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Abstract Data from monitoring programs with 
high spatial resolution but low temporal resolution 
are often overlooked when assessing temporal trends, 
as the data structure does not permit the use of estab-
lished trend analysis methods. However, the data 
include uniquely detailed information about geograph-
ically differentiated temporal trends driven by large-
scale influences, such as climate or airborne deposi-
tion. In this study, we used geographically weighted 
regression models, extended with a temporal compo-
nent, to evaluate linear and nonlinear trends in envi-
ronmental monitoring data. To improve the results, 
we tested approaches for station-wise pre-processing 
of data and for validation of the resulting models. To 
illustrate the method, we used data on changes in total 
organic carbon (TOC) obtained in a monitoring pro-
gram of around 4800 Swedish lakes observed once 

every 6  years between 2008 and 2021. On applying 
the methods developed here, we identified nonlinear 
changes in TOC from consistent negative trends over 
most of Sweden around 2010 to positive trends during 
later years in parts of the country.

Keywords Geographically weighted regression · 
Temporal trend assessment · Brownification · Surface 
waters · Low temporal monitoring frequency

Introduction

Surveillance monitoring has two main aims: (i) to 
assess the status of a target object and (ii) to detect 
long-term trends over time (Carvalho et  al., 2019; 
Fölster et  al., 2014b). Typically, for the work to be 
cost-effective, different types of monitoring pro-
grams with varying temporal and spatial resolution 
are established. A few selected stations are monitored 
frequently (at least once a year) to evaluate and quan-
tify trends, while general status is assessed at a larger 
number of stations, but with lower temporal frequency 
(e.g., once or twice in a 6-year-period; Carvalho et al., 
2019). The data from the latter are often disregarded 
in trend evaluations or only used to provide auxiliary 
information. In this study, we examined whether geo-
graphically weighted regression models can reveal the 
spatially detailed and unique information provided by 
monitoring programs with high spatial resolution and 
low temporal resolution and if this information can be 
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utilized to quantify regional trends, i.e., trends driven 
by large-scale phenomena such as atmospheric depo-
sition or climate.

Rotating panel, also called serially alternating, designs 
consist of a large number of monitoring sites that are split 
into a few panels, which are revisited at regular intervals,  
but with differing start years. Some panels may be revisited 
annually, in what is called an augmented rotating design 
(McDonald, 2003). Several approaches based on linear 
mixed models for analyzing trends in the data obtained 
in such programs have been suggested (Starcevich  
et al., 2018a, b; Urquhart & Kincaid, 1999). For example, 
Dauwalter et al. (2010) estimated trends individually for 
each site and, using these, computed a mean slope across 
a larger area. Starcevich et al. (2018a) used a mixed model 
comprising a fixed joint trend slope, random site-specific 
trend slopes, random effects for sites and years, and a 
random site-year interaction (Piepho & Ogutu, 2002) 
for this purpose. These methods are designed to evalu-
ate a single population-level trend, under the assumption 
that this trend has the same form and similar magnitude 
over the entire geographical region under assessment, 
while site-specific trends also can be evaluated using the 
random-effect site-level trend slopes. This assumption is 
reasonable for smaller areas or for regions where a single 
large-scale driver affects all sites uniformly. However, in 
many cases, it is naïve and could conceal important infor-
mation. Moreover, due to the low temporal resolution of 
the data, conventional station-wise trend detection meth-
ods, such as Mann–Kendall tests (Hirsch & Slack, 1984; 
Hirsch et  al., 1982), are not applicable, as they require 
more than a few data points per series. There is thus a lack 
of appropriate statistical methodology for evaluating tem-
poral trends that vary over space in data with sparse tem-
poral resolution.

Spatially varying relationships without a tempo-
ral component can be studied using geographically 
weighted regression (GWR) models (Brunsdon 
et  al., 1998a). Such models allow the relationship 
between two variables to change smoothly over 
space and have been applied widely in social, eco-
nomic, and medical studies. In environmental stud-
ies, Tu and Xia (2008) and Taghipour Javi et  al. 
(2014) used GWR models to connect water quality 
or quantity to land use indicators, while Koh et al. 
(2020) studied nutrient contamination in ground-
water in relation to hydrological and land use vari-
ables. In many applications of GWR, the analysis 
is based on single observations per site, object, or 

administrative unit. To counterbalance that, the 
regression model for a specific object uses a geo-
graphical window. Observed objects within this 
window, adjusted by weights that represent the dis-
tance to the object of interest, are used to build the 
regression model. GWR has also been adapted to 
include additional spatial correlations (GWR-SAR; 
Brunsdon et  al., 1998b) and both spatial and tem-
poral weights (GTWR; Fotheringham et  al., 2015; 
Huang et al., 2010). For space–time data also geo-
graphically weighted panel regression models have 
been suggested (Yu, 2010). While the latter meth-
ods make use of temporal data, the focus was on 
the spatial representation and not changes in time. 
Since GWR is a computationally expensive method, 
several solutions for parallel computations have 
been suggested and implemented (Harris et  al., 
2010a, b; Murakami et al., 2021; Wang et al., 2020).

Geographically weighted regression models are a 
useful tool for exploring geographically diverse tem-
poral trends in temporally sparse data as long as these 
trends are influenced by large-scale drivers, i.e., can 
be assumed to be spatially homogeneous to some 
extent. In this study, we examined whether GWR 
models can be modified by adding time as an explan-
atory variable and adjusting the approach used for 
pre-processing of data. This would permit the evalu-
ation of spatially differentiated trends and thereby 
uncover new information about patterns of prevailing 
trends. Specifically, in this study, we sought to deter-
mine whether:

1. Pre-processing of data could be performed to 
lower the influence of outliers and remove small-
scale variation in observed levels of the variable 
of interest.

2. The size of the chosen k-nearest-neighborhood 
(knn) influences observed large-scale geographi-
cal patterns and which size works best for the 
problem at hand.

3. Datasets with higher temporal resolution can be 
added to increase the available information in 
sparse datasets, in order to produce more reliable 
temporal trends.

4. Nonlinear temporal trends can be identified using 
an approach with temporally moving windows.

For illustration purposes, we used data from the 
Swedish Lake Survey (SLS), a monitoring program 
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covering around 4800 lakes with a revisit interval of 
6 years, that has not been utilized previously to study 
temporal trends. Brownification of surface waters was 
selected as an example of an issue that would benefit 
from the development of relevant statistical tools to 
evaluate spatial–temporal data. Brownification may 
be driven by recovery from acidification (Evans et al., 
2005; Monteith et  al., 2007) and by changes in cli-
mate, such as increased temperature or precipita-
tion (de Wit et al., 2016; Weyhenmeyer & Karlsson, 
2009; Weyhenmeyer et al., 2012). However, there are 
also alternative theories on the causes of brownifica-
tion with more local effects, including, e.g., changes 
in land use and increasing coniferous forest cover 
(Kritzberg, 2017; Meyer-Jacob et  al., 2019; Škerlep 
et  al., 2020). An ability to compute regionally dif-
ferentiated trends for brownification variables on a 
dense spatial grid would provide a clearer picture of 
which of these hypotheses is most important. As the 
focus of this study was on the statistical methodol-
ogy, we used only one variable, total organic carbon 
(TOC). A more extensive analysis to evaluate poten-
tial drivers of brownification with the proposed statis-
tical methods was conducted in a parallel study and 
will be reported elsewhere.

Methods

Geographically weighted regression models

Geographically weighted regression models are used 
to model a response variable as a function of one or 
several explanatory variables x1, x2,… , xp (Brunsdon 
et al., 1998a; Comber et al., 2023):

where �ik are the regression coefficients for the vari-
able xik , k denotes the different variables, and i the 
spatial location. This formula is valid for each of the 
n locations and contains usually no temporal compo-
nent. The error term in the model is assumed to fol-
low a normal distribution with a mean zero.

This means that for each spatial location, a regres-
sion model is defined. In order to achieve spatial 
smoothing of the regression coefficients, the coef-
ficient for a specific location is computed from 

Yi = �i0 +

p∑

k=1

�ikxik + �i

observations within a spatial neighborhood. Such a 
neighborhood can be defined using a fixed distance 
band or as a group of stations formed by the k near-
est neighbors. Within the neighborhood, weights are 
assigned to individual observations, depending on the 
distance of the observations to the location modeled. 
Then, a weighted least squares regression is com-
puted using the regression equation and the defined 
weight matrix. A typical choice for the weights makes 
use of the Bisquare weighting function (Brunsdon 
et al., 1998a):

where dij denotes the distance between observations 
i and j, while b represents the physical distance from 
location i to the kth nearest neighbor. Standard errors 
for the estimated GWR coefficients correspond to 
standard errors in a weighted least squares regression 
(Fotheringham et al., 2002; Harris et al., 2010a, b).

To make this method available for use in trend 
analysis, we reformulated the model with respect to 
two features: (i) we allowed several observations 
instead of single observations per location and (ii) we 
used time explicitly as an explanatory variable. While 
it is possible to add additional explanatory variables, 
we concentrated on the basic trend model. The model 
is thus:

where i again denotes the geographical location and 
j the jth observation at that location, and tij is a time 
variable, typically a year of observation.

Including time as an explanatory variable requires 
adjusted pre-processing of the data (see section “Data 
pre-processing”). We set the size of the neighbor-
hood to be adaptive, as the spatial sampling density 
varied and used a Bi-square kernel to spatially weight 
the observations. We created the GWR model using 
the package GWmodel (Gollini et al., 2015; Lu et al., 
2014) in the free statistical software R (R Core Team, 
2022). As the dataset was rather large and GWR mod-
els are computationally expensive, we opted to per-
form computations in parallel on a standard PC using 
the default option provided in GWmodel. The size of 
the k-nearest-neighborhood (knn) was determined by 
cross-validation and also compared to user-defined 

wij =

{(
1 −

(
dij∕b

)2)2

if
|
|
|
dij < b

|
|
|

0 otherwise

Yij = �i0 + �itij + �ij
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sizes of the neighborhood. R scripts and data used in 
this study are available online (von Brömssen et  al., 
2023).

Data

The Swedish Lake Survey has monitored approxi-
mately 4800 lakes since 2007 (Fölster et al., 2014a, b). 
This program has a revisit time of 6  years, and each 
year a panel consisting of about 800 lakes is monitored, 
leading to time series of two or three observations 
per location so far. The spatial monitoring density is 
higher in southern Sweden. Mid-lake surface samples 
are taken during autumn circulation, usually between  
September and December, since these measure-
ments are regarded as representative of the entire lake 
(Göransson et al., 2004). The selection of lakes is made 
randomly within geographical strata and account-
ing for lake size. Only lakes larger than 0.01  km2 are 
included (Grandin, 2007). Occasional late observations 
(up to January) are attributed to the autumn of the pre-
vious year. During autumn 2018 (including January 
2019), only 463 lakes were sampled due to a technical 
breakdown of the helicopter used for monitoring. The 
remaining lakes were sampled together with the panel 
planned for 2019, leading to a total of 1080 lake meas-
urements in 2019. Some data quality problems were 
detected for the first year of monitoring in the SLS 
(2007), so our analysis was based on data from 2008 
to 2021. As the goal was to identify larger regions with 
common trends, the 11 lakes on the island of Gotland, 
which lies off the south-east coast of Sweden, were 
omitted from the analysis.

A parallel monitoring program, the Swedish 
Trend Lake (STL) program, initially covered small 
acidification-sensitive forest lakes, which were not 
treated by liming to mitigate acidification. Over 
time, the scope was broadened several times, and it 
now includes lakes that are unaffected by local point 
source pollution in general. Its monitoring sites have 
a good geographical representation in Sweden, but 
with a higher density in southern Sweden. The cur-
rent program includes 107 lakes (excluding lakes on 
the island of Gotland). Most of the lakes are moni-
tored four times a year, while some have a more fre-
quent sampling regime (Fölster et  al., 2014a). For 
the purposes of the present study, where STL data 
were co-analyzed with SLS data, STL surface water 
observations (≤ 1  m) during autumn, i.e., between 

September and December, in the years 2008 to 2021 
were selected. When evaluating nonlinear trends, all 
available STL data between 2008 and 2021 were used 
for a supporting analysis (section “Nonlinear tempo-
ral trends”).

All data used were downloaded from the environ-
mental data internet service at the Swedish Univer-
sity of Agricultural Sciences https:// miljo data. slu. se/ 
MVM/.

Data pre-processing

Basic pre‑processing

The goal of our study is to conduct temporal trend 
evaluation and we removed, thus, sites with less 
than two observations to ensure that only time series 
type of data were included. This led to the removal 
of 214 observations/stations. All TOC data were 
 log10-transformed before analysis to account for the 
skewed data distribution and to decrease the effect of 
potential outliers.

Detection of series with high variation and outliers

Local outliers can strongly influence GWR estimates 
(Comber et  al., 2023; de Bellefon & Floch, 2018; 
Fotheringham et  al., 2002). A number of adjusted 
methods have been suggested to reduce the potential 
influences of single observations, by identifying and 
eliminating or downweighting them (Fotheringham 
et al., 2002; Harris et al., 2010a, b), by using robust 
estimation (Sugasawa & Murakami, 2021; Zhang 
& Mei, 2011), or by robust cross-validation (Farber 
& Páez, 2007; Harris et al., 2010a, b). In this study, 
the  log10-transformation of the data before analy-
sis already decreased the effect of single deviating 
observations. Additionally, we took advantage of the 
fact that we had several observations per site, which 
is usually not the case for GWR. We were thus able 
to identify sites with unusually large variation rela-
tively to observed levels by computing the coefficient 
of variation (CV) for each station as defined for log-
normal data (Koopmans et al., 1964):

where s2
ln

 is the variance in the response on the 
scale of the natural logarithm. Here, we used a 

CVlog−normal =
√
es

2

ln − 1

https://miljodata.slu.se/MVM/
https://miljodata.slu.se/MVM/
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logarithm with base 10, so this was substituted with 
sln = s10 ∙ ln(10) , where s10 is the standard deviation 
of the response transformed with a logarithm of base 
10. Station-wise variances and station-wise mean val-
ues were also computed and compared.

Assessing the geographical heterogeneity  
of temporal changes

To evaluate whether a geographically differentiated 
trend model was necessary, we first fitted a global 
model, i.e., we assumed a homogeneous trend slope 
for all of Sweden and fitted a traditional linear regres-
sion on time while ignoring spatial dependence. For 
this model, we studied the geographical heterogeneity 
of the residuals using plots and summary statistics. 
To further assess the spatial autocorrelation of a fea-
ture, Moran’s I, which is a measure for clustering of 
spatial data, can be computed (Comber et al., 2023). 
Here, we wanted to determine whether the predomi-
nant trend differed in different parts of Sweden and 
thus we determined the spatial clustering using the 
change over time, rather than the level of the variable 
of interest. For this, we determined the change per 
year for each individual station as:

changeyear =
yj − yi

j − i

where yi is the first log-transformed observation at a 
site and yj is the last observation, while i and j indi-
cate the years of observation. We then computed 
Moran’s I for the variable changeyear using Euclidian 
distances in space, with the package ape in R (Paradis 
& Schliep, 2019).

Station‑wise centering of data

When data are collected from a number of sites, the 
general level of the variable of interest can vary due 
to factors such as catchment land uses and the depth, 
type, or size of the lake. While we assumed that the 
prevailing temporal trends in a neighborhood are 
similar, we could not make this assumption for the 
levels of the variable of interest. Since GWR is based 
on the spatial weighting of observations and the data 
analyzed here were collected with a low temporal 
resolution, varying station-wise levels might lead to 
undesired effects on the trend analysis. To illustrate 
this, observations of log-transformed TOC from nine 
stations within a geographical window are shown in 
Fig.  1 (left panel). Both decreasing and increasing 
trends are evident at individual stations, but several of 
the stations with higher mean levels were monitored 
during later years. A joint trend estimated for the data 
(here without geographical weighting) led to the con-
clusion that there is an apparent upward trend, with an 

Fig. 1  (Left) Log-transformed values and a joint regression line for data from nine stations in a geographical window in Sweden and 
(right) data from the same nine stations, log-transformed, and mean-centered with a joint regression line
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estimated magnitude of 0.018 units per year (standard 
error: 0.02). To decrease the effect of station-specific 
mean levels, we applied station-wise mean-centering 
of the data, i.e., we subtracted the mean level of each 
station from the individual observations, resulting in 
a series with zero mean (Fig. 1, right). When we then 
computed the trend slope for these series, the result 
was a slightly negative trend estimate (−0.005; stand-
ard error: 0.002).

Model validation

For a GWR model, the residual sum of the square, 
local  R2, and p-values can be computed to assess its fit 
(Comber et al., 2023). The p-values can be corrected for 
multiple testing using, e.g., Benjamini and Hochberg 
False Discovery rates or the Bonferroni method (da Silva 
& Fotheringham, 2016). In our application, p-values were  
only used to identify areas with potential trends and exact 
p-values were not relevant. Therefore, we followed the  
recommendation of Brunsdon et al. (1998a) and only con-
sidered areas with a large proportion of locally very dis-
tinct trends, while smaller areas and single stations indi-
cating geographically limited deviations were ignored.  
Stations that were identified in the pre-processing step as  
containing much variation compared with the overall level  
of the measurements were examined by computing the 
differences between the estimated trend slopes obtained 
for models with and without these stations. While we 
generally used the size of the geographical neighborhood 
suggested by the cross-validation approach, we also com-
pared these results with a model assuming a much smaller 
neighborhood, both visually and by computing the dif-
ference between the estimated trend slopes for the two  
neighborhood sizes.

Combining datasets

Geographically weighted regression involves the 
weighting of observations from geographical win-
dows, which makes it possible to combine data from 
different monitoring programs even if their tem-
poral and spatial resolution vary. Here, we merged 
SLS and STL data, with SLS being a random sam-
ple of lakes and STL a sample of lakes unaffected 
by local pollution sources. It was thus important to 
verify that the same type of overall trend was moni-
tored, especially since the STL monitors with sub-
stantially higher temporal frequency than the SLS.  

The effect of including the STL data in the analysis 
was evaluated by inspecting the changes obtained in 
slope estimates.

Nonlinear temporal trends

GWR allowed us to estimate linear trends in time, but 
for longer time series, this would not be adequate to 
identify ongoing changes. Therefore, in addition to 
the overall GWR analysis, we also applied GWR on 
temporal subsets, so-called moving windows, of the 
SLS data. We used coefficients estimated for 10-year-
long windows and results plotted side-by-side to iden-
tify any clear changes in the trend slope coefficients 
over time, i.e., any indications of nonlinearity.

For comparison, we evaluated nonlinear trends in 
the STL data, which have a higher temporal resolu-
tion, using generalized additive mixed models (Hastie 
& Tibshirani, 1986; Wood, 2017) and the visualization  
methods suggested by von Brömssen et al. (2021). For 
this analysis, we used all available data in the STL, usu-
ally at least one observation per season. We modeled 
the overall trend by a thin plate spline and accounted for 
seasonal variation in the model by a seasonal indicator 
variable with four levels: spring (March–May), summer 
(June–August), autumn (September–November), and 
winter (December–February). The error term is mod-
eled as an autoregressive process of order 1 to account 
for the temporal autocorrelation in these time series.

Results

Data quality assurance and pre-processing

High levels of TOC were generally recorded in south-
ern Sweden, but also on the north-east coast (Fig. 2, 
left). Using the coefficient of variation, we were able 
to locate stations with relatively high variation com-
pared with the station mean (Fig. 2, right). Especially, 
eleven lakes had a value higher than 1 (Table S1 in 
Supporting Information (SI)), i.e., the standard devia-
tion of the log-transformed observations was at least 
as large as their local mean. An unusually high num-
ber of such lakes (five) were observed in the Swed-
ish alpine region (north-west of the country), where 
the overall level of TOC in lake water is generally 
low (≤ 1  mg/L). At four of these five stations, unu-
sually high TOC levels were observed as the first 
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recorded value, which could introduce an artificial 
trend if these observations were faulty. However, the 
measurements were made during different years, and 
there is no obvious reason to believe that these obser-
vations were not correct. The remaining stations with 
the highest coefficient of variation were distributed 
randomly over the country and included stations that 
so far only have been visited twice. While these sta-
tions most probably have some effect on trend estima-
tion in their immediate region, at this stage we were 
unable to determine whether these were invalid or 
erroneous measurements and they needed to be revis-
ited instead in model validation. Station-wise vari-
ances were computed, but did not contribute further 
to the analysis of data quality.

Trends in TOC

Moran’s I was calculated on the change per year 
based on individual stations and showed a spatial pat-
tern (p < 0.001). This pattern was confirmed by fitting 
a global linear trend model and analyzing its residuals 
(not shown). Thus, both analyses indicated a need for 
geographically differentiated analysis.

Temporal trends in TOC were estimated by GWR 
for log-transformed TOC values that were mean-
centered within the station. The size of the k-nearest 
neighborhood was determined to be 370 by cross-
validation, indicating that approximately 125 lakes 
(about 2.5% of all lakes), with varying weights, were 
considered in the estimation of the trend slope for 

Fig. 2  (Left) Mean levels of total organic carbon (TOC, 
mg/L) observed in lake water at monitoring stations through-
out Sweden and (right) coefficient of variation  (CVlog-normal) for 

observed values. Black dots indicate stations with a coefficient 
of variation larger than 0.8
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an individual lake. Clear decreasing trends with 
the magnitude of about 0.02 were observed in the 
Swedish alpine region (Fig. 3, left) and trends with 
slightly lower magnitude in south-east Sweden. 
Increasing trends were seen in south-west Swe-
den and to some extent in the region of Gävleborg 
in central Sweden. A plot illustrating where trends 
were significant at an unadjusted significance level 
of p < 0.05 was used to enhance this geographical 
information (Fig. 3, right).

For comparison, GWR was also computed for data 
without station-wise mean-centering, where the cross-
validated k-nearest neighborhood was determined 
to be 23, i.e., only about 8 lakes. While the overall 

picture of positive and negative trend slope estimates 
in some regions still could be identified (Fig. S2, left) 
local deviations were much larger due to the small size 
of the selected neighborhood and standard errors of 
trend slopes were approximately 10 times higher than 
in the centered case (Figs. S1 and S2, right). Only few 
stations in the alpine region showed significant trends. 
Similarly, using a larger neighborhood (knn = 370) 
few regions showed significant trends due to the 
increased local variation when the TOC level of sta-
tions differed strongly and the standard errors of the 
trend slopes were still about 4 times larger compared 
to the model for mean-centered data. The model using 
non-centered data was not considered further.

Fig. 3  (Left) Estimated linear trend slopes of log-transformed 
and mean-centered total organic carbon (TOC) concentra-
tions in Swedish lake water from 2008 to 2021 and (right) 
distribution of slopes significant at 5% level in geographically 

weighted regression analysis based on k-nearest-neighborhood 
(knn) of 370 observations, where blue indicates a significant 
downward trend, red significant upward trend, and gray no sig-
nificant trend. P-values were not adjusted to multiple testing
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Model validation

The resulting model had an overall adjusted R2 value 
of 0.12, with local R2 values up to about 0.4 in the 
region with the strongest trends, i.e., the alpine region. 
The standard error values computed in GWR showed 
the expected pattern of higher variation in regions 
with the sparser geographical resolution, especially 
along the north-east coast, central-west Sweden, and 
southernmost Sweden (Fig.  S1 in SI). Regions with 
high trend slopes and significant trends were mostly 
well connected. Some smaller areas with significant 
trends were observed, especially in central Sweden 
(Fig.  3, right), but these trends should not be inter-
preted unless supported by additional data, expert 
knowledge, or auxiliary information from relevant 
background variables. The removal of 24 lakes with 
 CVlog-normal > 0.8 obviously led to a change in trend 
estimates, but the change was seldom larger than 
0.001 (Fig. S3 in SI, left). This was mainly observed in 
the alpine region, where the negative trends appeared 
weaker on removing high-variation sites. Due to the 
lower variation in some other regions, new stations 
appeared to be significant after the removal of several 
high-variation sites. However, these were randomly 
scattered throughout Sweden and trends were thus not 
eligible for interpretation.

It was expected that single lakes would not have 
any substantial influence on the results of this model, 
as the neighborhood used was rather large. However, 
the large neighborhood also made it more difficult to 
observe local trends that could arise due to climatic 
or atmospheric deposition effects on a smaller scale 
(e.g., rainy alpine regions, high deposition on south-
west coast) or to detect whether smaller regional 
drivers had more effect than large-scale drivers. We 
evaluated the effect of neighborhood by running a 
GWR with a smaller k-nearest-neighborhood of only 
90 observations (approx. 30 lakes). The overall pic-
ture was unchanged, with decreasing trends in the 
alpine region, central-west Sweden, and south-east 
Sweden and increasing trends mainly in the south-
west (Fig. 4, left). However, local trends were much 
more pronounced, with maximum slope estimates 
as high as 0.037 (for negative trends in the alpine 
region; standard error: 0.002) and 0.015 (for positive 
trends around Hanöbukten; standard error: 0.002) and 
local R2 values above 0.7. Consequently, fewer loca-
tions showed significant trends (Fig.  4, right), and 

significant trends were more often observed for small 
clusters of lakes, especially around the edges of the 
fitted area, i.e., the coastline. Even for the smaller 
neighborhood (knn = 90), the removal of lakes with 
high  CVlog-normal did not change the overall picture 
(results not shown).

Combining data from different monitoring programs

The STL program has a higher temporal frequency, 
but much fewer stations than the SLS program. We 
merged data from these two programs and con-
ducted a joint GWR. Cross-validation determined 
the optimal k-nearest neighborhood to be 400 for 
the combined data (about 130 lakes or 3% of all sta-
tions). While the overall picture of prevailing trends 
was quite similar to that observed for the SLS data 
alone (Fig.  5, left), there were some differences in 
the estimated trend coefficients (Figs.  5, right;  S3, 
right). The greatest difference in the estimated slope 
coefficient was observed around Lake Hindsen in the 
extreme south of Sweden, but since this is an area 
with few lakes on the edge of the observed geographi-
cal area, we did not interpret this change further. A 
similar difference in slope estimate was observed 
around Lake Kupesjön, which lies near three STL 
lakes, Älgarydssjön, Fiolen, and Stora Skärsjön. All 
three STL lakes showed some decrease in TOC con-
centration over the years (Fig.  6, upper left), while 
SLS lakes mainly indicated increased TOC level or 
no change. This area connects with lakes north-east 
of Halmstad (Fig.  6, upper right), where a similar 
change was observed (Fig.  5 (right), red circle). In 
both areas, the overall estimated trend magnitude was 
still mainly positive, but was lessened by the addition 
of the STL lakes. The approximate decrease in trend 
slope estimate was 0.0035 units. A third area with 
decreased slope coefficient after the inclusion of the 
STL lakes was identified south of Stockholm, around 
Södertälje. There, most of the STL lakes exhibited 
high values during the first years in the series (Fig. 5 
(right), green circle; Fig.  6, lower left), a finding 
which needs to be studied further. Clear confirmation 
of an increasing trend in TOC was given by the STL 
lakes Svinarydsjön and Örsjön outside Karlshamn, 
close to Hanöbukten (Fig.  6, lower right). The esti-
mated trend slope for this region was around 0.002 
units steeper when STL lakes were included com-
pared with only SLS lakes.
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Nonlinear trends in TOC

To study nonlinear trends in the SLS data, we fitted 
separate GWR models in five different 10-year tem-
poral windows (2008–2017, 2009–2018, 2010–2019, 
2011–2020, 2012–2021). We observed primarily 
downward trends in TOC during the first few 10-year 
periods (Fig.  7, left), while, especially during the 
last 10  years, we observed increasing TOC levels 
in south-west and north-east Sweden (Fig.  7, right). 
Negative trends prevailed in the northern Swedish 
alpine regions and, to a lesser extent, in the south-east 
during the entire observation period. Even though the 
periods used in the analysis were only 10 years long, 

many of the observed changes identified were signifi-
cant (Fig. S4 in SI).

To validate the results, we again used the sites 
in the STL program. As the data had a higher tem-
poral resolution, we performed the analysis of 
nonlinear trends station-wise for the 107 stations, 
using generalized additive models. We observed 
that for TOC, significant downward trends were 
present even in this analysis for several lakes in 
the north, as well as the south east (e.g., Glimmin-
gen, Fjärasjö, and Hökesjön), and several series 
exhibited upward trends towards the end of the 
series, both in north-east (e.g., Täftesträsket, Häll-
vattnet) and in south Sweden (Fig.  S5 in SI). In 

Fig. 4  (Left) Estimated linear trend slopes of log-transformed 
and mean-centered total organic carbon (TOC) concentrations 
from 2008 to 2021 and (right) distribution of slopes signifi-
cant at 5% level in geographically weighted regression analy-

sis based on k-nearest-neighborhood (knn) of 90 observations, 
where blue indicates a significant downward trend, red signifi-
cant upward trend, and gray no significant trend. P-values were 
not adjusted to multiple testing
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the south, the most prominent increases happened 
in Västergötland, between the large lakes Vänern 
and Vättern, while no or even negative trends were 
observed in the south-east, as already observed in 
the combined SLS and STL analysis. An excep-
tion was again the area around Hanöbukten where 
lakes Svinarydsjön and Örsjön showed significant 
increases.

Discussion

GWR as a method for trend evaluation for datasets 
with a sparse temporal resolution

Large amounts of data are collected in environmen-
tal monitoring to determine the status of lakes, water 
courses, grasslands, forests, or other types of objects. A 

typical choice for such programs is to keep the temporal 
resolution of the series low in favor of obtaining a better 
spatial representation and including more objects in the 
survey. Still, such extensive data sets are also very inter-
esting for temporal trend analysis. GWR has so far not 
been used to evaluate temporal trends but is a much-used 
tool to quantify spatially varying relationships. Including 
time as an explanatory variable in GWR, we can conduct 
a trend analysis as long as trends can be assumed to be 
consistent over a reasonably large region. In the brownifi-
cation of surface waters, climate and current and previous 
acid deposition are expected to influence the level and 
change in TOC (de Wit et al., 2016; Evans et al., 2005; 
Monteith et al., 2007; Weyhenmeyer & Karlsson, 2009; 
Weyhenmeyer et al., 2012), and Sweden has a clear gra-
dient both in deposition and climate. Therefore, TOC in 
Swedish lakes is a suitable study area for geographically 
differentiated temporal trends as identified by GWR.

Fig. 5  (Left) Estimated linear trend slopes of log-transformed 
and mean-centered total organic carbon (TOC) concentrations 
from 2008 to 2021 when both SLS and STL data was used and 
(right) differences computed as the estimated coefficient in the 

combined model minus the coefficient when only SLS data 
were used. Black points in the right panel indicate the location 
of STL monitoring sites, while circles indicate two region with 
pronounced changes after the inclusion of STL data
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Even though GWR is quite straightforward to 
use for temporal trend evaluation by including time 
of observation as an explanatory variable, there 
are some additional features to be considered. For 
example, the level of observed quantities is typi-
cally not influenced by a single driver, but by a 
combination of characteristics of the site in ques-
tion. This is most probably also the cause for TOC, 
as trends of TOC have been suggested to be driven 
by land use (Škerlep et al., 2020) and soil processes 
related to recovery from acidification (Evans et al., 
2012). Such local differences in confounding factors 
can easily disguise existing trends or create artifi-
cial trends, especially if the geographical window 
chosen is small. To avoid such effects, we used two 
approaches: (i) station-wise mean-centering of data 
as a pre-processing step to rescale data at a mean 

of zero and thus remove site observed levels as an 
influencing factor; and (ii) evaluation of the chosen 
window size. We used adaptive kernels defined as 
k-nearest neighbors (knn), as the data had a varying 
spatial resolution, which makes a fixed bandwidth 
problematic (Comber et al., 2023). Cross-validation 
is recommended to choose the best local size of the 
knn. In our case, the cross-validation results sug-
gested a neighborhood of approximately 372 obser-
vations or 125 lakes. Smaller neighborhoods allow 
more local trends to manifest, which can be of inter-
est if the spatial resolution is sparser, i.e., if a large 
neighborhood oversmooths results or if drivers are 
expected to work on a smaller regional scale. With 
very sparse temporal data, as in the present case, it 
will generally not be possible to identify trends on 
a small geographical scale. Instead, the goal must 

Fig. 6  Changes in total organic carbon (TOC) concentrations 
over time in lakes within a geographical window of 30 Swed-
ish lakes around (upper left) Lake Kupesjön near Värnamo, 
(upper right) Älvasjön near Halmstad, (lower left) around 

Norasjön near Södertälje, and (lower right) outside Karlshamn. 
The data series for Swedish Lake Survey (SLS) lakes are 
shown in gray, and the data series for Swedish Trend Lakes 
(STL) is in black
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be the rough identification of areas with increasing 
and decreasing TOC levels, while the exact borders 
of these regions are not important. In this study, 
analyses with larger and smaller knn produced very 
similar results, with clear decreases in TOC in the 
northern alpine region and in south-east Sweden 
and with increasing TOC levels primarily in south-
west Sweden.

It needs to be pointed out that for our approach 
GWR is a hypothesis-generating rather than a hypoth-
esis-testing method. Provided results include standard 
errors for trend estimates as well as p-values, but both 
of these will be underestimated due to several rea-
sons. First, temporal autocorrelation might be present 
in addition to the temporal trend, but is not possible to 
estimate in time series that only consist of two or three 
observations. Similarly, spatial correlation might still 
be present in the error term even after geographical 
smoothing. The presence of either of these correlations 
will lead to underestimation of standard errors, which 
in turn will cause too low p-values. Additionally, as we 
have a large number of locations, adjustment for mul-
tiple testing (da Silva & Fotheringham, 2016) would 
be needed to decrease the risk of false positives. To 
avoid these issues, we chose to only interpret patterns 
of trends and with that lay the foundation to generate 
hypotheses on where trends are present and, conse-
quently, which drivers might be of importance.

Pre-processing and model validation

As GWR models are sensitive to outliers (Brunsdon 
et  al., 1998a), pre-processing and model validation 
are important. We did this by identifying stations with 
a high coefficient of variation before model fitting 
and analyzing the effect of the removal of such sta-
tions on the model results. A high coefficient of vari-
ation may mean stations that have faulty high or low 
values, but can also indicate stations that have a steep 
temporal trend. In the latter case, their removal would 
obviously be disadvantageous for trend evaluation. 
Since the removal of such stations with a high coeffi-
cient of variation had little effect in the present analy-
sis, this indicates that they were stations with a steep 
trend located in areas that generally showed such a 
trend, or single stations, which would not be inter-
preted as trends anyway. For small knn in particular, 
we found several limited areas with significant trends 
along the Swedish coastline and in the alpine region. 
This is not unexpected, as it is generally more diffi-
cult to estimate reliable trend coefficients at the edge 
of the observable area (Leong & Yue, 2017), and sin-
gle stations with a distinct increase or decrease can 
have larger effects.

The overall and local R2 values can be used to 
determine the goodness of fit. For our main model, 
the overall R2 was only 0.12. However, this was not 

Fig. 7  Estimated linear trend slopes of log-transformed and 
mean-centered total organic carbon (TOC) concentrations in 
Swedish lake water for five 10-year-long temporal windows 
based on k-nearest-neighborhood (knn) of 29, 51, 63, 61, and 

45 observations, respectively. Blue indicates negative trend 
coefficients, red positive trend coefficients, and white trend 
coefficients close to zero
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informative as there were large regions in Sweden 
that did not exhibit a trend and therefore contrib-
uted to a low coefficient of determination. The local 
R2 values are more interesting to quantify, and those 
reached 0.4 for the model with a large neighborhood 
size and 0.7 when a small neighborhood was cho-
sen, indicating that there are rather strong temporal 
trends in some geographical areas. Consequently, 
the GWR approach is deemed successful as it can 
identify regions with trends as well as such without. 
The inclusion of local covariates might improve the 
overall and local R2 values additionally and will be 
studied separately. Care needs, however, to be taken 
as high  R2 values in models with very small neigh-
borhoods or with many covariates might be a sign of 
overfitting due to the small number of observations 
available per station.

Additionally, GWR models can be validated by 
comparing results with studies with a similar objec-
tive but using datasets with higher temporal resolu-
tion. For example, Eklöf et  al. (2021) studied TOC 
concentrations and absorbance in 164 watercourses 
distributed over Sweden and found a smaller number 
of streams with ongoing increasing TOC trends in 
the period 2011–2020, after a period of more general 
positive trends. Most of these streams were located 
in south-west Sweden and the along the north-east 
coast, in agreement with the findings in our study. 
Eklöf et  al. (2021) also identified single stations in 
the south-east with decreasing trends in TOC during 
the past decade, but in that region and in the alpine 
region only a few water courses were sampled and 
results are more difficult to compare.

To validate the results of a trend analysis, it could 
be interesting to conduct a power study. Pregler et al. 
(2019) conducted a power study for different revisit 
designs and found that serially alternating designs 
have similar power to always revisited designs if the 
total amount of observations is the same. Similarly, 
Starcevich et  al. (2018a) found that a revisit design 
with more unique sites is preferable to annual revisit 
panels of sites when detecting trends over at least 
12  years of monitoring with a linear mixed model. 
However, both assume that a common trend is present 
over the area of interest. In our case, it is reasonable 
to assume that trends differ in different parts of Swe-
den and the power to detect spatially differentiated 
trends would thus be more difficult to quantify.

Combining datasets with a low and high temporal 
resolution

By using a separate dataset, the STL data, we were 
able to add data from 107 additional stations in com-
puting the GWR model. The data for the STL sta-
tions have a higher temporal resolution, but do not 
represent randomly selected stations, which the 
SLS does. Instead, the STL program monitors sta-
tions that are mainly unaffected by local pollution 
sources. As the main goal in the present case was to 
study trends caused by large-scale drivers, such as cli-
mate, and recovery from acid deposition, the differ-
ent objectives of the two surveys were not expected 
to affect the trend evaluation results to any substantial 
degree. Rather, the STL data helped make a distinc-
tion between large-scale drivers that were of interest 
here and more local pollution sources. We compared 
the results obtained in combined analysis with those 
based on the SLS alone and found only a few differ-
ences. The most noticeable change occurred in south-
west Sweden, between Halmstad (approx. 56.692748 
lat., 13.112771 long.) and east of Värnamo (approx. 
57.208242 lat., 14.142123 long.), where the estimated 
trend slope for TOC decreased by 0.0035 units com-
pared to the SLS dataset alone, meaning that local 
pollution sources might be prevalent for lakes that 
are part of the SLS. However, the combined analysis 
results still indicated an increase in TOC levels. For 
comparison, in the well-studied Lake Bolmen water 
color has been observed to decrease during the past 
decade (Klante et  al., 2021), following high levels 
observed after a strong storm and large amounts of 
tree felling in 2005. Such nonlinear temporal relation-
ships could also be a reason why different monitoring 
programs with different objectives provide informa-
tion that is not completely in line.

In other regions of Sweden, the STL data sup-
ported or enforced the general direction of the SLS 
trends. For example, near Karlshamn, the STL lakes 
showed clear increasing trends, which was also 
observed in the SLS lakes. Similarly, the downward 
trend in the Helags alpine region was confirmed by 
data from the STL program. This is an area where 
results based on the SLS alone must be considered 
uncertain, due to large variations and low absolute 
values of TOC and its situation at the edge of the 
observable space.
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Nonlinear temporal trends

In the present study, we assumed that the temporal 
trend in log-transformed TOC can be approximated 
by a line, but is allowed to vary smoothly over space. 
Linear temporal trends can be reasonable if time 
series are short or, as in our case, data are sparse 
and linearity is a helpful simplification. However, 
to understand trends and what is driving these, it is 
necessary to investigate in nonlinearity whenever 
possible. We addressed this using a moving win-
dow approach, i.e., we subdivided the data into five 
10-year intervals, moving the interval 1 year forward 
in each step. This provided at least some information 
about how estimated trend slopes changed over time. 
In particular, we found that during the last 10-year 
period studied (2012–2021), lakes increasingly 
showed positive trends after a period of an overall 
decrease in TOC. The reliability of the results of this 
nonlinear analysis was confirmed on comparing them 
to the results from trend analysis based on higher fre-
quency data. Here, we used a screening of trends with 
generalized additive models (von Brömssen et  al., 
2021), which showed increases in TOC at a number 
of stations during the latest years of monitoring.

The possible presence of nonlinear trends in data 
puts our initial analysis into question. A combination 
of data with sparse temporal resolution and nonlinear 
trends will require some trade-off in modeling. Here, 
the goal was to demonstrate the usefulness of GWR 
in such situations, and we present both the linear and 
the nonlinear trends. Which of the two alternatives to 
use (linear with more data or nonlinear with subset-
ted datasets) needs to be addressed in the individual 
modeling situation. For TOC, the change in trend 
slope estimates over time seems strong, and therefore, 
a nonlinear approach would probably be the appropri-
ate choice.

Including other explanatory variables

In the present study, we did not include any other 
explanatory variable except time. GWR models are 
equipped to include additional explanatory variables 
and can also be fitted with geographical windows of 
different sizes (so-called mixed GWR; Fotheringham 
et  al., 2002). This would provide the possibility to 

adjust or normalize data with the aid of local condi-
tions for individual lakes, e.g., local land use or levels 
of important background variables such as water tem-
perature. How well this works when data are sparse 
needs to be evaluated in a separate study.

Large-scale drivers of brownification

While we did not try to make a comprehensive analy-
sis of trends in brownification in Swedish lakes, the 
modeling results obtained using TOC as a proxy 
revealed clear large-scale patterns in the prevailing 
trends. In particular, downward trends emerged in the 
alpine region and in south-east Sweden, while in the 
south-west and north-east, decreasing trends were 
observed during the first years of the study period, 
but in the last decade, positive changes in TOC were 
predominant. Although the trends in TOC were 
generally nonlinear, the GWR analyses managed to 
identify a large-scale geographical pattern of areas 
of increasing versus decreasing trends. In the next 
stage of the analysis, this geographical pattern can 
be related to levels or trends of land-use activities, 
catchment characteristics, climatic variables, and 
acid deposition patterns.

Conclusions

Data from monitoring programs with low temporal 
frequency, but covering many sites, are often not con-
sidered in trend evaluation. Here, we show that such 
programs can carry unique and important informa-
tion about regionally differentiated trends, which will 
be valuable guidance to distinguish between poten-
tial causes of the trend and allow better management 
decisions.
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