample in Fig. 1 contained 
nearly twice the protein content of the A. esculenta sample, but the 
Amide I peak was of comparable signal intensity. The intensity of the 
Amide II peak at approximately 1540 cm− 1, however, appears consid-
erably more representative of the relative protein content. 

Protein was also predicted using PLSR of both DRIFTS and NIR 
spectra. The PLS models constructed from the amino acid data of 35 
samples were used to predict the total protein content in 10 validation 
samples. Leave-one-out CV indicated an RMSEC of 0.92 for DRIFTS 
calibration using 7 PLS components. The RMSEP for the validation 
dataset was 1.24, with a protein content range of 4.5–21.8 %. With the 
same calibration set, the optimal component number for PLSR using NIR 
data was 5, resulting in an RMSEC of 1.26. The RMSEP for the validation 
set was 1.19, implying a slightly lower error than the DRIFTS model. The 
mean relative error calculated for PLSR prediction using DRIFTS and 
NIR was just below ± 0.01 % for both methods. The key results from the 
PLSR analyses are summarised in Table 2. 

The regression coefficients clearly identified positive correlation to 
the major protein bands (amide I, II and III, at ca. 1640, 1550 and 1230 
cm-1, respectively) (Fig. 4a). On the other hand, negative correlations 
featured bands originating from -C–H and = C–H vibrations (1330 and 
1460 cm-1, respectively) as well as from -C––O (around 1720 cm-1), 
which can all be associated to (saturated and unsaturated) fatty acids. 
While the positive correlation to amide bands would suggest that single 
band intensity evaluations of these bands could be sufficient to protein 
content estimation, our work shows that this is not that simple. For 
example, the amide I band that is commonly used for protein content 
estimation cannot be used in this case. The amide II (which also has a 
higher correlation to protein content in the PLS model) works better, and 
indeed can provide a rough estimate quickly, albeit not as accurate as 
the PLS model (Table 2). 

4. Discussion 

It is well known that commonly used colorimetric assays are prone to 
over- or underestimation when the protein used as calibration has a 
considerably different amino acid profile compared to the average 
protein of the sample (Sapan, Lundblad, & Price, 1999). This is 

Table 1 
Seaweed samples used for prediction modelling (total n = 45).  

Species Region Samples 
(n) 

Year of 
harvest 

Wild or 
cultivated 

A. esculenta Faroes 5 2019, 2020 cultivated 
Bodø 3 2021 wild 
Tromsø 3 2021 wild 
Ireland 2 2020 cultivated 
Greenland 1 2020 wild 

H. elongata Faroes 3 2018 wild 
L. digitata Faroes 1 2019 wild 

Bodø 3 2021 wild 
Tromsø 3 2017 wild 

S. latissima Faroes 3 2020 cultivated 
Bodø 3 2021 wild 
Tromsø 3 2021 cultivated 

P. palmata Faroes 1 2020 wild 
Bodø 7 2021 wild 
Tromsø 3 2021 wild 

P. umbilicalis Faroes 1 2020 wild  

Table 2 
Linear and PLS regression protein prediction results.   

RMSEC RMSEP Mean rel. error (%) R2 

DRIFTS 
Amide II Height 1.4448  1.5095  0.0261  0.8631 
Amide II Integral 1.3792  1.4912  0.0244  0.8752 
PLSR 7 comp. 0.9220  1.2376  0.0100  0.9540  

NIR 
PLSR 5 comp. 1.2614  1.1939  0.0095  0.9258  

N-ratio 
4.14 ratio N/A  1.2733  0.0211  0.9176  
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undoubtedly the case when comparing BSA to proteins from seaweed 
samples, as standard proteins, such as BSA, contain considerably higher 
ratios of aromatic and basic amino acid residues, which tend to be more 
reactive in colorimetric assays (Barbarino & Lourenço, 2005), than most 
seaweed (Pangestuti & Kim, 2015). The Bradford assay, which was not 
included in this study, is particularly sensitive to the amino acid profile 
of the sample since it relies on dye binding specifically to lysine and 
arginine residues rather than reacting more generally with peptide 
bonds, such as in the Lowry and BCA assays (Sapan, Lundblad, & Price, 
1999). The typically lower lysine content in seaweed leads to a high 
degree of underestimation, hence why the Bradford assay was not 
included. Nevertheless, the considerable, species-dependent error 
observed in the colorimetric methods used in this study was not due to 
the relative quantity of basic or aromatic amino acids, as all the species 
investigated had a very similar distribution of amino acids (Fig. 3). 
Sapan, Lundblad, and Price (1999) specifically point out tyrosine and 
tryptophan as contributing to over-estimation in certain samples by 
reducing copper ions in the Lowry and BCA assays. While tryptophan 
was not detected in the samples, tyrosine was. The quantity of tyrosine 
relative to the other amino acids is clearly not the main factor in over- 
estimation however seeing as the highest tyrosine contents was in the 
red seaweed (4.01 % in P. palmata and 3.81 % in P. umbilicalis, relative to 
total amino acids) which generally were not over-estimated, compared 
to the brown seaweed (3.44 %, 3.16 % and 3.30 % in A. esculenta, 
S. latissima and H. elongata, respectively). Thus, interspecies differences 
in accuracy were unrelated to the amino acid profile and would instead 
likely depend on the presence of interfering substances. A reliable 
method for concentrating proteins while removing these interfering 
substances would thus be useful. 

As a precipitation medium, TCA renders proteins insoluble by 
disruption of both their hydration spheres and intramolecular H-bonds 
(Koontz, 2014), as well as deactivating proteases and other enzymes that 
interfere with protein stability and later solubilisation (Mechin, 

Damerval, & Zivy, 2007). As the acidity caused by the addition of TCA 
can further complicate solubilisation, pelleted protein extracts are 
commonly washed with acetone to remove trace amounts of TCA 
(Koontz, 2014; Mechin, Damerval, & Zivy, 2007). Acetone also removes 
interfering substances, such as pigments, triglycerides and terpenoids 
(Mechin, Damerval, & Zivy, 2007), while being considerably easier to 
remove from the pelleted protein afterwards since it can be evaporated. 
Adding 2-ME to the precipitation mixture ensures the reduction of 
intramolecular disulphide bonds, aiding in the unfolding of tertiary 
structures and further decreasing protein solubility by exposing hydro-
phobic moieties to the aqueous solvent (Foroumadi & Saeedi, 2014). It 
therefore seems reasonable that a precipitation medium containing both 
TCA, 2-ME and acetone would be highly useful for complex samples, 
such as marine seaweed, combining the beneficial effects of all three. An 
optimised protocol developed by Méchin et al. (2007) for the precipi-
tation of proteins in higher plants was thus also investigated in the 
present study, in addition to commonly used TCA precipitation. 

From the present study, it appears that the use of both the Lowry and 
BCA assays for protein determination in seaweed samples tends to be 
rather unreliable, leading to over- or underestimation, depending 
heavily on the assayed species (Fig. 3). The use of precipitation tech-
niques to remove interfering substances had varying degrees of success 
in improving accuracy, again depending on the assayed species. How-
ever, we could not discern a clear trend as to which methods work more 
reliably, as some pre-treatments produce a more accurate reading in 
some species while having the opposite effect in others. In brown 
seaweed species, the BCA assay strayed further from the total amino acid 
measurements than the Lowry assay. Curiously, while the Lowry assay 
overestimated the protein content in all three brown seaweed species, 
BCA overestimated only A. esculenta and H. elongata samples, while 
having the opposite effect on S. latissima (Fig. 3). The two assayed red 
algae species, however, exhibited similar results using the colorimetric 
assays. All combinations of assays and pre-treatments lead to similar 

Fig. 4. PLSR analysis of DRIFTS and NIR 
spectra for prediction of protein in sea-
weeds. Regression coefficient plots of a) 
DRIFTS and b) NIR spectra, indicating the 
spectral signatures which impact prediction of 
protein in seaweed. Modelling and prediction 
plots for prediction of protein using c) DRIFTS 
and d) NIR spectra, plotted against protein 
estimated through amino acid quantification. 
The circles are calibration samples (n = 35) 
and the squares are validation samples (n =
10). The dashed line indicates linear correla-
tion of fitted vs observed protein in the cali-
bration samples, while the solid line indicates 
the linear correlation of predicted vs observed 
validation samples. The correlation co-
efficients for the calibration and the validation 
samples are both indicated in the plots.   
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patterns of minor (sometimes insignificant) over- or underestimations in 
both P. palmata and P. umbilicalis. Due to the availability of only two 
species of red algae, it was not possible to determine whether this was a 
general trend among rhodophytes. 

Linear regression analysis of N and amino acid contents showed good 
correlation across all assayed species (Fig. S1), as expected from the 
existing literature (Angell, Mata, de Nys, & Paul, 2015; Finkel, Follows, 
Liefer, Brown, Benner, & Irwin, 2016; Lourenço, Barbarino, Lavín, 
Lanfer Marquez, & Aidar, 2004). Nonetheless, there is a statistically 
significant difference in the N-ratios of some species, in particular S. 
latissima, H. elongata and L. digitata, which appeared to have generally 
lower N-ratios, while A. esculenta and P. palmata tended to be on the 
higher end (Table S1). However, this discrepancy is quite minor, and 
using the apparent N-ratio of 4.14 to estimate protein content in all 
samples led to an RMSE of 1.27, which is on par with the multivariate 
spectroscopic models developed in this study. The mean relative error of 
protein estimation by N-ratio was considerably higher than the PLSR 
models however, indicating higher experimental error and thus lower 
reliability. Using the previously suggested N-ratio of 5 (Angell, Mata, de 
Nys, & Paul, 2015) to predict protein content resulted in a considerable 
increase in RMSE, up to 2.78, indicating a severe divergence from the 
amino acid values. Thus, the N-ratio of 4.14 appears to be a better 
predictor of total amino acid content in North Atlantic seaweed, but 
these ratios do have a high degree of variability depending on a wide 
range of environmental factors, in addition to species and geographic 
location (Forbord, et al., 2020). 

The univariate FTIR regression models for the prediction of seaweed 
protein content showed good prediction capabilities (Fig. 4). Both the 
approximate integration of the Amide II band and the height of the same 
peak (determined at a fixed position of 1540 cm− 1) performed similarly. 
From these data, using the height (single point intensity) of the Amide II 
band appears to be more reliable, likely due to overlaps from other 
nearby spectral bands on the fringes of the Amide II band. PLSR models 
of amino acid content and FTIR or NIR spectra provided greater pre-
dictive strength, as expected from a multivariate model. The mean 
relative error for the PLSR models especially was considerably lower 
than all the others, at around ± 0.01 % using both spectroscopic tech-
niques (Table 2). These spectroscopic methods have the distinct benefit 
of requiring considerably less sample preparation than traditional 
methods (essentially only drying and milling) and thus provide a protein 
estimate far faster than any of the other methods, while using little to no 
chemicals (such as KBr for the DRIFTS analysis) with lower relative error 
of measurement. This makes spectroscopy a sustainable and economi-
cally viable alternative to both colorimetric methods and N-conversion 
factors while being able to perform the measurement and calculate an 
estimate within seconds with a high degree of accuracy. Multivariate 
modelling is also far more resilient to errors caused by non- 
proteinaceous compounds, which interfere with colorimetric assays. 
However, both spectroscopic methods used in this study were highly 
sensitive to interference from moisture. Thus, dehydration is always 
necessary, which increases processing costs and energy usage. A further 
study should endeavour to develop an in-field method using portable 
equipment and spectroscopic techniques that are not (or considerably 
less) sensitive to water, such as attenuated total reflectance (ATR) FTIR 
spectroscopy, which works well for protein content estimation in, for 
example, algal samples (Ferro, Gojkovic, Gorzsas, & Funk, 2019). The 
ability to predict the protein contents of seaweed directly on-site could 
enable optimisation of harvest timing, ensuring high macronutrient 
values for the end product. 

5. Conclusions 

The Lowry and BCA assays are not suitable for protein estimation in 
seaweed due to apparent interference from substances present in the 
seaweed, especially brown seaweed. Protein-estimation by use of N- 
conversion factors is limited by differences between species but also by 

other factors. The Amide II band of DRIFTS spectra can be used to 
approximate protein content in seaweed by linear regression modelling, 
but a considerably higher degree of prediction accuracy is possible when 
using multivariate PLSR modelling of either DRIFTS or NIR spectra. The 
experimental error of the PLSR analyses was also considerably lower 
than the univariate analyses and prediction by N-ratio, making these 
multivariate techniques highly reliable. Spectral protein estimation in 
seaweed is a rapid and environmentally sustainable alternative to more 
conventional methods. 
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