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A B S T R A C T   

The two-source energy balance model estimates canopy transpiration (Tr) and soil evaporation (E) traditionally 
from satellite partitions of remotely sensed land surface temperature (LST) and the Priestley-Taylor equation 
(TSEB-PT) at seasonal time with limited accuracy. The high spatial–temporal resolution spectral data collected 
by unmanned aerial vehicles (UAVs) provide valuable opportunity to estimate Tr and E precisely, improve the 
understanding of the seasonal and the diurnal cycle of evapotranspiration (ET), and timely detect agricultural 
drought. The UAV data vary in spatial resolution and the uncertainty imposed on the TSEB-PT outcome has thus 
far not being considered. To address these challenges and prospects, a new energy flux modelling framework 
based on TSEB-PT for high spatial resolution thermal and multispectral UAV data is proposed in this paper. 
Diurnal variations of LST in agricultural fields were recorded with a thermal infrared camera installed on an UAV 
during drought in 2018 and 2019. Observing potato as a test crop, LST, plant biophysical parameters derived 
from corresponding UAV multispectral data, and meteorological forcing variables were employed as input 
variables to TSEB-PT. All analyses were conducted at different pixelation of the UAV data to quantify the effect of 
spatial resolution on the performance. The 1 m spatial resolution produced the highest correlation between Tr 
modelled by TSEB-PT and measured by sap flow sensors (R2 = 0.80), which was comparable to the 0.06, 0.1, 0.5 
and 2 m pixel sizes (R2 = 0.76–0.78) and markedly higher than the lower resolutions of 2 to 24 m (R2 =

0.30–0.72). Modelled Tr was highly and significantly correlated with measured leaf water potential (R2 
= 0.81) 

and stomatal conductance (R2 = 0.74). The computed irrigation requirements (IRs) reflected the field irrigation 
treatments, ET and conventional irrigation practices in the area with high accuracy. It was also found that using a 
net primary production model with explicit representation of temperature influences made it possible to 
distinguish effects of drought vis-a-vis heat stress on crop productivity and water use efficiency. The results 
showed excellent model performance for retrieving Tr and ET dynamics under drought stress and proved that the 
proposed remote sensing based TSEB-PT framework at UAV scale is a promising tool for the investigation of plant 
drought stress and water demand; this is particularly relevant for local and regional irrigations scheduling.   

1. Introduction 

Amid the global climate crisis due to greenhouse gas emissions, 
changing patterns in temperature and precipitation, and irrigation water 
overuse (Wada et al., 2010), accurate estimations of surface energy 

fluxes are critical for determining agronomic drought and crop water 
demand in precision agriculture (Kustas and Anderson, 2009). Latent 
heat flux (LE, W m− 2), i.e., dissipating heat from the surface to the at-
mosphere by water evaporation, is the key process determining the 
water balance and the biogeochemical function of ecosystems (Mallick 
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et al., 2009). Evapotranspiration (ET; mm), the equivalent to LE in terms 
of rate of water use, transfers water from soil (evaporation, E) and plant 
(transpiration, Tr) as vapor to the atmosphere with a concurrent removal 
of energy from the land surface (Maes and Steppe, 2012). It can be 
calculated by dividing LE with the latent heat of vaporization and den-
sity of water. From an agro-environmental perspective, ET can be used 
for scheduling irrigation and managing water use. The spatio-temporal 
distribution of the surface energy balance, and hence of ET, remain 
challenging to estimate due to, among others, variability of soil water 
storage, root depth, plant water status and leaf conductance over time, 
all of which affect ET. Methods are therefore needed to improve the 
estimation of ET and take its subtle spatial variability into account. 

Eddy covariance flux tower is a reliable micro-meteorological tool to 
measure LE (Fisher et al., 2009; Twine et al., 2000), but with obvious 
shortcomings when retrieving spatial heat flux distribution over het-
erogeneous fields (Yao et al., 2015), in addition to being instrumentally 
expensive and computationally complex. Alternatively, LE can be esti-
mated by remote sensing, as the residual of the surface energy balance 
involving net radiation (Rn), sensible heat flux (H) and soil heat flux (G) 
assuming no other energy terms or apparent heat advection (Hoffmann 
et al., 2016; Morillas et al., 2013); Rn, H and G are calculated from either 
ground or remote measurements alongside local meteorology (Gowda 
et al., 2008). The two-source energy balance (TSEB) model proposed by 
Norman et al. (1995) and further developed by Kustas and Norman 
(1999) separates the remotely sensed land surface temperature (LST) 
into canopy and soil temperatures and compared to a one-source surface 
heat flux (Verhoef et al., 1997), it estimates fluxes more robustly for 
heterogeneous fields under a wider range of environmental conditions 
(Kustas and Norman, 1999). The flux partitioning is based on an itera-
tive process initiated by an estimate of a potential (maximal) Tr 
computed by the Priestley-Taylor approximation (Priestley and Taylor, 
1972; hence, the abbreviation TSEB-PT). The exchange of heat between 
the two sources (soil and canopy) and the atmosphere is modulated by a 
series of “resistances” (an analogue to the resistances in electrical sys-
tems that describe how heat and water vapour exchange is enhanced/ 
opposed through the air, due to turbulence and atmospheric stability), 
being dependent on aerodynamic and meteorological conditions 
(Guzinski and Nieto, 2019). Accurate estimation of the fraction of green 
(transpiring) canopy and leaf area index (LAI) is particularly important 
for TSEB-PT to initiate the first guess of potential Tr, therefore, Rn, H and 
G of plant and soil are estimated separately. The TSEB model has been 
applied on data from several common open-access satellites platforms 
providing thermal infrared imagery, such as the Moderate Resolution 
Imaging Spectroradiometer (MODIS), Landsat-8 and Sentinel-3 
(Anderson et al., 2011; Anderson et al., 2004; Andreu et al., 2018; 
Guzinski and Nieto, 2019), which typically have relatively coarse spatial 
resolution for agro-environmental studies and hamper precise results at 
sub-field level. Unmanned aerial vehicles (UAVs), on the other hand, 
add value in this regard due to the finer spatial resolution of the data 
they provide and thus the possibility to more precisely delineate canopy 
and soil components, thereby reducing the uncertainty of separating 
signals from mixed pixels (Nieto et al., 2019; Wang et al., 2019; Hoff-
mann et al., 2016). 

Detecting in-season plant water needs requires appropriate spatial, 
spectral and temporal resolution of the data. Diurnal covariation in Rn 
and G affects the surface energy balance. For instance an irrigation or 
rainfall event reduces LST while increasing E and Tr (Knipper et al., 
2019). The extent to which irrigation affects the re-partitioning of the 
sensible and the latent heat fluxes during the day remains poorly un-
derstood and, to our knowledge, diurnal variation of ET for agricultural 
fields based on TSEB-PT and UAV data and potentials have not been 
described yet. Furthermore, there is a lack of knowledge on whether and 
to what extent UAV-based estimates of ET can be applied to define and 
operationalize irrigation requirements (IRs). 

The main aim of this study was to design a plausible framework for 
quantifying plant and soil energy fluxes based on remotely sensed LST 

and TSEB-PT. The study was conducted in Denmark during July in both 
2018 (the European drought and heat wave, thus under ideal conditions 
for studying drought) and 2019, on experimental fields cultivated with 
potato (Solanum tuberosum var. Oleva). Modelling of ET with remote 
sensing over potato fields has not been performed before, as the plant is 
drought and heat sensitive, and thus is usually grown under temperate 
and non-drought stressed conditions (Hijmans, 2003; Zhou et al., 2017; 
Peng et al., 2021a). Therefore, potato may globally be less exposed, but 
more sensitive to these abiotic stresses compared to other crops, such as 
maize, rice or wheat. The objectives of the study were to: i) evaluate the 
estimated Tr against hourly sap flow measurements and quantify the 
effect of spatial resolution on the quality of the estimated fluxes, ii) es-
timate diurnal ET from UAV LST images based on TSEB-PT modelling 
with explicit spatio-temporal estimation of Tr and E, and evaluate the 
correlation between Tr and plant biophysical variables, and iii) deter-
mine water use efficiency (WUE) and IR and investigate their accuracy. 

2. Materials and Methods 

2.1. Study site, experimental design and field data collection 

The detailed workflow of the framework for calculating the water 
fluxes and eventually IR consisted of a field experiment and a remote 
sensing campaign, as shown in Fig. 1. The field experiment was con-
ducted in the summers of 2018 and 2019 in central Denmark 
(56◦31′59.6′’N, 9◦24′39.4′’E) on a coarse sandy soil. The climate is 
temperate and humid, with moderately warm summers, cool to cold 
winters and low seasonal temperature variation. The weather in 2018 
was unusually warm and dry, with corresponding mean temperatures 
and precipitation at the experimental site from 1 June to 31 August of 
18 ◦C and 154 mm, compared to the respective mean values for the past 
15 years of 15 ℃ and 205 mm. The weather in 2019 was relatively 
normal, though wetter, with summer mean temperature and precipita-
tion of 17 ℃ and 357 mm, respectively. Meteorological data (air tem-
perature and pressure, wind speed, relative humidity, long- and 
shortwave irradiance) were collected from a nearby meteorological 
station 500 m away from the experimental site (56◦31′51.75′′N, 
9◦24′40.99′′E). Apart from these meteorological parameters, dew point 
was calculated using the “humidity.to.dewpoint” function from the 
“weathermetrics” package (Anderson and Peng, 2012) in R (ver. 3.5.1; R 
Core Team, 2013). Potato was planted in early May in 2018 and 2019. 
The experiments were conducted with a complete randomized block 
design comprising two factors: irrigation at full, deficit and low rates, 
and nitrogen (N) fertilizer rates of either full or variable, with four 
replicates. Further details about the field setup are provided in Peng 
et al. (2021a, b). This study focused on two plots (30 × 30 m2) of full N 
fertilization, but contrasting irrigation, i.e., full and low (Fig. 2), for the 
period when daily maximum temperature exceeded 20 ℃, which is 
above the 17.2 ℃ cardinal maximum temperature for optimal potato 
growth (Peng et al., 2021a). The study periods including the remote 
sensing campaign were from 2 to 24 July in 2018 and 10 to 26 July in 
2019. The date interval was weekly to slightly flexible (+- few days) 
depending on the weather forecast when the temperature was high, so 
there was possibility for drought. 

Soil water content (SWC) was measured weekly by time domain 
reflectometry (TDR-100 box; Campbell Scientific, Logan, Utah, USA) 
connected to a handheld computer (Allegro, Juniper Systems, Inc. 
Logan, Utah, USA) for trace interpretation. The TDR probes were 
installed in the center of each plot vertically to 60 cm depth, midway 
between the top of the ridge and the bottom of the furrow, in order to 
measure root zone SWC (0–60 cm). Details of the probe design and TDR- 
trace interpretation software are given by Thomsen (1994), and soil 
moisture content calculations were made according to Shahnazari et al. 
(2007). The field capacity (FC) was determined as SWC before emer-
gence of the potatoes, five days after the soil had been thoroughly 
wetted by rain and subsequently drained off (Hillel, 2003). The soil 

J. Peng et al.                                                                                                                                                                                                                                     



ISPRS Journal of Photogrammetry and Remote Sensing 198 (2023) 238–254

240

water deficit (SWD) was calculated as the difference between the weekly 
measured SWC and SWC at FC. The SWD was used to schedule irrigation 
in the fully irrigated treatment whenever 40–50 % of the available water 
capacity (i.e. 25–30 mm) was used. 

Sap flow data were collected at 10-minute intervals by SGA13-WS 
Dynagage sensors (Dynamax, Houston, Tx, USA) installed on four 
shoots per plot from 6 July to 6 September in 2018 and from 24 July to 
11 August in 2019. The sensors were installed 4 to 8 m from the plots 
border in order to ensure connectivity from multiple plots to a CR1000 
data logger (Campbell Scientific, Logan, UT, USA) running the Dynamax 
Flow32A-1 K software. The variance of the plant transpiration measured 
by sap flow sensors was assumed to represent the variance of the plot 

since the management actions (sowing, fertilization, irrigation, pests 
and diseases control) in each treatment plot were applied evenly by 
machinery. In 2018, four additional sensors were installed in the full 
irrigation plot on 19 July and another four sensors were installed on 16 
July in another low irrigation treatment plot (Fig. 2). Other measure-
ments included leaf stomatal conductance (gs, mol m− 2 s− 1) and leaf 
water potential (LWP, MPa) recorded diurnally. Leaf stomatal conduc-
tance was measured on both the abaxial and the adaxial surface of a fully 
developed leaf (4th, 5th and 6th leaf counting upwards) on three plants 
per plot using a calibrated leaf porometer (SC-1, Decagon, Pullman, WA, 
USA). LWP was measured on the same leaflet immediately after the gs 
measurement by enclosing it in a plastic bag before cutting the petiole 

Fig. 1. Workflow in the framework for quantifying water fluxes in agroecosystem based on a two-source energy balance model with Priestley-Taylor approximation 
(TSEB-PT). The framework consists of a field campaign measuring climatic and plant variables for calculation of net primary productivity (NPP) with the light use 
efficiency (CASA) model, and a remote sensing campaign at unmanned aerial vehicle (UAV) scale. fIpar, LAI, hC, and fC are fraction of intercepted photosynthetically 
active radiation, leaf area index, height of canopy, and fraction of cover, respectively. 

Fig. 2. Location of the study site in Denmark (A) and layouts of the experimental plots in 2018 (B) and 2019 (C). Solid and dashed squares in the panels B and C 
indicate full and low irrigation treatments, respectively. Circles and triangles show, respectively, the positions of the time domain reflectometers (TDR; Campbell 
Scientific, Logan, Utah, USA) used for soil water content (SWC) measurements and sap flow sensors measuring plant transpiration. Backgrounds in B and C are RGB 
images recorded on 24 July 2018 and 26 July 2019. Legend and scale apply for panels B and C. (For interpretation of the references to colour in this figure legend, the 
reader is referred to the web version of this article.) 
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with a razor blade. The leaflet inside the plastic bag was quickly 
enclosed in a pressure chamber (Soil Moisture Equipment, Santa Bar-
bara, CA, USA) and slowly pressurized. Equilibrium pressure values 
were noted, when xylem water became visible on the cut end of the 
petiole, which was observed through a binocular microscope. 

2.2. Remote sensing data acquisition 

Thermal camera Tau 2 (FLIR, Wilsonville, USA) encompassing a 
single 7.5–13.5 µm broadband channel with 19 mm focal length was 
mounted on a quadcopter UAV (Matrice 100 DJI, Shenzhen, China) to 
collect LST on 2, 12, 19 and 24 July 2018, and 10 and 26 July 2019, 
between 10:00 to 16:00 local time at approximately 30-minute intervals, 
determined by battery capacity and recharging speed (Table 1). The 
UAV was flown 60 m above ground level after a series of test flights to 
optimize fine spatial and temporal resolution, at a speed of 5.8 m s− 1 and 
controlled by Pix4D software on a mobile device. The thermal data were 
obtained and saved as video, and images were extracted from the video 
frame by ThermoViewer (ThermalCapture, Wilnsdorf, Germany; ver. 
2.1.7) and mosaicked by Agisoft Metashape (ver. 1.6.4; Agisoft LLC, St. 
Petersburg, Russia). Four plates with shades from white to black were 
scanned before and after each flight by the thermal sensor and tem-
peratures were measured by a hand-held infrared thermometer (Optris 
MS LT, Optris, Berlin, Germany) for radiometric calibration. Every day 
before the first UAV flight, the panels were placed on the ground for 
approximately 30 min to stabilize the temperature to an equilibrium 
status. An RGB camera Zenmuse X3 was also concurrently used and 
these images were processed by Pix4Dmapper (Pix4D S.A., Prilly, 
Switzerland; version 4.2.27) with the “Ag RGB” template. Digital 
elevation (DEM) and surface models (DSM) were also produced from 
RGB image processing. All UAV mosaics were geo-referenced and 
collocated by four to six ground control points placed at the corners of 
the study area, and resampled to 6-cm spatial resolution. Furthermore, 
TSEB-PT, originally developed for satellite thermal data, requires 
certain spatialization of the input data in order to partition the energy 
fluxes from mixed pixels to canopy and soil components (Norman et al., 
1995). For UAV data typically obtained at different and very fine spatial 
resolution (e.g., a few cm or less), the user needs to resample the original 
UAV images to run TSEB-PT (Nieto et al., 2019; Xia et al., 2016); 
however, the effect of spatial resolution on the TSEB-PT canopy and soil 
partitions of energy fluxes remains unclear. Optimal spatial resolution 
also minimizes information redundancy and computational resources. 
Therefore, the UAV images were resampled by averaging to 0.1, 0.5, 1, 
and 2–24 m (with 2-m increments) to explore the performance of TSEB- 
PT modelling at different spatial resolutions, and the spatial resolution 
with the most optimal performance would be used for further analysis. 

In addition to the retrieval of thermal and RGB images, a parallel 
UAV (Matrice 100 DJI, Shenzhen, China) flight campaign with mounted 
RedEdge (Micasense, Seattle, USA) camera collected multispectral im-
agery at blue, green, red, red edge and near infrared bands. Details 
regarding the multispectral data collection are described in Peng et al. 
(2021a). 

2.3. Modelling evapotranspiration by two-source energy balance 

Evapotranspiration was estimated for each flight (Table 1) using 
TSEB-PT. The “series” over “parallel” version of TSEB was employed in 
this work as it was expected that the canopy and the soil interact with 
each other with heat and water exchange, especially under dense- 
canopy conditions (Nieto et al., 2019). 

The model considers that Rn equals the sum of H, LE and G (Eq. (1) 
and thus neglects heat advection and other fluxes such as heat storage by 
the canopy layer. Rn and the turbulent fluxes are further partitioned 
between canopy and soil (Eqs. 2–5): 

Rn = H +LE +G (1)  

RnC = HC +LEC (2)  

RnS = HS + LES +G (3)  

H = HC +HS (4)  

LE = LEC + LES (5)  

where subscripts “C” and “S” denote canopy and soil, respectively. 
In Eqs. 1–5, Rn and H can be estimated for canopy and soil by 

combining multispectral and thermal data with meteorological forcing 
in a series of equations, as explained below, and LE is calculated as the 
residual of Eqs. 1–5. 

The LST images containing mixed pixels were partitioned to canopy 
(TC) and soil (TS) temperature using a weighted mean of emitted 
blackbody radiance: 

σT4
rad(θo)= fC(θo)σT4

C+[1 − fC(θo)]σT4
S (6)  

where T4
rad(θo) is radiometric temperature, and it is mixed (canopy and 

soil) LST in this paper, σ is the Stefan-Boltzman constant (5.67037 × 10-8 

W m− 2 K− 4), fc(θo) = 1 - exp(-κbeΩ(θo)LAI) is the fraction of vegetation 
observed by the thermal sensor looking at θo view (observation) zenith 
angle with κbe beam extinction coefficient and Ω(θo) canopy clumping 
index. κbe is given as (Campbell and Norman, 2012) kbe =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
x2+tanθs

2
√

x+1.774(x+1.182)− 0.733, where x is the ratio of average projected areas of 

canopy elements on horizontal and vertical surfaces and it is set to 2.085 
for potato according to Campbell and Norman (2012), and θs is sun 
zenith angle at the time of the flights, calculated by the “Zenith” function 
from the R package “GeoLight” (Lisovski et al., 2015) given latitude, 
longitude and UAV flight time in UTC format. Ω(θo) is calculated as: 
Ω(θo) =

Ω(0)
Ω(0)+[1− Ω(0)]e− 2.2θ3.8− 0.46Dhw

, where Dhw is the ratio of vegetation 

height to width, which was set as 1.25 according to field observation, 
and Ω(0) is the clumping factor when the canopy is viewed at nadir and 

is given as Ω(0) =
− ln[fCe− kbeLAI+(1− fC)]

kbeLAI , where fC is the fraction of vegeta-
tion canopy cover (Kustas and Norman, 1999). 

The TC and TS from Eq. (6) can be used to estimate HC and HS: 

HC = ρCP
TC − TAC

rX
(7)  

Table 1 
Available land surface temperature (LST) datasets. DAE means days after emergence of the potato (22 May 2018 and 3 June 2019).  

Year Date 10:00 10:30 11:00 11:30 12:00 12:30 13:00 13:30 14:00 14:30 15:00 15:30 

2018 02 July (DAE41)  X  X X X X X X X X  
12 July (DAE51)  X X X X   X   X  
19 July (DAE58) X X X X X X X X X    
24 July (DAE63)      X   X X   

2019 10 July (DAE37)   X     X   X  
26 July (DAE53)          X X X  
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HS = ρCP
TS − TAC

rS
(8)  

where HC and HS are sensible heat fluxes of canopy and soil, respec-
tively. rX and rS are, respectively, the canopy and soil resistances to heat 
transport, ρ is air density and CP is the heat capacity of air. TAC is the 
aerodynamic temperature (air temperature at the canopy source-sink 
height) calculated by temperatures and resistances: 

TAC =

TA
rA
+ TS

rS
+ TC

rX
1
rA
+ 1

rS
+ 1

rX

(9)  

where TA is air temperature measured by the meteorological station, rA 
is the surface aerodynamic resistance to heat transport. The equations 
for rA, rX and rS are listed in Appendix A and can be found in Kustas et al. 
(1999). 

Since only Trad(θo) in Eq. (4) can be obtained from the LST images 
and both of TC and TS are unknown, Norman et al. (1995) described an 
iterative process to derive these temperatures, using an initial guess of 
TC and consequent estimation of canopy latent heat flux based on the 
Priestley-Taylor equation: 

LEC = αPT fg
Δ

Δ + γ
RnC (10)  

where αPT is the Priestley-Taylor coefficient initially set to its original 
value of 1.26, fg is fraction of LAI that is green and thus photosyntheti-
cally active (defined as 1 in this work observing that the whole potato 
canopy was green during this growing period in July), Δ is the slope of 
saturation vapor pressure with temperature and γ is the psychometric 
constant. 

At this stage, the initial LES estimate is likely to yield negative- 
unrealistic values at daytime indicating dew condensation at the soil 
surface, which is unlikely during daytime. TSEB-PT then iteratively re-
duces αPT in Eq. (10) and re-computes all temperatures and fluxes until 
realistic LES and LEC are obtained (i.e. null or positive). Further details of 
the iterative process are shown in Appendix B. Noteworthy is that Rn for 
canopy (RnC) and soil (RnS) are based on meteorological and remote 
sensing data (thermal and multispectral) and both can be divided into 
longwave and shortwave parts. The calculation are listed in Eqs. C1-8 
based on Campbell and Norman (2012). The other equations for radia-
tion calculations are listed in Appendix C. 

The calculated LES and LEC were further converted to E and Tr, 
respectively, and LE was calculated as the sum of LES and LEC and was 
further converted to ET. More detailed information on TSEB-PT can be 
found in Norman et al. (1995), Kustas and Norman (1999), and Nieto et al. 
(2019), and the programming code is available online at https://github. 
com/hectornieto/pyTSEB (https://doi.org/10.5281/zenodo.594732). 

TSEB-PT returns instantaneous canopy and soil fluxes at each UAV 
flight time. Assuming that LE is consistently proportional to irradiance 
(Cammalleri et al., 2014; Nassar et al., 2021), daily LE was extrapolated 
by multiplying the instantaneous LE (at or near to noon) with the ratio of 
mean daily solar irradiance to instantaneous irradiance at the UAV flight 
time, and then converted to daily ET. 

The biophysical parameters needed to run TSEB-PT were obtained as 
follows. fC used as a proxy for canopy clumpiness was derived by first 
creating an RGB-based vegetation binary mask image at 2-cm spatial 
resolution from the greenness index (GI, 2 × green–red-blue). A value of 
1 in the mask was assigned when the GI value was above a threshold 
determined by visual interpretation, and 0 otherwise (Zhou et al., 2018; 
Peng et al., 2021a). Then fC at the LST imagery spatial resolution (6 cm) 
was obtained by average aggregating the binary mask. The clumping 
index (Ω(θs)) used for Rn estimation was calculated assuming potato is a 
row crop with row direction set at 330◦ (see Fig. 2; Colaizzi et al., 2012; 
Parry et al., 2019) and its calculation is shown in Appendix B1 from 
Nieto et al. (2019). The effective leaf width was 0.05 m as an observed 
mean size of the potato leaflets. The height of the canopy (hC) was 

calculated as a difference between instantaneous RGB digital surface 
and elevation models calculated before plant emergence. Finally, LAI 
was calculated according to Campbell and Norman (2012): 

LAI = − 2cosθsln
(
1 − fIpar

)
(11)  

where fIpar is the fraction of intercepted photosynthetically active radi-
ation calculated by a power model fIpar = a+bRVIc where RVI is the ratio 
vegetation index, (ratio of reflectance in the near-infra red (NIR) to the 
red spectrum), and a, b and c are local empirical coefficients derived 
with the iterative procedure of Christensen and Goudriaan (1993). The 
reflectance data were obtained by a RedEdge camera mounted on UAV 
in a parallel flight campaign (Peng et al., 2021a). 

2.4. Calibrating sap flow measurements against soil water balance 

The 10-minute intervals sap flow measurements were quality 
controlled as prescribed in the equipment manual (Dynamax, Houston, 
Texas, USA) and gap-filled by linear interpolation. Sap flow sensors 
measure the xylem water transport and hence Tr, in unit of ml h− 1. The 
method, however, provides widely variable values between shoot due to 
different size and exposure of the selected shoots and a method is needed 
to scale the values from the individual shoots to express them in mm h− 1 

and be able to compare the reading to the TSEB-PT outputs. 
Sap flow data (ml h− 1) covering exactly the period between two TDR 

measurements (up to exact time at 10-minute resolutions) were summed 
(ml) and used to divide the corresponding ET calculated from a standard 
water balance for the week (mm), that is to say, ETswb = ΔSWD + I + P - 
D, where ETswb is ET estimated from soil water balance, ΔSWD is the 
change or increase in soil water deficit, I is irrigation, P is precipitation 
and D is drainage during a period between two TDR soil water mea-
surements, and we assumed the xylem water transport summed over the 
same period is proportional to ETswb. Potential ET (ETP) was calculated 
with the FAO56 Penman-Monteith equation (Allen et al., 1998) and a 
mid-season crop coefficient of 1.15. Weeks were selected where the 
accumulated ETP was higher than the sum of SWD, irrigation and pre-
cipitation (SWD + I + P) during the week indicating negligible drainage 
and hence the water was transported only by ET. Thereby, a ‘calibration 
constant’ for each sap flow sensor was obtained allowing estimation of 
10-minute recording values, which we denote as TrSap in the unit of mm 
h− 1 from the sap flow measurements (Razzaghi et al., 2012). It was 
assumed that ETswb based on soil water measured in the 0–60 cm soil 
layer was predominantly utilized by the plants for Tr during these pe-
riods where the soil was relatively dry. Once a shallow surface layer has 
become dry, E is limited in coarse sandy soils (Wang, 2015). 

2.5. Empirical calculations and statistics 

Crop water use efficiency (WUE) was calculated as: 

WUE =
NPP
ETC

(12)  

where ETC (mm d-1) is actual ET modelled by TSEB-PT and NPP (g m− 2 d- 

1) is net primary production estimated according to Peng et al. (2021a): 

NPP = RUEoptIparfTmax(1 − μfCI) (13)  

where RUEopt is radiation use efficiency optimized to 4.19 g MJ− 1, Ipar 
(MJ m− 2 d-1) is intercepted photosynthetically active radiation and it 
was calculated by multiplying fIpar with half the measured global radi-
ation, and fTmax and fCI are environmental constraints for, respectively, 
daily maximum temperature and cloudiness (expressed by cloudiness 
index, CI), ranging from 0 to 1 and aiming to adjust plant production for 
abiotic factors and μ is a constant (0.46). The equations for fTmax and fCI 
calculation are shown in Table 4 in Peng et al. (2021a). Daily irrigation 
requirement (IR) was calculated as: 
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IR =
ETP − ETC

IE
(14)  

where IE is irrigation efficiency defined as the ratio of applied volume of 
water to volume delivered to the surface of the field and set to 0.9 – a 
value combining sprinkler and gun irrigation applied in this study 
(Olesen and Plauborg, 1995; Thysen and Detlefsen, 2006). 

The treatment plots were used as the area of interest to extract 
weighted mean values of modelled Tr and ET, using the “extract” 
function from the “raster” package (Robert et al., 2012) in R. The 
modelled Tr was correlated with the sap flow data and the fit evaluated 
by coefficient of determination (R2), root mean square error (RMSE) and 
mean bias. The strength of the correlations between gs and LWP with the 
modelled Tr were evaluated by R2 as well. 

R2 =

( ∑n
i=1(Modi − M̄od)(Obsi − Ōbs)

)2

∑n
i=1(Modi − M̄od)2∑n

i=1(Obsi − Ōbs)2 (15)  

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1(Obsi − Modi)
2

n

√

(16)  

Bias =
∑n

i=1(Obsi − Modi)

n
(17)  

where Obsi and Modi are observed and modelled values, respectively, 
and Ōbs and M̄od are corresponding mean observed and modelled 
values, n is the total number of observations. Since the sap flow data 
were processed for unit conversion based on the soil water balance, the 
comparison was also conducted with the modelled ET in order to assess 
how well the integrative process of Tr and E is reflected by the modelled 
ET. 

A spatial sensitivity test was conducted to investigate the effect of 
data spatial resolution on the performance of the TSEB-PT by resampling 
the input data of LST, fC, LAI, and hC from the original 0.06 to 0.1, 0.5 
and 1 m, and further from 2 to 24 m (with 2-m increments) and modelled 
variables (Tr and ET) were compared with the measured ones (sap flow 
measurements) using R2 and RMSE. 

3. Results 

3.1. Model validation and effect of spatial resolution 

The spatial sensitivity test (linear regression between the Tr esti-
mated from UAV images by TSEB-PT modelling at multiple spatial res-
olution and from sap flow measurements) showed that the TSEB-PT 
model performance varied in relation to the spatial resolution of the 
input data (0.06 to 24 m; Fig. 3). From 0.06 to 10 m, R2 and RMSE values 
ranged from 0.60 to 0.80 and 0.055–0.075 mm h− 1, respectively. With 
highest R2 and lowest RMSE, 1 m was the optimal spatial resolution for 
modelling Tr and ET using TSEB-PT with UAV data. From 12 m reso-
lution, the model accuracy showed oscillating variation, indicating un-
stable modelling performance between 12 and 24 m resolutions. Spatial 
resolutions finer than 1 m (0.06, 0.1 and 0.5 m) were also investigated 
and here the model accuracy was slightly lower than that at 1 m, ac-
cording to R2 and RMSE values (Fig. 3). The linear regression analyses 
were also conducted for ET (Fig. S2 in the Supplementary material), and 
these results also identified 1 m as the optimal spatial resolution for 
energy flux modelling with TSEB-PT and UAV thermal data. 

The correlations between Tr (and ET) modelled by TSEB-PT based on 
the UAV data at 1-m spatial resolution vs. the sap flow measurements are 
illustrated in Fig. 4. The Tr was in close agreement with the sap flow 
values (regression equation y = x-0.007), with a high R2 value (0.80), 
and low RMSE (0.055 mm h− 1) and bias (-0.01 mm h− 1; Fig. 4 A). 
However, TSEB-PT showed a slight underestimation for the low values 
(mainly in the low irrigation treatment), which indicates difficulties to 
accurately estimate the low levels of Tr observed by the sap flow 
equipment under drought (e.g., 0.02 mm h− 1). In contrast, the modelled 
ET was overall 20% higher than the sap flow values, with low R2 (0.56) 
and high RMSE (0.15 mm h− 1) and bias (0.09 mm h− 1; Fig. 4 B). 

3.2. Diurnal variation of evapotranspiration 

The diurnal dynamics of the modelled Tr and ET of potato based on 1 
m spatial resolution UAV LST data under full irrigation conditions are 
shown in Fig. 5. Less precipitation (11.2 mm, see Table S1 in the Sup-
plementary material) during the UAV campaigns in 2018 (02–26 July) 

Fig. 3. Effect of spatial resolution on the performance of the two-source energy balance model based on the Priestley-Taylor equation (TSEB-PT) in this study. The 
determination of coefficient (R2) and root mean square error (RMSE) values were obtained from the comparison between the transpiration (Tr) estimated from 
unmanned aerial vehicle (UAV) images by TSEB-PT at multiple spatial resolution and from calibrated sap flow measurements. 
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contributed to drought stress, compared to the same period in 2019 
(41.1 mm). The estimated Tr followed TrSap and the diurnal variations of 
Tr and ET followed the pattern of ETP for the fully irrigated plot. In most 
cases, the soil E flux contributed notably to ET (especially, on 2 July 
2018 and 26 July 2019; Fig. 5). Moreover, at certain instances (e.g., 
11:00 on 2 July and 12:00 on 19 July in 2018), modelled ET values were 
higher than ETP due to high Tr and E. One reason for this overestimation 
is overestimated modelled Tr (e.g., being 0.12 mm h− 1 higher than the 
sap flow value at 12:00 on 19 July 2018) derived from relatively low LST 
compared to other times on the same day. Another likely reason would 
be the ample water supply from the irrigation and the high-energy input 

from the solar radiation (at noon). 
Under low irrigation, the modelled Tr at 1 m spatial resolution 

closely followed the TrSap, and both were overall close to ET due to the 
low E (Fig. 6). On a few occasions (e.g., 19 July 2018 and 10 July 2019), 
drought was alleviated by a small amount of precipitation and dewfall (a 
day or two earlier), which also lowered temperature (see precipitation 
data in Table S1 and diurnal variation of dew point in Fig. S1 from 
Supplementary material). The TrSap from the low irrigation on 24 July 
2018 did not follow the dynamics of ETP and were close to zero. For the 
other days, TrSap followed the dynamics of ETP during the early morning, 
but soon started to deviate with an offset due to root zone soil water 

Fig. 4. Relationship between sap flow measurements and modelled transpiration (Tr, A) and evapotranspiration (ET, B). The dotted line is the 1:1 line. Each dot 
represents a weighted mean value, modelled from land surface temperature images by the two-source energy balance model based on the Priestley-Taylor equation 
(TSEB-PT) at 1 m spatial resolution recorded by unmanned aerial vehicles (UAVs) for all available flights in the full (circles) and low (triangles) irrigation treatments 
(see Table 1). Linear equation for the fits are also presented on each plot. *** denotes significant at p < 0.001 level. 

Fig. 5. Full irrigation two-source energy balance model estimates based on the Priestley-Taylor equation (TSEB-PT) of actual transpiration (Tr, purple circles) and 
evapotranspiration (ET, green circles) modelled from unmanned aerial vehicle (UAV) land surface temperature (LST) data at 1 m spatial resolution, and TrSap data 
(Tr, dotted purple line). The 10-minute intervals variation in potential evapotranspiration (ETp) of potato from the fully irrigated plots is also shown as a solid green 
line. On 2 July 2018 and 10 July 2019, sap flow equipment was not installed yet, hence no data (see Section 2.1). The air temperature (TA) and global radiation (R) 
are shown in the figure as well. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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depletion. 

3.3. Correlation of modelled transpiration with leaf parameters 

LWP was significantly, positively and linearly related to Tr (R2 =

0.81), and gs was significantly, positively, and exponentially related to 
Tr (R2 = 0.74; Fig. 7). The relationships also showed good discrimina-
tion between treatments, with overall lower values for low irrigation 
and vice versa. 

It can be seen on Fig. 7B that a cluster of points opposing the expo-
nential trend as these data were from the low irrigation treatment on 
19th July 2018 at 12:00–14:00, when the drought stress was not high 
compared to the other days due to the relatively low TA and Rn (Fig. 6), 

hence gs was considerable. However, in the low irrigation plot, the 
canopy cover was not as high as the full irrigation plot, which likely 
exposed the soil (see Fig. 2 B); thus it was likely that part of the water in 
the soil obtained from the irrigation (17th July 2018, see Supplementary 
material) and dewfall was evaporated and Tr was not very high. 

3.4. Water use efficiency and irrigation demand 

A CASA model with radiation use efficiency depending on maximum 
daily temperature but not soil or plant water status (Peng et al., 2021a) 
was used together with the TSEB-PT ET estimates. This allowed visual-
ization of the spatio-temporal variation of ET, NPP, WUE and IR, as 
illustrated in Fig. 8 for two plots with contrasting irrigation treatments. 

Fig. 6. Low irrigation two-source energy balance model estimates based on the Priestley-Taylor equation (TSEB-PT) of actual transpiration (Tr, purple circles) and 
evapotranspiration (ET, green circles) modelled from unmanned aerial vehicle (UAV) land surface temperature (LST) data at 1 m spatial resolution, and TrSap data 
(Tr, dotted purple line). The 10-minute intervals variation in potential evapotranspiration (ETp) of potato from the fully irrigated plots is also shown as a solid green 
line. On 2 July 2018 and 10 July 2019, the sap flow equipment was not installed yet, hence no data (see Section 2.1). The air temperature (TA) and global radiation 
(R) are shown in the figure as well. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 7. Relationship between (A) leaf water potential (LWP) or (B) stomatal conductance (gs) and modelled transpiration (Tr) for the potato plots on specific 
measurement days in July 2018 and 2019. The solid line shows regression fit as described by the equations. *** denotes the significant level (p < 0.001). 

J. Peng et al.                                                                                                                                                                                                                                     



ISPRS Journal of Photogrammetry and Remote Sensing 198 (2023) 238–254

246

The spatial distribution of ET and NPP corresponded well with each 
other, showing higher ET and NPP with full irrigation and vice versa in 
most of the cases. However, there were exceptions when there was heat 
stress. For example, on 12 and 24 July 2018 and 26 July 2019, the daily 
NPP was zero even for the fully irrigated plot due to heat stress halting 
the growth (daily maximum air temperature exceeded 29 ℃ according 
to Peng et al. (2021a)). Accordingly, WUE was low and independent of 
ET level. On other days its spatial distribution depended on the drought 
conditions. On 19 July 2018 and 10 July 2019 the spatial pattern of 
WUE followed that of NPP and ET as there was little or no drought stress. 
However, on 02 July 2018, an increase of WUE in the drought stressed 
plot was revealed despite NPP being lower than in the fully irrigated 
plot. The spatial patterns of IR (determined by Eq. (14)) corresponded 
inversely to ET (Fig. 8), showing a close relationship between them. 
According to the distributions of IR, there was very little or no need for 
additional irrigation in the fully irrigated plot, even under widespread 
drought conditions (24 July 2018 and 26 July 2019), whereas for the 
low irrigation plot, the calculated IR ranged from 3 to 6 mm d-1, which 
corresponded well with the real irrigation amounts applied to the fully 
irrigated plot (around 30 mm per week, see Table S1 in Supplementary 
material) indicating reliability of the IR calculation. 

4. Discussion 

4.1. Modelling evapotranspiration with a two-source energy balance 
model 

The TSEB-PT modelled Tr at 1-m spatial resolution was in excellent 
agreement with the sap flow measurements (Fig. 4A), which provides 
the evidence that the assumption that the majority part of SWC (used for 
sap flow measurements calibration) detected by TDR sensor in the 0–60 

cm soil layer was predominantly utilized by the plants for Tr and not by 
the soil for E. The reason is that in coarse sandy soil, only the water 
retained in the few centimeter surface layer will be evaporated and 
water below surface layer is either leached to deeper layer or used by 
plant Tr (Wang, 2015); under drought conditions, this part E can be 
neglected in the soil water balance model used for sap flow measure-
ments calibration. However, this does not mean that there was no E in 
the field since the deviation of ET compared to Tr (Fig. 4) showed there 
was notable E. It is because if there was extra water source, i.e. from 
irrigation, the water kept by the surface soil layer would be evaporated 
soon under drought conditions and the weekly measured TDR sensors 
were likely less sensitive to this water movement. Furthermore, 
modelled Tr correlated closely to field measurements of LWP and gs 
(Fig. 7). The relationship between gs and Tr was described with an 
exponential regression model (performing more accurately than linear), 
likely due to the influence of vapor pressure deficit (VPD) on both Tr rate 
and gs: Tr ~ gs × VPD with gs being also sensitive to VPD (Grossiord et al., 
2020; Leuning et al., 1995; Zhang et al., 2022). The high ET in the fully 
irrigated area indicated that the crops transported water from the soil 
towards the leaves and stomata, inducing a cooling effect that was most 
pronounced at noon (Fig. 8), alleviating drought stress, and at the same 
time lessening otherwise severe and confounded heat stress (Blum, 
2009; Yoo et al., 2009). The low ET in the low irrigation plot (almost 0 at 
noon, especially on 12 and 24 July 2018; Fig. 6) showed that the plants 
closed the stomata to reduce water loss and avoid cavitation in the 
xylem, but at the expense of inflicted heat stress (Teskey et al., 2015) 
that may severely limit NPP in potatoes even at moderate temperatures 
(Peng et al., 2021a; Zhou et al., 2017). Furthermore, E under low irri-
gation was limited (especially on drought days) due to the combined 
effects of limited SWC and lack of water transport in the sandy soil’s 
surface layer. Therefore, most of the irradiance transferred to the soil is 

Fig. 8. Maps of evapotranspiration (ET), net primary production (NPP), water use efficiency (WUE, g DM kg H2O-1), ratio of NPP and ET, and irrigation requirement 
(IR) estimated for 2, 12, 19, and 24 July 2018 and 10 and 26 July 2019 for the treatment plots with potatoes. The squares displayed on the figures delineate the 
location of the irrigation treatment (solid squares indicate full irrigation and dashed squares indicate low irrigation.). 
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converted into sensible heat flux, which is the reason why LST of the soil 
for the low irrigation area was high – typically above 45℃ from 
12:00–15:00 versus around 25℃ in the fully irrigated. After wetting by 
rain or irrigation, this top layer is characterized by fast drying that 
breaks the hydraulic contact with the subsoil, thus reducing E (Wang, 
2015). However, under full irrigation and except for a few points with 
low ETp, there was considerable E (Fig. 5) even under high canopy cover 
(more than 90%; Fig. 2 B). This is likely due to small patches with bare 
soil exposed to sunlight (e.g., sampled place, furrow, machinery track), 
which were wet due to irrigation and thus contributing to soil latent heat 
flux and E. The plant canopy is a porous medium (not solid sheets, but 
loosely stacked leaf layers) with small gaps from which radiation can 
penetrate as un-intercepted direct and diffuse irradiance (Pallardy, 
2008) but can also be transmitted and scattered by the leaves (Fitter and 
Hay, 2002). For the same field experiment, the fraction of intercepted 
photosynthetically active radiation (fIpar; visible spectrum) estimated 
from UAV multispectral data from the full irrigation plot reached 
0.8–0.98 in July 2018 and 0.88–0.91 in 2019 (Peng et al., 2021a). This 
result indicated that some PAR reached the soil despite high canopy 
cover. For solar radiation other than PAR (infrared from 700 to 4000 nm 
accounting for slightly more than 50% of the incoming radiation; Bhatia, 
2014), a larger part is transmitted through the canopy to the ground 
surface due to the spectral/structural properties of leaves and stems 
(Campbell and Norman, 2012), which may contribute to E as well. 

On the other hand, part of E may also originate from canopy dew and 
intercepted irrigation water, e.g., on 2 and 12 July 2018, in the low 
irrigation plot, the water source for the notable ET at 10:30 was likely 
from dew (Fig. S1 & Fig. 6). Fig.S1 shows that during morning 
(00:00–07:00) on all six days, the relative humidity was high (close to 
100%) and the air temperature was very close to the dew point, which 
indicated that dewfall occurred. This phenomenon (enhanced E from 
dewfall on both leaves and soil) points to a limitation of TSEB-PT (and 
other comparable energy-balance models) in its inability to account for 
this additional heat/water source. It was expected that the sap flow 
measurements calibrated against changes in SWC would correlate better 
with modelled ET than Tr and part of this discrepancy (Fig. 6) may be 
explained by the inability of the model to take proper account of wetting 
of the leaves and soil surface by dew. The TSEB-PT model was originally 
developed and tested for semiarid and subhumid areas, which are 
relatively different compared to higher latitude areas e.g. Scandinavian 
countries (Kustas and Norman, 1999; Norman et al., 1995). This indi-
cated that for the application of the TSEB-PT model in higher latitude 
areas, the model should be modified for the local environmental con-
ditions e.g. by including an interception reservoir to achieve higher 
model accuracy. 

Low Tr and ET values under full irrigation do not necessarily imply 
drought stress (e.g., 15:00 on 12 July 2018; Fig. 5), but might be a 
consequence of low irradiance due to clouds, aerosols and atmospheric 
water vapor, all of which reduce atmospheric transmittance (Lee et al., 
2009; Li et al., 2017; Pérez and Coma, 2018). The good agreement be-
tween the modelled Tr and the sap flow data revealed little effect of such 
conditions on the results since clouds or aerosol lowered ETP and sap 
flow, but also LST, resulting in proportionally lower Tr and ET values 
modelled by TSEB-PT. Similar results were reported by Hoffmann et al. 
(2016). However, it should be emphasized that LST data should ideally 
be obtained under conditions of stable irradiance without scattered 
clouds, as the cloudiness can lead to rapidly changing irradiance, hence 
a large, induced variability of LST during a UAV flight. 

Regarding the daily LE and ET calculations, it was assumed that the 
ratio of LE over irradiance is preserved during daytime. This simple 
approach has been evaluated in previous studies showing its adequate 
performance with instantaneous LE estimations around noon (Cam-
malleri et al., 2014). However it is a not a perfect method to capture the 
diurnal variation in severely stressed crops (Antoniuk et al., 2021) and 
additional uncertainties raise when this method is applied later in the 
afternoon (Nassar et al., 2021). 

4.2. The use of UAV data for modelling evapotranspiration with high 
spatio-temporal resolution 

Thermal data obtained by UAVs appear to have potential for appli-
cation and validation of land-surface models at high spatio-temporal 
resolution with their merits over heterogeneous landscapes yet to be 
revealed. Spatial resolutions finer than 1 m, i.e., 0.06, 0.1 and 0.5 m, were 
investigated and the model accuracy was slightly lower (Fig. 3). The 
likely reason being that, as with many other energy flux models, TSEB-PT 
radiation and turbulent transport simulations require some degree of 
spatial aggregation in order to comply with the assumption of effective 
radiative transfer and turbulent mixing (Burchard-Levine et al., 2021; 
Nieto et al., 2019). Exploring the spatial resolution effects on the TSEB-PT 
modelling through images acquired at different UAV flight altitudes is 
difficult as different flight times sense variable LST over the flights, 
resulting in non-comparable data. In addition, higher altitudes (>100 m) 
are associated with larger atmospheric attenuation due to a thicker water 
vapor layer to which LST and ET are very sensitive. Therefore, LST and ET 
between flights at different altitudes would not only be affected by the 
spatial resolution (e.g., the model sensitivity to the different input spatial 
resolution), but also to the uncertainties in input retrieval (e.g. the ther-
mal images atmospheric corrections). One meter resolution was optimal 
for the performance of TSEB-PT and coarser resolutions, especially larger 
than 10 m, downgraded the accuracy significantly. Therefore, coarse 
resolution studies typically applied in large-scale agronomic, hydrologi-
cal and environmental research should consider this uncertainty when 
coupling UAV thermal data over agricultural fields for ET calculation. 
Wang et al. (2019) found similar results for ET modelled by the Priestley- 
Taylor Jet Propulsion Laboratory model against eddy covariance mea-
surements. Several analyses of the effect from the spatial resolution on the 
ET modelling using satellite data for large fields showed that important 
spatial patterns would be lost at coarser spatial resolution (Li et al., 2008; 
Li et al., 2021). Therefore, the utilization of UAV data could be an efficient 
and functional support for satellite-based LST analyses. 

The high temporal resolution is another important merit of UAV 
systems. Previous studies using a diurnal timescale revealed the ratio of 
actual to potential ET being higher in the morning, decreasing at noon 
hours and ‘recovering’ in the afternoon, referred to as hysteresis effect 
(Antoniuk et al., 2021). In this study (Figs. 5 and 6), similar results were 
found especially for the full-irrigated area with ample water supply (e.g., 
12 July 2018). The agreement between TSEB-PT modelled Tr and sap 
flow measurements during morning hours on the 12, 19 and 24 July 2018 
(Figs. 5 and 6) should be noted. Both initially followed ETp but started to 
deviate earlier in the drought stressed plants (at a level around 0.2 mm h-1 

or less) than in the fully irrigated (at a level around 0.3 mm h-1). Drought 
stressed plants are capable of transpiring at potential rate in the early 
morning hours, as they rehydrate during night and use water stored in 
plant tissue (Andersen et al., 1991) for Tr, which however quickly cease 
when the difference between Tr and root water uptake leads to tissue 
dehydration (Jensen et al., 1993; Katerji et al., 1986). This diurnal tem-
poral resolution of the UAV data offers the opportunity to explore the 
variation of the heat flux of agricultural fields within a day at hourly 
resolution, which could promote precision irrigation activities (Fig. 8). 

The high spatial resolution of UAV data can also have shortcomings, 
mainly related to covering larger fields, flight limitations under weather 
with strong winds and radiometric uncertainty of the thermal micro- 
bolometer cameras. Also, integrated within smart-farming solutions, 
UAV systems/services appear out of reach, e.g., in the Mediterranean 
region, where many farming systems utilize satellite data as a decision- 
support option, due to free access and considerably lower cost. Several 
studies have conducted relatively reliable modelling of ET by TSEB-PT at 
spatial resolution of 20 to 60 m using Sentinel-2 and -3 images (Bellvert 
et al., 2020; Guzinski and Nieto, 2019) or Landsat (Knipper et al., 2019) 
at 30 m spatial resolution. However, for the requirements of practical 
agronomic operations and precision agriculture targeting reduced and 
especially deficit irrigation (DI), finer and more precise LST data are 
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needed and this is one of the largest merits of UAV. 
LST images collected by thermal cameras mounted on UAVs contain 

sources of uncertainty, such as the internal non-uniformity correction 
(NUC) and temperature drift, and environmental factors (e.g., air hu-
midity and surface emissivity property) (Aubrecht et al., 2016; Meier 
et al., 2011; Mesas-Carrascosa et al., 2018; Olbrycht et al., 2012). These 
uncertainties affect the quality of the UAV LST images, thus special 
attention (e.g., camera system updating and LST data radiometric cali-
bration) should be given to the data collection. 

4.3. Drought stress detection and implications for irrigation management 

The positive relationship between both LWP and gs with Tr coincide 
with Xue et al. (2021) for tomato cultivated in a climate chamber at 
different (full/deficit) irrigation and salinity levels. The distribution of 
low and full irrigation data points in Fig. 7 shows a division at a Tr level 
of approximately 0.28 mm h− 1, which corresponds to LWP of − 0.8 MPa, 
a threshold value for drought stress that was supported in previous 
studies (Hsiao and Acevedo, 1975; Taiz and Zeiger, 2010). However, 
these thresholds depend on both the environmental conditions and the 
crop development stage (e.g. García-Tejera et al., 2021; Zhang et al., 
2022) and need caution for field irrigation scheduling and operation to 
not induce severe yield losses. 

The spatial distribution of the WUE indicated that slight but not se-
vere drought stress derived from low irrigation could increase WUE (e.g. 
on 02 July 2018 in Fig. 8). This agrees with Zhang et al. (2022), Liu et al. 
(2005a, b), and Liu et al. (2006a), who concluded that mild soil water 
deficit improved WUE of potatoes since crop Tr was significantly 
reduced but crop photosynthesis and growth rate were maintained. 
Besides improving WUE, the irrigation strategies other than full irriga-
tion, such as partial root-zone drying (PRD) and DI could help crops to 
enhance root systems and increase soil nutrient uptake (Kirda et al., 
2005; Liu et al., 2006b; Shahnazari et al., 2007). However, in compar-
ison to DI, the applicability of PRD for large-field management is rela-
tively low (except for furrow/ridge crops) and uniform DI is currently 
more feasible. Compared to the use of soil water balance models in the 
DI application, which increases risks of yield loss (Trout et al., 2020) due 
to underestimation of drought stress or reasons like misjudged root 
depth in all or parts of a field, direct spatio-temporal resolved mea-
surements of actual ET (the ratio or difference between actual and po-
tential ET, which were demonstrated in this study) could provide new 
opportunities for regulated DI scheduling with high precision and less 
risk of yield loss. Specifically for potatoes, reducing irrigation to 70–75% 
of ET during the late stages of growth has shown promising results 
(Crosby and Wang, 2021; Shahnazari et al., 2007) while many other 
crops typically are less sensitive to mild drought during their vegetative 
growth (Steduto et al., 2012). Development of such tools and strategies 
to increase WUE is urgently needed to support global food security in the 
light of ever-increasing competition for finite water resources world-
wide (Steduto et al., 2012). In the current study, the modelled IR re-
flected the modelled ET and NPP well (Fig. 8), indicating the water need 
for the stressed plants with low ET, hence low NPP. 

Drought and heat stress are intimately connected, since drought may 
induce extreme canopy temperatures due to lack of evaporative cooling 
as shown in this study and elsewhere (Berg et al., 2015), while high 
temperatures due to its linkage with vapor pressure deficit may induce 
drought stress (e.g. Lesk et al., 2021; Lobell et al., 2013; Zhang et al., 
2022). Therefore, it is intrinsically difficult to single out their individual 
effects and their interaction on crop growth. Present crop simulations 
models may not adequately consider a rise of canopy temperature of 
20–25 ◦C above measured air temperature, as seen here, due to drought. 
This coupling thus remains a gap in understanding present and future 
climate impacts on crop productivity (Lesk et al., 2021). In our simple 
approach to distinguish the effects of the two factors, we used a 
moisture-insensitive data driven NPP model (Peng et al., 2021a) in 
combination with the present TSEB-PT to derive WUE, which is a key 

factor to consider in water-limited environments. Peng et al. (2021a) 
firstly quantified the effect from daily maximum air temperature on the 
potato NPP based on statistical analysis of historical data for irrigated 
potatoes (Table 4 and Fig. 5 A from Peng et al. (2021a)). The NPP model 
takes daily maximum air temperature as one of the inputs, although it 
may be argued that LST would be a better input, which displayed 
reduced and even halted photosynthesis and growth of potato under 
prevailing air temperatures for both irrigated and non-irrigated treat-
ments (e.g., 12 and 24 July 2018 and 26 July 2019, Fig. 8) and this is in 
line with results of Timlin et al. (2006). From a management perspec-
tive, this raises the dilemma whether it is worthwhile to irrigate a crop 
during high temperature periods. The NPP model (Peng et al., 2021a) 
predicts a parabolic decrease of production from an optimum daily max 
temperature of c. 17 ℃ to zero at c. 29 ℃. Thus, raising temperatures 
above 17 ℃ will almost certainly decrease WUE and the profitability of 
irrigation. Nevertheless, irrigation will help to sustain crop’s survival by 
cooling (Lobell et al., 2008) and decrease production (and possible 
quality) losses in the indicated temperature range. Adequate water 
supply may even cool the crop to several degrees below the ambient air 
temperature (Antoniuk et al., 2021). 

The accurate estimation of ET (thus drought stress) and IR also 
contributes to the estimation of N deficiency and fertilization amount 
since drought limits the plant’s ability for nutrient uptake, despite these 
being abundant in the root zone (Dalla Costa et al., 1997; Obidiegwu 
et al., 2015; Peng et al., 2021b). Therefore, future studies should 
investigate how well drought and nutrient deficiency stress could be 
distinguished. Overall, our approach for the ET modelling and IR 
calculation have demonstrated the large potential for application to 
operational irrigation scheduling that seems especially promising for the 
management of regulated DI and associated water savings. 

5. Conclusion 

In this paper, the TSEB-PT model was applied using thermal, multi-
spectral and RGB images obtained by UAVs to calculate actual Tr and ET 
of potato plants grown under contrasting irrigation treatments on a 
sandy soil, and to quantify drought stress and irrigation requirements. 
The main findings can be summarized, as follows:  

(i) The TSEB-PT modelled Tr corresponded well with measured sap 
flow and spatial sensitivity test revealed that 1 m was the optimal 
spatial resolution.  

(ii) Diurnal variation of Tr followed the sap flow observations and 
convincingly revealed the effect of drought on plant Tr and ET. 
The results pinpointed the need for surface energy balance 
models to account for evaporation from the leaf surface from dew 
and irrigation intercepted water, especially for high latitude 
areas. The modelled Tr was well-correlated to plant physiological 
parameters LWP and gs. 

(iii) A simple way to distinguish drought and heat stress was pre-
sented, which could be helpful for making more informed de-
cisions on management strategies to alleviate these confounded 
stressors.  

(iv) Precise quantitative irrigation requirements were derived from 
TSEB-PT. Therefore, the approach has potential for accurate 
spatio-temporally resolved estimation of plant drought status and 
IRs as required for water saving regulated DI. 
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Appendix A 

The equation for aerodynamic resistance at the surface (rA) is given as (Norman et al., 1995): 

rA =

[
ln
(

zU − d
zM

)
− ψM

][
ln
(

zTA − d
zM

)
− ψH

]

k2U
(A.1)  

where zU and zTA are the heights of wind speed (U, m s− 1) and air temperature (TA, ℃) measurements respectively, and they are 2 m in this paper. d is 
the zero-plane displacement height (d = 0.65 hC, where hC is canopy height and it was calculated as a difference between instantaneous digital surface 
and elevation models calculated before plant emergence), zM is roughness length for momentum transport (zM = hC/8), k is von Kármán constant 
(0.41). ψM and ψH are the adiabatic correction factors for momentum and heat transports and they are given in Brutsaert (2005). These corrections 
depend on the atmospheric stability, which is described using Obukhov stability length L (m): 

L =
− u*

3

k( g
TA
)( H

CPρ +
0.61TAE

ρ )
(A.2)  

where g is acceleration of gravity (9.8 m s− 2), H is sensible heat flux, CP is heat capacity of air (J kg− 1 k− 1), ρ is air density (kg m− 3), E is evaporation, u* 
is friction velocity and it is defined as: 

u* =
kU

ln
(

ZU − d
zM

)
− ψM

( ZU − d
L

)
+ ψM

( ZM
L

) (A.3) 

In the iterative process of TSEB-PT, the initial value of L was given as infinite (ZU − d
L and ZM

L were therefore 0, i.e. stable conditions), then Eqs. A1-5 
were solved and initial rA was obtained. With the progress of the iterative process, H and E values in Eq. A(4) are updated, thus Eqs. A1-5 are updated 
as well, and eventually rA is determined when iterative process finishes. The details for iterative process are shown in Appendix B. 

The equation for aerodynamic resistance at the canopy surface (rX) is given as (Norman et al., 1995): 

rX =
C’

LAI

(
lw

Ud+ZM

)1/2

(A.4)  

where C’ is derived from weighting a coefficient in the equation for leaf boundary layer resistance over the height of the canopy, and the value is set to 
90 s1/2m− 1, LAI is leaf area index and it is given as Eq. (11) in the main body of the paper, lw is effective leaf size, and it is given as 0.05 m in this paper 
as an observed mean size of the potato leaflets. In addition, Ud+ZM is the wind direction at the source-sink height (d + zM) given as: 

Ud+ZM = UCe

[

− μ

(

1− d+ZM
hC

)]

(A.5)  

where UC is wind speed at top of the canopy height (hC), and it is given as: 

UC = U

⎡

⎢
⎢
⎣

ln(hC − d
zM

)

ln(ZU − d
zM

) − ψM

⎤

⎥
⎥
⎦ (A.6) 

μ is calculated as: 

μ = 0.28F2/3hC
1/3S− 1/3 (A.7) 
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The equation for aerodynamic resistance at the soil surface (rS) is given as (Kustas et al. 2016): 

rS =
1

0.0038(TS− TA)
1/3

+ 0.012US
(A.8) 

Where US is wind speed at a height (typically 0.05–0.2 m) above the soil surface where the effect of the soil surface roughness is minimal and it is 
given as: 

US = UCe

(

− μ(1− 0.05
hC

)

)

(A.9)  

Appendix B 

The steps for the iterative process are (Norman et al., 1995): 
1). initially estimate canopy temperature (TC) as minimum of air temperature (TA, which can be obtained from meteorological data) and radio-

metric temperature (Trad(θO)) which is land surface temperature (LST) retrieved from UAV thermal image. 
2). calculate soil temperature (TS) based on Eq. (6) since both of Trad(θO) and TC are known. 
3). calculate net longwave radiation for canopy (LnC) and soil (LnS) with initial values of TC and TS. The calculations are shown in Appendix C. 
4). calculate net radiation for canopy (RnC) as the sum of LnC and net shortwave radiation for canopy (SnC), likewise for net radiation for soil (RnS), 

which is the sum of LnS and net shortwave radiation for soil (SnS). The calculations are shown in Appendix C. 
5). calculate canopy latent heat flux (LEC) and canopy sensible heat flux (HC) based on Eq. (10) and (2). 

HC = RnC − LEC = RnC(1− αPT fg
Δ

Δ + γ
(B.1)  

LEC = RnC − HC (B.2)  

where αPT is the Priestley-Taylor coefficient initially set to 1.26, fg is fraction of green canopy, Δ is the slope of saturation vapour pressure with 
temperature and γ is the psychometric constant. 

6). recalculate TC. 
Here, the TC will be recalculated for the series resistance network. The linearized form of Eq. (6) in the main body of the paper is proposed to 

calculate TC,Lin and small correction factor (ΔTC). 
TC can be calculated as: 

TC = TC,Lin + ΔTC (B.3)  

TC,Lin and ΔTC are given as: 

TC,Lin =

TA
rA
+

Trad(θO)
rS [1− fC(θO)]

+ HC rX
ρCP

[
1
rA
+ 1

rS
+ 1

rX

]

1
rA
+ 1

rS
+

fC(θO)
rX [1− fC(θO)]

(B.4)  

ΔTC =
T4

rad(θO) − fC(θO)T4
C,Lin − [1 − fC(θO)]T4

D

4[1 − fC(θO)]T3
D

(
1 + rS

rA

)
+ 4fC(θO)T3

C,Lin

(B.5)  

where rA is surface resistance, rX and rS are the canopy and soil resistances and the calculation equations for rA, rX and rS are shown in Appendix A, ρ is 
air density and CP is the heat capacity of air, fc(θO) is the fraction of vegetation observed by the thermal sensor and its calculation is shown in the main 
body of the paper, TD is given as: 

TD = TC,Lin

(

1+
rS

rA

)

−
HCrX

ρCP

[

1+
rS

rX
+

rS

rA

]

− TA
rS

rA
(B.6) 

7). repeat step 2 to recalculate TS and then recalculate rS and TAC; 
8). calculate HS using Eq. (8), and G as: 

G = 0.35RnS (B.7) 

9). Calculate LEC and LES using Eqs. (2) and (3). 
At this stage, the initial LES estimate is likely to yield negative-unrealistic values at daytime indicating dew condensation at soil surface. TSEB-PT 

then iteratively reduces αPT in Eq. (10) in the main body of the paper and re-computes all temperatures and fluxes until realistic LES and LEC are 
obtained (i.e. null or positive). 

Appendix C 

The net longwave radiation for canopy (LnC) and soil (LnS) are calculated by (Campbell and Norman, 2012): 

LnC =
(
1 − e− kLLAI)( Lsky + LS − 2LC) (C.1) 
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LnS = e− kLLAILsky +
(
1 − e− kLF)LC − LS (C.2)  

where kL is extinction coefficient for thermal radiation and it is set to 0.95, LAI is leaf area index and it is given as Eq. (11) in the main body of the 
paper, Lsky is the sky longwave irradiance, and it can be estimated from meteorological data, LC and LS are longwave emission from canopy and soil and 
the calculation equations are: 

LC = εCσTC
4 (C.3)  

LS = εSσTS
4 (C.4)  

where εC and εS are emissivity of canopy (set as 0.98) and soil (set as 0.95), σ is Stephan-Boltzmann constant (5.67037 × 10-8 W m− 2 K− 4). 
The net radiation for canopy (RnC) is the sum of LnC and net shortwave radiation for canopy (SnC), likewise for net radiation for soil (RnS), which is 

the sum of LnS and net shortwave radiation for soil (SnS). The equations are (Campbell and Norman, 2012): 

RnC = LnC + SnC (C.5)  

RnS = LnS + SnS (C.6) 

The calculation equations for SnC and SnS are (Campbell and Norman, 2012): 

SnC =
(
1 − τb,Cvis

)(
1 − βb,Cvis

)
Sbfvis +

(
1 − τb,Cnir

)(
1 − βb,Cnir

)
Sbfnir +

(
1 − τd,Cvis

)(
1 − βd,Cvis

)
Sdfvis +

(
1 − τd,Cnir

)(
1 − βd,Cnir

)
Sdfnir (C.7)  

SnS = τb,Cvis(1 − υSvis)Sbfvis + τb,Cnir(1 − υSnir)Sbfnir + τd,Cvis(1 − υSvis)Sdfvis + τd,Cnir(1 − υSnir)Sdfnir (C.8)  

where τb,Cvis and τb,Cnir are direct beam canopy transmittance in visible and near-infra red (NIR) regions, τd,Cvis and τd,Cnir are diffuse canopy trans-
mittance in visible and NIR regions,βb,Cvis and βb,Cnir are direct beam canopy reflection coefficient (albedo) in visible and NIR regions, βd,Cvis and βd,Cnir 
are diffuse canopy albedo in visible and NIR regions, υSvis and υSnir are soil bi-hemispherical reflectances in the visible and NIR regions. Sb and Sd are 
incoming direct beam shortwave radiation and incoming diffuse shortwave radiation, fvis and fnir are potential fractions of total radiation in visible and 
NIR regions. 

The calculation equation for beam canopy transmittance coefficient (τb,C) are (regardless visible or NIR region): 

τb,C =

[
βb,C

*2
− 1

]
e−

̅̅
ϕ

√
kbeΩLAI

(
βb,C

*υS − 1
)
+ βb,C

*(βb,C
* − υS)e− 2

̅̅
ϕ

√
kbeΩLAI

(C.9)  

where Ω is solar angular clumping index which is calculated assuming potato is a row crop with row direction set at 330◦ and its calculation was shown 
in Appendix B1 from Nieto et al. (2019). υS is soil bi-hemispherical reflectance, and its values in visible region (400–700 nm) and near-infra red (NIR, 
700–2500 nm) region are set as 0.15 and 0.25 according to the empirical estimation. ϕ is leaf absorptivity, and it is given as: 

ϕ = 1 − υC − τC (C.10)  

where υC is leaf bi-hemispherical reflectance and its values in visible and NIR regions are set as 0.07 and 0.32, τC is leaf bi-hemispherical transmittance 
and its values in visible NIR regions are set as 0.08 and 0.33 based on empirical estimation. 

βb,C* is beam canopy reflection coefficient for a deep canopy, and it is given as: 

βb,C
* =

2kbe

kbe + 1
βC (C.11)  

where βC is canopy hemispherical reflection coefficient and it is given as: 

βC =
1 −

̅̅̅̅
ϕ

√

1 +
̅̅̅̅
ϕ

√ (C.12) 

Beam canopy reflection coefficient (βb,C) for a generic canopy is given by: 

βb,C =
βb,C

* +
[

βb,C
* − υS

βb,C
*υS − 1

]
e− 2

̅̅
ϕ

√
kbeΩLAI

1 + βb,C
*
[

βb,C
* − υS

βb,C
*υS − 1

]
e− 2

̅̅
ϕ

√
kbeΩLAI

(C.13) 

It should be noted that in this paper, the potato canopy is assumed as generic canopy. 
The calculation equation for diffuse canopy transmittance coefficient (τd,C) is: 

τd,C =

[
βd,C

*2
− 1

]
e−

̅̅
ϕ

√
kdLAI

(
βd,C

*υS − 1
)
+ βd,C

*(βd,C
* − υS)e− 2

̅̅
ϕ

√
kd LAI

(C.14)  

kd is diffuse extinction coefficient and it is given as: 
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kd =
− ln

∑90
θs=0(5cosθssinθse− kbe(θs)LAI)

F
(C.15) 

where θs is solar zenith angle and its calculation method is present in the main body of this paper and it ranges from 0 to 90 with interval 5. 
βd,C* is beam canopy reflection coefficient for a deep canopy, and it is given as: 

βd,C
* =

2kd

kd + 1
βC (C.16) 

Diffuse canopy reflection coefficient βd,C for a generic canopy is given by: 

βd,C =
βd,C

* +
[

βd,C
* − υS

βd,C
*υS − 1

]
e− 2

̅̅
ϕ

√
kd LAI

1 + βd,C
*
[

βd,C
* − υS

βd,C
*υS − 1

]
e− 2

̅̅
ϕ

√
kd LAI

(C.17)  

Sb and Sd are given as (Weiss and Norman, 1985): 

Sb = S(1 − ξd) (C.18)  

Sd = Sξd (C.19)  

where S is incoming shortwave radiation (W m− 2) and it can be obtained from meteorological data, and ξd is diffusion coefficient, and it is given as: 

ξd = fd,visfvis + fd,nirfnir (C.20)  

where fvis and fnir are given as: 

fvis =
Rb,vis + Rd,vis

Rb,vis + Rd,vis + Rb,nir + Rd,nir
(C.21)  

fnir =
Rb,nir + Rd,nir

Rb,vis + Rd,vis + Rb,nir + Rd,nir
(C.22)  

where Rb,vis and Rd,vis are potential beam (direct) and diffuse radiation in visible region, and Rb,nir and Rd,nir are potential beam and diffuse radiation in 
NIR region. The equations are shown as: 

Rb,vis = GSCfe,vise
(− 0.185PA

P0
m)cosθs (C.23)  

Rd,vis = 0.4(GSCfe,vis − Rb,vis)cosθs (C.24)  

Rb,nir = (GSCfe,nire
− 0.06PA

P0
m
− w)cosθs (C.25)  

Rd,nir = 0.6(GSCfe,nir − Rb,nir − w)cosθs (C.26)  

where GCS is solar constant and its value is 1320 W m− 2, fe,vis and fe,nir are empirical fraction of radiation in the visible and NIR regions and they are set 
as 0.4545 and 0.5455, PA is actual air pressure and it can be obtained from the meteorological data, P0 is the air pressure at sea level and it is set as 
1013.25 mbar, m is optical air mass and it is given by: 

m =
1

cosθs
(C.27)  

w is the water absorption in the NIR region for 10 mm of precipitation water and it is given as: 

w = GSC10− 1.195+0.4459log10m− 0.0345log10m2 (C.28)  

fd,vis and fd,nir are diffuse fractions in visible and NIR regions, and they are given as: 

fd,vis = 1 −
Rb,vis

Rb,vis + Rd,vis

[

1 − (
0.9 − Φ

0.7
)

2
3

]

(C.29)  

fd,nir = 1 −
Rb,nir

Rb,nir + Rd,nir

[

1 − (
0.88 − Φ

0.68
)

2
3

]

(C.30)  

where Φ represents the ratio of measured to potential shortwave radiation and it is given as: 

Φ =
SR

Rb,vis + Rd,vis + Rb,nir + Rd,nir
(C.31) 
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Appendix D. Supplementary material 

Supplementary data to this article can be found online at https://doi.org/10.1016/j.isprsjprs.2023.03.009. 
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Bellvert, J., Jofre-Ĉekalović, C., Pelechá, A., Mata, M., Nieto, H., 2020. Feasibility of 
using the two-source energy balance model (TSEB) with Sentinel-2 and Sentinel-3 
images to analyze the spatio-temporal variability of vine water status in a vineyard. 
Remote Sens. (Basel) 12, 2299. 

Berg, A., Lintner, B.R., Findell, K., Seneviratne, S.I., van den Hurk, B., Ducharne, A., 
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