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From forests to microbiomes. The mediation of plant-soil

systems by root-symbiotic fungi

Abstract

Plant-microbial symbioses play crucial roles in ecological and biogeochemical
processes such as carbon and nutrient cycling, plant-soil feedback, and
evolutionary dynamics. However, less is known about how these symbioses
influence the broader soil microbial communities (microbiomes) that they interact
with, which is essential to understanding the ecosystem processes they facilitate.

In this thesis, I investigate the effect of mycorrhizal type and other root
symbioses on the structure and potential function of belowground microbiomes, as
well as leaf microbiomes and leaf element concentrations. To accomplish this, I
used a variety of techniques, including metabarcoding and metagenomic analysis
of microbial communities and their functional genes from field studies at various
scales, from single vegetation communities to a European latitudinal gradient.

Regionally, I found that sites dominated by arbuscular mycorrhizal (AM)
vegetation had relatively more AM fungi, bacteria, fungal saprotrophs, and
pathogens in their soils compared to ectomycorrhizal (EcM) vegetation, and that
coniferous EcM vegetation was a particularly important determinant of soil
conditions and microbiome features. I also found that root colonization by dark
septate endophytic (DSE) fungi was strongly associated with the composition of
microbial communities and functional genes, including a negative relationship with
the relative abundance of fungal pathogens and bacteria across Europe. Lastly, 1
found that tree species with different root symbioses and levels of colonization and
their leaf element profiles were a key factor shaping leaf microbial communities
and diversity compared to climate, with contrasting relative abundances of
bacterial and fungal guilds and taxa between and within tree species.

Overall, my findings suggest that the biotic interactions between plants and
their root symbionts are important factors determining the structure and function of
microbiomes across vegetation communities and tree species, with implications for
wider ecosystem processes.

Keywords: plant-soil systems, root symbiosis, ectomycorrhiza, arbuscular
mycorrhiza, nutrient-acquisition strategies, fungi, bacteria, soil microbiome, leaf
microbiome, metagenomics



Fran skogar till mikrobiom. Hur vaxt-marksystem samspelar
med rot-symbiotiska svampar

Sammanfattning

Symbioser mellan vixter och mikrober spelar en avgdrande roll for ekologiska och
biogeokemiska processer som kol- och niringsdmnenas kretslopp, vaxt-mark-
interaktioner och evolutionédr dynamik. Det 4r emellertid mindre ként hur dessa
symbioser paverkar de mikrobsamhéllen—mikrobiom—som de interagerar med i
marken, vilket ar viktigt for att forstd hur de paverkar olika ekosystemprocesser.

I denna avhandling undersoker jag effekten av vixters, frimst trids, olika typer
av symbioser med mykorrhizasvampar och andra rotsymbioser pd sammanséttning,
struktur och den potentiella funktionen hos mark- och bladmikrobiomer samt
bladens stokiometri och innehall av olika naringsdmnen. Jag har gjort féltstudier pa
olika skalor, fran bestand i olika habitat till en geografisk N-S gradient 6ver hela
Europa, och anvént olika molekylarbiologiska tekniker, sisom metabarcoding och
metagenomisk analys av mikrobsambhéllen och deras funktionella gener.

Resultaten visar att pa platser med vegetationstyper som dominerades av véxter
med arbuskuldr mykorrhizasymbios (AM) fanns det relativt fler AM-svampar,
bakterier, svamp-saprotrofer (nedbrytare) samt vaxtpatogener i marken jamfort
med vegetationstyper som dominerades av vaxter med ektomykorrhizasymbioser
(EcM), sdsom barrskogsdominerade habitat. Jag fann ocksa att rotkolonisering av
morka septatsvampar (DSE) 6ver hela Europa var starkt associerad med
mikrobsamhéillenas sammansittning och funktionella gener, inklusive ett negativt
samband med den relativa abundansen av svamppatogener och bakterier. Slutligen
fann jag att tradarter och deras innehall av olika naringsdmnen till storre del &n
klimatvariabler kunde forklara mikrobsamhéllens sammanséttning och méngfald
pa bladen.

Sammantaget antyder mina resultat att interaktioner mellan véxter och deras
rotsymbionter dr en viktig faktor som paverkar strukturen och funktionen hos
mikrobiomer dver hela vegetationssamhéllen savil som hos enskilda trdd, vilket
kan ha implikationer for manga ekosystemprocesser.

Keywords: (vaxt-jordsystem, rotsymbios, ektomykorrhiza, arbuskuldr mykorrhiza,
mork-septat endofyter, ndringsstrategier, svampar, bakterier, mikrobiom,
metagenomik)



Dedication

To my late father who instilled within me the curiosity to find out
what lies below the surface via the nether way.

Sheriff, what kind of fantastic trees have you got growing around
here? Big, majestic.
- FBI Special Agent Dale Cooper
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1. Introduction

Forests and woodlands cover roughly one-third of the global land surface
area and support a multitude of organisms through their role in the cycling
of carbon (C), water, and nutrients (Crowther et al. 2015a; Keenan et al.
2015). Trees, and plants in general, rely heavily on interactions with other
organisms. Most of these interactions involve microorganisms, primarily
bacteria and fungi, which inhabit leaves through to roots (Turner et al.
2013) and reach their highest diversity and biomass in soil (Baldrian,
2017). Soil microbes and their interactions play a central role in the cycling
of C and nutrients, as well as influencing population and community
dynamics and the productivity of plants (Van Der Heijden et al. 2008;
Baldrian, 2017; Tedersoo et al. 2020).

The interactions occurring between plants and microorganisms span the
spectrum from mutualism to commensalism, competition, and parasitism.
On the continuum from plant to soil, i.e., plant-soil systems, some of the
most widespread, integrated, and biologically important interactions occur
between plants and their root symbionts—primarily mycorrhizal fungi
(Smith & Read, 2010; Brundrett & Tedersoo, 2018). These mycorrhizal
symbioses potentially mediate a substantial proportion of the
photosynthetically fixed C that flows through roots to soil and nutrients that
flow from soil up through roots during the exchange of these resources
between symbiotic partners (Tedersoo & Bahram, 2019).

There has been a long-standing and growing interest in the way different
types of mycorrhizal associations—mainly arbuscular mycorrhizal (AM)
and ectomycorrhizal (EcM) associations—influence wide ranging
ecological and biogeochemical processes, from C and nutrient cycling to
plant-soil feedback, and biogeographical and evolutionary dynamics (Read,
1991; Phillips et al. 2013; Bennett et al. 2017; Brundrett & Tedersoo, 2018;
Averill et al. 2019; Steidinger et al. 2019; Tedersoo et al. 2020). While
generally inferred, less attention has been paid to exactly how these
different mycorrhizal systems influence the broader microbial communities
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that they interact with, which is integral to understanding the processes that
microorganisms facilitate.

In this thesis, through the lens of biotic interactions, I first consider the
potential interactions occurring between mycorrhizal systems and soil
organisms at large. I then address how mycorrhizal type may explain soil
microbiomes on the level of vegetation communities at the regional scale. |
follow this by addressing the extent to which colonization rates of different
mycorrhizal and root-associated fungi may explain the root and soil
microbiomes of widespread tree species across their latitudinal range.
Lastly, I examine how leaf element and leaf-associated microbiome
properties are explained by tree species and their nutrient-acquisition
strategies via root symbioses, along with soil, climate, and geography.
Overall, this thesis contributes to the understanding of the role of root
symbioses in plant-soil system functioning pertaining to microbiomes and
biotic interactions.

1.1 Plant-soil systems: Integrating above- and below-
ground perspectives

From a global perspective, forests are typically classified into the four
major biomes of boreal, temperate, sub-tropical, and tropical (Keenan et al.
2015), all with distinct climates, ecological communities, and C, water, and
nutrient cycling regimes. Driven by large-scale differences in climate, there
is generally a spectrum of rapid C and nutrient cycling and high
aboveground C stocks in tropical forests, through to more conservative and
slower C and nutrient cycling and high soil C stocks in boreal forests, with
temperate forests somewhere in between; furthermore, tropical forests tend
to be phosphorus (P) limited and boreal forests tend to be nitrogen (N)
limited (Vitousek et al. 2010; Scharlemann et al. 2014; Crowther et al.
2015a; Gill & Finzi, 2016; Steidinger et al. 2019).

The trees, and plants in general, growing in forests possess a variety of
functional traits associated with balancing growth, survival, and
reproduction (Diaz et al. 2016). These traits can be considered within a
plant-economic trait spectrum that encapsulates a gradient of slow and
conservative mechanisms through to fast and acquisitive mechanisms of
resource use and investment (Reich, 2014). Compared to slow and
conservative plants, fast and acquisitive plants tend to invest more in
growth than survival, which corresponds to less structural C investment and
higher biomass turnover, hydraulic conductivity, photosynthetic capacity,
respiration, and N and P tissue concentrations (Wright et al. 2004; Reich,
2014; Lambers & Oliveira, 2019; Luo et al. 2021).
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Within woody plants, the major differences in functional traits are seen
between gymnosperms (conifers) and angiosperms (broadleaves) (Diaz et
al. 2016), which have been considered to represent a fast (angiosperm)
versus slow (gymnosperm) trait tradeoff (Bond, 1989; Brodribb et al.
2012). Accordingly, angiosperms tend to outcompete gymnosperms and
dominate most tropical and temperate forests, while gymnosperms tend to
dominate in colder climates and on nutrient poor soils (Bond, 1989; Reich,
2014). Yet both angiosperms and gymnosperms persist in all forest biomes
(Brodribb et al. 2012). Furthermore, both gymnosperms and angiosperms
can have evergreen and deciduous foliage—a further divide of fast
(deciduous) and slow (evergreen) traits—although the deciduous habit is
more common in angiosperms and the evergreen habit is more common in
gymnosperms (Gower & Richards, 1990; Reich & Bolstad, 2001).

Regarding roots, the one-dimensional fast versus slow ecological trait
tradeoff has been questioned. Roots appear to be multidimensional in their
economic traits and not analogous nor coordinated with leaf traits,
especially for woody plants (Weemstra et al. 2016). A misalignment of root
traits is in those generally associated with root lifespan (Kramer-Walter et
al. 2016; Kong et al. 2019). The multidimensional root-trait space has been
associated with an additional fungal collaboration gradient ranging from
outsourcing resource acquisition to mycorrhizal fungi on one extreme to
direct root resource acquisition on the other extreme (Weemstra et al. 2016;
Bergmann et al. 2020). It becomes much more complicated for woody
plants when considering different mycorrhizal types, which further alter
root traits likely due to differences in the physical properties and ecology of
these different root symbioses (Kong et al. 2019). Yet, when considering
AM and EcM imprints in aboveground economic traits of woody plants,
they tend to contribute to the fast-slow trait spectrum (Averill et al. 2019).
This highlights the great importance of considering root symbioses, leaf
habit and phylogeny, and climatic biomes when assessing plant-soil system
functioning.

1.2 Mycorrhizal symbioses

While there are several types of mycorrhizal symbioses, the dominant types
are EcM and AM associations in terms of geographical distribution and
number of tree species involved (Brundrett & Tedersoo, 2018; Steidinger et
al. 2019). Mycorrhizal associations are not merely an extension of plant
root systems, they involve species of both plants and fungi, and
accordingly, there are great differences both between and within AM and
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EcM fungi according to their morphological, physiological, ecological, and
phylogenetic properties (Tedersoo & Bahram, 2019).

Evolutionary and phylogenetic perspectives

The AM symbiosis is formed between 250—1,000 species of obligately
symbiotic fungi—from the sub-phylum Glomeromycotina (or phylum
Glomeromycota) within Mucromycota (Kivlin et al. 2011; Opik et al. 2013;
Spatafora et al. 2016)—and around 72% of terrestrial plants (ca. 200,000
species) across a broad phylogeny, including Bryophytes, Pteriophytes,
Gymnosperms, and Angiosperms (Brundrett & Tedersoo, 2018). The AM
symbiosis is thought to have evolved alongside the terrestrialization of
plants some 400—450 million years ago, having undergone few
evolutionary changes since, apart from the gain and loss of hosts
(Bidartondo et al. 2011; Choi et al. 2018). In comparison, the EcM
symbiosis involves over 20,000 fungal species, mainly from the phyla
Basidiomycota and Ascomycota (Rinaldi et al. 2008), and around 2% of
plant species, almost exclusively limited to woody gymnosperms and
angiosperms (Brundrett & Tedersoo, 2018). The EcM symbiosis has
evolved multiple times—first appearing around 200 million years ago—
across 80 different fungal clades from functionally diverse saprotrophic
ancestors (Tedersoo & Bahram, 2019; Miyauchi et al. 2020; Ryberg et al.
2022). The evolutionary convergence of EcCM symbioses—apart from
acquiring genes involved in the formation of symbiosis—has generally
involved the loss of genes encoding plant cell wall degrading enzymes,
although certain taxa have retained unique sets of such enzymes, leading to
a functionally diverse symbiosis (Kohler et al. 2015; Miyauchi et al. 2020).

Structural properties of the symbioses

The defining feature of AM symbioses are highly branched
intracellular hyphal structures called arbuscules that form in the inner root
cells, and the cells they colonize represent the site of active nutrient and
water exchange (Bonfante & Genre, 2010). The EcM symbiosis, on the
other hand, is characterized by the formation of modified lateral root
branching with short terminal root tips. These root tips are covered in a
fungal hyphal sheath called the mantle, and within the roots an intercellular
Hartig net is formed and is considered the site of nutrient and water
exchange (Taylor & Alexander, 2005; Bonfante & Genre, 2010). Apart
from arbuscules, AM fungi—with several morphological variations—also
form intracellular, intercellular, and extracellular (extraradical) hyphae,
large asexual spores, and some taxa form lipid-rich vesicles, which are
thought to function as an energy reserve (Harrison, 1999; Dickson et al.
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2007). Most AM structures, apart from spores, are ephemeral, likely lasting
several days to several weeks, representing a high turnover of biomass
(Staddon et al. 2003; Pepe et al. 2018). In terms of extraradical mycelia,
EcM fungi tend to form distinct morphological exploration types. With
several variations, these exploration types range from contact types with
smooth mantles and few emanating hyphae to short and medium-distance
types with extensive emanating hyphae and long-distance types with few
aggregate mycelial cords or rthizomorphs (Agerer, 2001). As their mycelia
range from hydrophilic (contact, short, and medium-smooth types) to
hydrophobic (other medium and long-distance types), the exploration type
has been used to infer physiological and functional variation in EcM
associations, specifically relating to inorganic and organic N acquisition
(Hobbie & Agerer, 2009) and water acquisition (Lehto & Zwiazek, 2011).
Furthermore, EcM structures can be persistent, with turnover times ranging
from weeks to months and potentially years (Finlay & Read, 1986; Ekblad
et al. 2013). Overall, EcM associations have a greater physical presence on
the roots, and AM associations can have a greater presence inside the roots.

Role of the symbioses in plant function

The primary function of both symbioses is thought to be the exchange of
C and nutrients between the host plant and fungus. The major nutrients
obtained through AM fungi and their high hyphal surface area are generally
inorganic phosphorus (P) followed by inorganic nitrogen (N) (Smith &
Smith, 2011). Functionally, EcM associations also play a role in plant N
and P acquisition, both inorganic and organic, depending on the fungal taxa
involved—and exploration types—and their ability to decompose organic
matter, a capacity that is completely lacking in AM fungi (Tedersoo &
Bahram, 2019). Plants, in return, may provide their EcM partners with up
to 30% of their photosynthates, compared to up to 20%—and usually
less—allocated to AM partners (Leake et al. 2004).

Apart from nutrient acquisition, AM and EcM associations may also, to
varying degrees, confer resistance against pathogen and herbivore attack,
improve drought, salinity, and heavy metal tolerance, and contribute to soil
aggregation (Marx, 1972; Johansson et al. 2008; Lehto & Zwiazek, 2011;
Miransari, 2011; Veresoglou & Rillig, 2012; Chitarra et al. 2016; Tao et al.
2016; Lehmann et al. 2017). Yet, while AM fungi are generally considered
to be mutualists or commensalists, under certain conditions they may act as
parasites of the host plant (Smith & Smith, 2012; Bennett & Groten, 2022;
Kaur et al. 2022). At least in some boreal forests, it has been suggested that
EcM fungi—particularly taxa adept at accessing organic N—may lock their
host into a N limitation feedback loop, further reinforcing the need for EcM
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associations in these ecosystems (Franklin et al. 2014). The root
colonization rate by AM fungi appears to be highest under mild climates
with high soil N availability, compared to EcM colonization, which tends
to be higher under mesic climates with constant precipitation and in acidic
soils (Soudzilovskaia et al. 2015). Overall, the major difference in
functioning between EcM and AM symbioses when it comes to forests
appears to be the organic N acquisition of some EcM fungi, which
seemingly leads to a higher reliance of EcM trees on their EcM fungi.
Compared to EcM trees, AM trees may be more flexible in terms of their
nutrient-acquisition pathways and rely less on their AM fungi, i.e., a more
flexible symbiosis.

Mycorrhizal type as a plant-soil system trait

Early observations of the biogeographic patterns of different types of
mycorrhizal associations showed that they were associated with distinct
ecosystems and soil environments, with EcM found on trees in acidic soils
with high litter accumulation and AM found on herbaceous and woody
plants growing in soils with high mineral N availability (Read, 1991). This
led to the idea that AM and EcM systems form distinct C and nutrient
cycling syndromes, with plant-soil feedback enforcing fast-open nutrient
economies in AM systems and slow-closed nutrient economies in EcM
systems, known now as the mycorrhizal-nutrient economy (MANE)
framework (Read & Perez-Moreno, 2003; Chapman et al. 2006; Phillips et
al. 2013). A plethora of studies have since begun to unravel the scale and
extent to which these mycorrhizal associations have influenced and
influence evolutionary, ecological, and biogeochemical processes in
vegetation communities.

Trees associating with EcM account for an estimated 60% of Earth’s
tree stems, dominating most temperate and boreal forests, compared to AM
trees contributing most of the remaining 40% of tree stems, dominating
mostly in tropical forests (Steidinger et al. 2019). In accordance, EcM
vegetation biomass is positively correlated, and AM vegetation biomass
tends to be negatively correlated with topsoil C content globally
(Soudzilovskaia et al. 2019). Mycorrhizal type has further been shown to be
linked to a suite of woody plant economic traits, with AM and EcM plants
systematically differing in P and N economic traits, where EcM plants have
more conservative traits in both cases, most evident in temperate forests
(Awverill et al. 2019). Additionally, differences in soil biogeochemical
properties of AM and EcM forests have been observed across tropical
forests, which have generally been neglected from investigations into the
effect of the mycorrhizal type (Barcel6 et al. 2021). Even less evidence of
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mycorrhizal type effects has been observed in boreal forests, which is
obviously challenging as AM trees are much less common, highlighting the
intertwined nature of mycorrhizal type, plant phylogeny, and climate
(Read, 1991; Brundrett & Tedersoo, 2018; Steidinger et al. 2019). A
potential mechanism to further address differences in mycorrhizal type is to
observe responses across tree species with ECM and AM associations that
cover large environmental gradients and geographic distributions.

Other root associations on mycorrhizal trees

Despite the general assignment of mycorrhizal type as a binary, some
trees can form dual-mycorrhizal roots, i.e., ECM and AM associations
simultaneously (Brundrett, 2006). These dual-mycorrhizal associations may
be synergistic and confer on their host increased stress tolerance and
flexible avenues of nutrient acquisition, and thus present a unique system to
compare mycorrhizal types (Teste et al. 2020). In addition, some tree
species also form N-fixing symbioses with actinorhizal or rhizobial
bacteria, which can fix atmospheric N» and represent a significant input of
N into the soil system (Amundson et al. 2003; Wang et al. 2010). These
trees tend to be concentrated mostly in the tropical and southern latitudes
(Steidinger, 2019), yet actinorhizal trees become more common northward
and are typically obligated to their N-fixing symbiosis that maintains N
fixation regardless of soil N status (Menge et al. 2014). Nitrogen-fixing
trees generally also form mycorrhizal associations with either ECM, AM, or
both (Gardner, 1986; Brundrett & Tedersoo, 2018). The interaction between
N-fixing and mycorrhizal symbioses is of great interest yet still poorly
understood, as single symbionts are generally studied in isolation. Some
evidence suggests that the presence of mycorrhizal fungi can stimulate N
fixation (Yamanaka et al. 2003), and EcM fungi on N-fixing trees may be
associated with enhanced P acquisition abilities (Walker et al. 2014).

Tree roots can also be colonized by different endophytic fungi to
varying degrees. Of these, dark septate endophytic (DSE) fungi appear to
be facultative, host generalists, common, and extensive colonizers of root
systems across many different hosts and ecosystems (Mandyam, 2005).
Dark septate endophytes—defined as fungi with melanized septate hyphae
that colonize living plant roots—are an enigmatic and varied group of
ascomycetous fungi whose ecological functions are poorly understood.
They possibly act on a spectrum between free-living saprotrophs,
mycorrhizal fungi, and parasites (Ruotsalainen et al. 2021). Yet, they have
also been linked to enhanced access to nutrients and protecting against
pathogens, which improve plant performance in harsh and stressful
conditions (Newsham et al. 2011; Santos et al. 2021). Many endophytic
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fungi, including DSE, fungi capable of forming ericoid mycorrhiza, and
known saprotrophs, appear to be prominent in EcM-colonized root tips
(Pellitier & Zak, 2021). Such root-associated fungi can also occur in the
roots of both EcM and AM trees in the same forest (Toju & Sato, 2018),
though their function in these contexts is unknown. Clearly, there remains
plenty of work to do to unravel the complex nature of root associations and
their potential effects on plant performance, soil microbiomes, and
ecosystem functioning.

1.3 Microbial communities in mycorrhizal systems

Microorganisms, ranging from prokaryotic bacteria and archaea to
eukaryotic protists and non-mycorrhizal fungi, contribute to the proposed
nutrient economies of EcM and AM systems. Multiple mechanisms have
evolved in plants to modify the composition of microbial communities for
their benefit (Vandenkoornhuyse et al. 2015; Rebolleda-Gomez & Ashman,
2019). In return, these microorganisms regulate plant health and
productivity throughout terrestrial ecosystems (Van Der Heijden et al.
2008). The community structure of these organisms and their interactions
are differentially influenced by abiotic factors such as climate and soil pH
(Fierer, 2017). Free-living fungal saprotrophs are the primary decomposers
of organic matter (Treseder & Lennon, 2015), and some fungi are also
among the most destructive plant pathogens (Fisher et al. 2012). Bacteria
are responsible for a multitude of nutrient transformations in soils. They
also play a complementary role to fungi in the decomposition of organic
matter and are important symbionts in plants, animals, and fungi (Fierer,
2017; Husnik & McCutcheon, 2018; Lopez-Mondéjar et al. 2020).
Accumulating evidence suggests that biotic interactions such as facilitation
and metabolic cross-feeding (i.e., microbes further metabolizing the
metabolites of other microbes), resource and niche competition, and
predation may mediate microbiome function and hence microbial control of
ecosystem functions (Crowther et al., 2015b; Bahram et al. 2018; Koltz et
al., 2018; Geisen et al. 2020; Albright et al. 2022). Cooperative (metabolic
cross-feeding) interactions appear to predominate in bacterial communities,
especially in host-associated as opposed to environmental habitats
(Machado et al. 2021). Moreover, fungi with their mycelial habit are more
resistant to extreme conditions than bacteria, yet they can aid bacteria by
connecting resource-rich patches and degrading recalcitrant C, which can
provide bacteria with labile C (Carreira et al. 2020; Bahram & Netherway,
2022).
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As a bridge between plant and soil, mycorrhizal symbioses mediate
interactions between plant and soil microbiomes. Consequently, AM and
EcM systems can host contrasting microbial communities due to direct
interactions and indirectly by their contrasting soil nutrient syndromes
(Phillips et al. 2013; Tedersoo & Bahram, 2019). Both AM and EcM fungi
can select for distinct bacterial communities around their extraradical
hyphae, presumably via hyphal exudation and other mechanisms (Kluber et
al. 2011; Emmett et al. 2021; Zhang et al. 2021). By contributing to
unfavorable acidic and low-nutrient soil conditions, EcM mycelium can
have antagonistic effects on free-living microbial guilds in the soil (Frey,
2019; Tedersoo & Bahram, 2019).

Overall, EcM fungi may more efficiently take up nutrients and
immobilize nitrogen than AM fungi and have a greater physical presence in
the soil and on roots, resulting in more direct microbial interactions, and
thus may have a greater impact on the soil microbiome than AM fungi.
However, little is known about the role of DSE and other root-associated
microbes in these dynamics. Due to their high diversity and an often-
uncultivatable nature, forest microorganisms were largely unknown until
relatively recently. The recent rapid development of high-throughput
sequencing methods permits unprecedented direct determination of the
genetic content of samples for species and functional gene identifications
(Nilsson et al. 2019), which can facilitate a rapid advancement in our
knowledge of plant-microbial interactions.

23






2. Objectives

The purpose of my thesis was to increase our understanding of how
plants and their root symbioses, particularly in forests, influence the
structure and function of belowground microbiomes and how they
also influence leaf element profiles and leaf microbiomes. Thus, I
addressed the following fundamental questions:

(1) What are the major interactions occurring between root-
symbiotic fungi and belowground microbiomes? (Papers I,
11, & III)

(2) How does the dominant mycorrhizal type (AM and EcM) of
vegetation communities determine the structure and potential
function of soil microbiomes? (Papers I & II)

(3) How does the level of root colonization by EcM, AM, and
DSE fungi across widespread deciduous broadleaved trees
affect the structure and potential function of associated root
and soil microbiomes across Europe (Paper I1I)

(4) How do tree species and their nutrient-acquisition strategies
via root symbioses influence their leaf element properties and
associated microbiomes across Europe? (Paper IV)
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3. Methods

3.1 The study sites and tree species

For Paper I, all climatic forest biomes are considered; however, the
reviewed studies mostly come from the Northern Hemisphere and
specifically temperate and boreal forests. The data used for Paper II comes
from 145 sites with various vegetation and soil types across the northern
Baltic region in Estonia and Latvia (Figure 1), with little climatic
variability (4.7-7.0°C MAT and 549-745 mm MAP). The vegetation types
considered were EcM forests (coniferous, deciduous, or N fixing), AM
forests (coniferous or deciduous), AM croplands, and AM grasslands,
which were assigned based on the relative basal area (trees) or relative
cover (grasses and crops); in total, 73 woody species were included.

The data used for Papers III and IV comes from 30 plots spread across
18 sites covering a 3 220 km latitudinal gradient from northern Norway to
central Italy (Fig 2), with a climatic range of 0.8-15.1°C MAT and 486—
1,213 mm MAP. Sites were generally EcM-dominated mixed forests (60—
95% relative basal area) and most of them were situated in vegetation
reserves or close to research stations. Across the sites, six tree species
(Alnus glutinosa, A. incana, Betula pendula, Sorbus aucuparia, S.
domestica, and S. torminalis) from three genera were sampled. Tree species
were chosen due to their widespread distributions, common leaf habit
(deciduous broadleaf), and preferences for different mycorrhizal types and
N-fixing ability (4/nus = EcCM/AM and N-fixing, Betula = EcM, and
Sorbus = AM) according to the FungalRoot database (Soudzilovskaia et al.
2020).
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Figure 1. The location of sampling sites used in Paper II from Estonia and Latvia in
the Northern Baltic Region, and the distribution of sites in terms of their longitude,
latitude, and dominant vegetation type (Reproduced from Paper II; Bahram et al. 2020

with permission from the publisher).
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Figure 2. The location of sampling sites used in Papers III and IV from northern
Norway to central Italy, and the presence of the sampled tree species at each site
(Reproduced from Paper III).

3.2 Sampling method

For Paper I, the literature on EcM and AM fungi, trees, and forests was
reviewed, with a particular focus on the literature exploring the interactions
between AM and EcM systems with saprotrophs, soil grazers, predators,
and N-cycling microorganisms. For Paper II, sampling occurred primarily
during the growing season between 2011 and 2016; at each site, a 2,500 m2
plot was established, and 40 soil sub-samples (5 cm in diameter and 5 cm
in depth) were collected without separating organic and mineral soil. The
40 soil sub-samples per plot were then combined to create a composite
sample, which was homogenized and air-dried within 12 hours of
collection.

For Papers III and IV, sampling was undertaken between the 5" of
August and the 11" of September 2019 in a north-to-south direction to
avoid major differences in the stage of the growing season. At each site,
five individual trees of each target species present were selected that were
at least 10 m apart and had a diameter at breast height (DBH) of 10-20 cm;
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this totaled to 305 individual sampled trees across the 18 sites. If the
different tree species were not growing in the same vegetation communities
at the same site, they were considered separate plots, resulting in a total of
30 plots.

For each individual tree, four soil samples (5 cm diameter x 10 cm
depth; no separation of mineral and organic layers) were taken from each
cardinal direction 50 cm from the base of the tree after removing loose litter
and pooled to form one composite sample per tree species per site and
homogenized. On the same trees, fine root samples were taken from the top
10 cm of soil (same individual points as soil samples) by tracing them to
the major lateral roots of the target tree. They were then gently shaken and
rinsed in water before being stored in 70% ethanol until further analysis.
Also, on the same trees as above, approximately 30 leaves were collected
from a 50 x 50 x 50 cm area of the mid-canopy using extendable loppers.
All soil and leaf samples were air-dried within 12 hours of collection.

Additionally, according to a modified version of the Teabag Index
protocol (Keuskamp et al. 2013), a Lipton teabag with rooibos (C:N = 43)
and one with green tea (C:N = 12) were buried to 10 cm deep at each tree.
They were collected after 12 months at 10 sites (only those accessible
owing to Covid-19 related travel restrictions) from Norway to Germany. In
total 284 of 330 teabags were recovered from these sites (at least three
replicates per species per site) and dried at 70°C until a constant weight
was achieved to measure mass loss.

3.3 Soil, leaf, vegetation, and climatic variables

For Papers 11, II1, and IV, soil *C and "°N natural abundances and total
soil C and N contents were determined with an isotope ratio mass
spectrometer and elemental analyzer; the same analysis was performed on
leaf samples in Paper 1V. Soil pH, extractable phosphorus (P), potassium
(K), calcium (Ca), magnesium (Mg), and leaf P, K, Ca, and Mg
concentrations were measured using standard methods. For Paper I1I and
IV, gravimetric moisture content was measured from a sub-sample of moist
field soil that was oven dried until a constant weight was achieved.
Climate data was obtained based on geographic coordinates and
downloaded from the WorldClim database (www.worldclim.org) (Paper
IT) or CHELSA V2.1 (Karger et al. 2017) (Papers III and IV). Climatic
moisture deficit (CMD)—the difference between atmospheric evaporative
demand and precipitation—was obtained from INDECIS
(www.indecis.csic.es). Modeled annual atmospheric N deposition data
(Paper IV) for the year 2019 was obtained from EMEP via the Norwegian
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Meteorological Institute (www.emep.int). For all plots (2500 m?) in Papers
I, 11, and IV, vegetation community variables were obtained by recording
all present tree species and measuring their DBH to obtain their relative
basal area.

3.4 Root-symbiont colonization analysis

For Papers III and IV, the root colonization rate (% root tips colonized) by
EcM fungi was assessed on all Betula and Alnus fine root samples under a
dissecting microscope at 20X magnification. Cleaned roots were cut into 1-
cm pieces (totaling around 20 cm), spread randomly in a petri dish with
water, and a total of 100 tips were scored as colonized if a mantle was
present (swollen short-root tips covered in hyphae with root hairs absent) or
uncolonized if one was not present. The root colonization rate (% root
length colonized) by AM and DSE fungi was assessed on all Alnus and
Sorbus fine root samples by the grid line intersection method (McGonigle
et al. 1990) using 1 cm pieces of cleaned roots (around 10 cm total), cleared
in 2.5% KOH solution, and stained with trypan blue in an acidic glycerol
solution (Koske & Gemma, 1989). Stained roots were mounted on slides in
acidic glycerol, and on a minimum of 100 random fields of intersection at
40X magnification, the presence of arbuscles, hyphae, and vesicles (if
present) of AM fungi and the presence of dark-septate hyphae of DSE were
counted.

3.5 Metabarcoding of bacterial and fungal communities

The extraction of DNA from dried and pulverized soil, root, and leaf
samples was performed using standard kits according to their instructions.
Across all samples, Bacteria (and Archaea) were amplified using
polymerase chain reaction (PCR) with the primers 515FB and 926R to
target the ribosomal rRNA 16S gene V4-V5 regions (Walters et al. 2016)
and sequenced on the [llumina HiSeq and NovoSeq platforms. For Paper
I1, soil fungi (and eukaryotes in general) were PCR amplified with the
primers ITS9MUNngs and ITS4ngsUni (Tedersoo & Lindahl, 2016)
targeting the partial 18S rRNA gene (V9 subregion) and full-length internal
transcribed spacer (ITS) region and sequenced using the PacBio platform.
For Paper I11, soil and root fungi were PCR amplified using variations of
the gITS7 and ITS4 primers (Ihrmark et al. 2012; Tedersoo & Lindahl,
2016) and sequenced on the Illumina NovoSeq platform. And leaf fungi in
Paper IV were PCR amplified using the primers ITS1catta and
ITS4ngsUni (Tedersoo & Anslan, 2019), and sequenced on the PacBio
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platform. Sequencing from PacBio gives longer reads, while Illumina gives
higher throughput and sequencing depth (Tedersoo et al. 2018), and they
both appear to reveal similar patterns in the structure of fungal communities
(Furneaux et al. 2021).

All 16S amplicon and ITS amplicon sequences from Papers III and IV
were processed using the LotuS2 pipeline (LotuS1 for Paper II) (Ozkurt et
al. 2022), and the PipeCraft pipeline (Anslan et al. 2017) was used for ITS
amplicons in Paper II. Chimeras were removed, and all sequences were
clustered into operational taxonomic units (OTUs) with a 97% similarity
threshold, and taxonomy was assigned against the SILVA and UNITE
databases for prokaryotic and eukaryotic sequences, respectively. All non-
target taxonomic groups were removed from both the 16S and ITS datasets.
Fungi were further assigned lifestyles at the genus level based on various
databases (Nguyen et al. 2016; Polme et al. 2020), or further curated based
on lifestyle flexibility, growth habits, and different habitats.

3.6 Shotgun metagenomics of roots and soils

All DNA samples from Paper I and pooled root and soil samples from
Papers I1I and IV that passed quality checks were subjected to shotgun
metagenomic sequencing on the [llumina HiSeq (Paper I) and NovaSeq
(Papers III and 1V) platforms. Metagenomic bioinformatic analysis was
performed using the MATAFILER pipeline (Hildebrand ez al. 2021)
following the strategy developed in Bahram et al. (2018). Reads were
quality filtered, trimmed, and merged, followed by a similarity search
approach using DIAMOND (Buchfink et al. 2015) to estimate the
functional gene composition of each sample. The abundances of
orthologous gene (OG) groups were obtained by mapping reads against the
eggnog database (Huerta-Cepas et al. 2019), the KEGG database (Kanehisa
& Goto, 2000), and, for carbohydrate-active enzyme (CAZyme)
annotations, reads were mapped against the CAZy database (Cantarel et al.
2009). For Papers III and IV, based on KEGG IDs, N cycling gene
annotations were obtained from the NCycDB database (Tu et al. 2019) and
P cycling gene annotations were obtained from the PCycDB database
(Zeng et al. 2022). For databases that included taxonomic information,
reads were mapped and assigned to prokaryotic and eukaryotic groups.
Furthermore, the metagenomic relative abundance of bacteria and fungi
based on small subunit (SSU) rRNA genes was calculated (Logares et al.
2014).
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3.7 Data analysis

Data management, statistical analyses, and data visualizations were done
using the RStudio platform unless otherwise stated. For Paper 11, residuals
of models with the square root of total read abundance were used for
analyzing OTU and gene count matrices. For Papers III and IV OTU
count matrices were centered-log ratio (c/r) transformed with an added
pseudo-count, which gives the proportional abundance relative to the
sample geometric mean and accounts for the compositional nature of the
data (Gloor et al. 2017). Gene count matrices were normalized as a
percentage of the total number of reads used for mapping, accounting for
differences in library size and including the fraction of unmapped
(functionally unclassified) reads (Bahram et al. 2018). Analyses in Papers
III and IV were performed on the level of tree species per site, where group
means were used for root and soil communities and leaf element properties
(dry mass concentrations), compared to group composite values that were
used for leaf communities and soil and root functional genes. Richness was
used for the analysis of the alpha diversity of taxa and guilds and genes in
Paper II, and the Shannon diversity (H) index, which accounts for both
richness and relative abundances, was used for the alpha diversity of taxa,
guilds, and genes in Papers III and IV and was calculated using the vegan
package (Oksanen et al. 2019).

To examine univariate relationships between variables, nonparametric
Spearman's rank correlation coefficient analyses were performed. For
further analyses, the best predictor variables were identified using a model
selection procedure based on a machine learning approach in the
Randomforest package (Liaw & Wiener, 2002). To test direct relationships
between variables of interest, either simple linear models (Paper IV) or
linear mixed-effects models (Papers I1I and IV) were fitted using the /me4
(Bates et al. 2009) and nilme (Pinheiro et al. 2017) packages, with plot
embedded in site (Papers I1I), or additionally crossed with tree species
(Paper 1V) as random effects structures. The marginal and conditional 7
were calculated using the MuMin package, p-values were calculated using
the /merTest package (Kuznetsova & Brockhoff, 2017), and model fit was
evaluated based on the Akaike information criterion (AIC), marginal 7*
values of the fixed effect, p-values, and standardized model residuals.

To further test the direct and indirect effects of variables, we built
structural equation modeling (SEM) models in the AMOS software (SPSS)
in Paper II or the PiecewiseSEM package (Lefcheck, 2016) in Paper I1I to
account for random effect structures. In a prior model, all indirect and
direct links between variables were established based on their correlations.
Differences between the relative abundance of the main taxonomic and
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functional groups across different categories of a response variable (e.g.,
mycorrhizal type) were tested using a non-parametric Wilcoxon rank-sum
test with Benjamini-Hochberg multiple testing correction (Paper II), and
the same analysis was performed in Paper IV on pairwise comparisons
between tree species across their overlapping sites.

For multivariate analysis of microbial communities and functional gene
compositions, as well as leaf nutrient profiles, permutational multivariate
analysis of variance (PERMANOVA) with 999 permutations was
performed using the adonis function of the vegan package. For this
analysis, the Bray-Curtis dissimilarity was calculated between each pair of
samples (Paper II, and functional genes in Paper III), and Euclidean
distances for c/r-transformed community matrices in Papers III and IV
and biotic and abiotic explanatory variables were forward selected using
the forward.sel function of the adespatial package (Dray et al. 2018). To
analyze shared and unique variation in leaf bacterial and fungal community
composition (Paper IV) as explained by vegetation (tree species, EcM tree
basal area, coniferous EcM tree basal area, and tree diversity), leaf element
properties (concentrations, stoichiometry, and stable isotope compositions),
climate/geography (MAT, MAP, CMD, N deposition, and altitude), and
spatial structures (principal coordinates of neighbor matrices PCNM;
calculated from latitude and longitude); variation partitioning analysis was
performed using the varpart function of the vegan package on forward
selected variables using the forward.sel function of the adespatial package.

To visualize and analyze differences in leaf element profiles and leaf
bacterial and fungal communities across tree species (Paper 1V), |
performed principal component analysis (PCA), using Euclidean distances
of clr-transformed microbial data, and calculated the importance of
explanatory variables using the envfit function with 999 permutations in the
vegan package.
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4. Results and discussion

4.1 The importance of biotic interactions in mycorrhizal
systems

In Paper I, I explored the plethora of potential interactions occurring
between EcM and AM systems with soil organisms by reviewing the
literature. In line with previous observations, climate and tree traits such as
deciduous or evergreen, together with mycorrhizal type, lead to the
formation of plant-soil systems with distinct nutrient cycling syndromes
reliant on the outcome of interactions with soil organisms (Figure 3). The
slow and closed organic nutrient cycle suggested for EcM systems (Phillips
et al. 2013), which is mainly evident in cold-climate coniferous EcM
forests (Read, 1991), and appears to be strongly related to EcM fungi under
limited N conditions (Hogberg et al. 2017). These EcM fungi are likely the
dominant soil organisms in these soils and promote a soil community with
low-functional redundancy that reinforces inorganic nutrient-poor systems
via control of soil pH and C:N (Figure 3b). In comparison, the open and
rapid inorganic nutrient cycle suggested for AM systems is mainly evident
in broadleaf forests of milder and warmer climates (Phillip et al. 2013),
which may have more diverse and functionally redundant soil communities
with more competitive and antagonistic interactions, i.e., a higher
prevalence of saprotrophs, plant pathogens, and nutrient-transforming
microbes (Figure 3b).

This suggests that EcM and AM systems may respond differently to
environmental change, including climate change, where AM systems may
be more resilient while the functioning of EcM systems may be impaired
under higher nutrient availability, and under warmer and drier climates
(Fernandez et al. 2017; Jo et al. 2019; Pugnaire et al. 2019; DeForest &
Snell, 2020), likely due to their unique C and nutrient syndromes generated
by tree, mycorrhizal, and soil organism interactions.
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Figure 3. Conceptual figure of the main ideas reviewed in paper I, showing (a) the
alignment of properties that are proposed to lead to slow and closed organic nutrient
cycles and open and rapid inorganic nutrient cycles in AM and EcM systems,
respectively, by driving biotic interactions in the soil, and (b) the proposed biotic
interactions and soil guilds that shift from EcM dominated systems to AM dominated
systems (modified from Paper I; Netherway et al. 2021).

4.2 The structure and function of soil microbiomes in
EcM and AM systems

Building on the hypotheses formed in Paper I, Paper II shows that soil
microbiomes in habitats dominated by vegetation with different root
symbioses, especially mycorrhizal types, have contrasting microbial
communities (Figure 4).

Vegetation communities dominated by AM associations had higher
relative abundances of non-fungal eukaryotes and saprotrophic fungi
compared to EcM-dominated habitats (Figure 4a); this is consistent with
higher decomposition rates in AM systems (Tedersoo & Bahram, 2019)
and suggests that EcM fungi may compete with free-living saprotrophs
(Bodeker et al. 2016), bacteria, and other soil microbes for N resources,
which were negatively correlated with increasing EcM dominance (Figure
4a & b). Increasing dominance of coniferous EcM plants appeared to be a
driver of increased soil C:N ratios and decreased soil pH, which reduced
the richness of bacteria, archaea, protists, and the bacteria:fungi abundance
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ratio (Figure 4 a & b). Soil pH is known to be a strong determinant of
bacterial communities and their richness (Rousk et al. 2010; Bahram et al.
2018). The activity of bacteria, especially in decomposition, is enhanced
under high pH and a low C:N ratio compared to fungi due to physiological
differences including pH-related stress tolerance and elemental
stoichiometry (Rousk et al. 2010; Waring et al. 2013; Bahram et al. 2018).
Furthermore, AM vegetation was associated with relatively more putative
plant pathogenic fungi, especially with increasing deciduous AM trees
(Figure 4a); this is in line with other evidence suggesting AM trees
experience more antagonistic interactions with their associated soil
microbes compared with EM trees (Bennett et al. 2017; Teste et al. 2017;
Kadowaki et al. 2018), as EcM fungi may form a physically more
protective barrier to pathogens (Branzanti et al. 1999; Kadowaki et al.
2018) and overall reinforce more unfavorable soil conditions for
antagonistic organisms.

While these results presented here suggest overall differences in soil
microbiota between EcM and AM systems, there are also differences within
mycorrhizal types, such as between deciduous and coniferous EcM-
dominated habitats, indicating that mycorrhizal type effects may depend
greatly on other vegetation factors such as phylogeny or leaf habit
(broadleaf vs. coniferous).
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Figure 4. The main findings from Paper II on microbial diversity and composition. (a)
Random Forest heatmap indicates relationship of microbial taxa and functional groups
to plant traits, edaphic and geographical variables. The size of circles corresponds to
the variable importance (% of mean decrease accuracy); blue and red depict negative
and positive Spearman correlations, respectively. Plant composition 1 and 2 are the first
two principal components analysis (PCA) axes representing changes in the composition
of plants across the plots. The top barplot shows the variance explained for each model
with the dependent variables on the x-axis. (b) Best-fitting structural equation model
based on relationships retrieved in (a) for the relative abundance of bacteria and fungi.
All relationships were significant (P <0.05) and model fits were acceptable according
to chi-square test (P> 0.1) and PCLOSE test (P> 0.1). Both directions were tested for
the relationships between 8'°N or pH and the relative abundance of functional groups or
bacteria:fungi (B:F) ratio and those that improved model fit were kept. (reproduced
from Fig.2 in Paper II; Bahram et al. 2020, with permission of the publisher)
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4.3 The effect of colonization by root-associated fungi on
tree root and soil microbiomes across Europe

To further build on the ideas presented in Paper I and the results presented
in Paper 11, in Paper III I sought to examine the effects of root
colonization by EcM, AM, and DSE fungi on soil and root microbiomes
across wide-ranging environmental conditions by utilizing widespread tree
species across a European latitudinal gradient.

The study reported in Paper I1I found scant evidence supporting the
influence of AM and EcM colonization on the structure and potential
function of root and soil microbiomes, whereas root colonization by DSE
fungi had a consistent effect (Figure 5). The study confirmed previous
findings that EcM colonization is sensitive to moisture availability
(Soudzilovskaia et al. 2015; Kennedy & Peay, 2007; Kilpelédinen et al.
2017), as indicated by the negative correlation between soil moisture and
EcM colonization, and that AM colonization increases with soil pH and
available host trees, which is line with AM fungi being sensitive to these
factors (Bahram et al. 2020; Davison et al. 2021). It also showed that DSE
colonization is highly correlated with soil C:N, consistent with DSE as
indicators of harsh environments (Pandey, 2019). DSE colonization had a
negative effect on the relative abundance of putative plant pathogenic fungi
in soil and roots, the ratio of bacterial to fungal abundance, and bacterial
diversity in soil. It also explained significant variation in the composition of
fungal functional genes and N cycling genes in soil, as well as CAZyme
genes, P cycling genes, and total bacterial functional genes in roots (Figure
5).

These results are consistent with the growing body of evidence that
DSE associations have a suppressive effect on plant pathogens (Khastini et
al. 2012; Berthelot et al. 2019; Yakti et al. 2019; Harsonowati et al. 2020;
Santos et al. 2021), which may be due to physical protection of plant roots
and direct antagonism against pathogens by the secretion of secondary
metablites by DSE (Mandyam & Jumpponen, 2005; Terhonen et al. 2016;
Berthelot et al. 2019; Santos et al. 2021). The potential for DSE to alter
local abiotic conditions, such as pH (Xu et al. 2020) and the quality of soil
organic matter (Mrnka et al. 2020), to which bacteria are sensitive (Rousk
et al. 2010; Kuramae et al. 2012; Waring et al. 2013), may also be related to
the observed effect of DSE on bacterial communities and their functional
genes. Furthermore, DSE colonization was positively associated with
fungal diversity in roots and total fungal functional and CAZyme gene
diversity in soil, indicating DSE fungi may mediate interactions between
different fungal guilds due to their unique ability to associate closely with
plants yet retain free-living saprotrophic capabilities (Ruotsalainen et al.
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2021), meaning they are not subject to the same obligatory constraints as
mycorrhizal fungi, which require host C, or free-living saprotrophs, which
lack the benefit of associating with hosts. This mediation could be
enhanced in harsh environmental conditions to which DSE are better
adapted (Berthelot et al. 2019; Akhtar et al. 2022).

Despite the importance of EcM and AM associations in driving a
diverse array of ecological properties and processes (Read, 1991; Bennett et
al. 2017; Averill et al. 2019; Steidinger et al. 2019), I demonstrate in this
study that, across Europe under widespread broadleaf trees, DSE
colonization has a stronger and more consistent association to soil and root
microbiomes and their potential functioning than EcM and AM
colonization. This suggests that in addition to mycorrhizal fungi, other root-
associated fungi are likely to play a significant role in the functioning of
plant-soil systems by influencing the soil microbiome, therefore there is a
research need to further study the role of fungi such as DSE in mycorrhizal
systems and the functioning of soil microbial communities.
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Figure 5. Conceptual figure of the main results presented in paper III, showing the
major factors influencing root colonization rates of AM, DSE, and EcM fungi across a
European latitudinal gradient, followed by the soil microbiome properties that were
significantly associated with root colonization by AM, DSE, and EcM fungi. Positive
correlations are denoted by ‘+’°, and negative correlations by ‘—’.
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4.4 Tree species with different root symbioses shape
leaf elemental chemistry and associated
microbiomes

In comparison to Paper I1I, which investigated the influence of root
colonization by EcM, AM, and DSE fungi on soil and root microbiomes
under widespread tree species across a European latitudinal gradient,
utilizing the same trees, Paper IV investigated the leaf element profiles and
the structure of leaf-associated bacterial and fungal communities of these
tree species (Figure 6). In Paper IV, I sought to unravel the relative
importance of host tree identity, the extent of root colonization by EcM,
AM, and/or DSE fungi, surrounding vegetation, soil properties, and climate
in explaining leaf element profiles and leaf-associated microbial
communities, i.e., to see if leaf element profiles and microbiomes contain
signatures of belowground symbiotic interactions across vastly different
environmental conditions.

Firstly, I found that tree species identity, and within tree species root-
symbiont colonization were important for explaining leaf elemental
chemistry, along with soil properties and the proportion of EcM:AM trees
and coniferous EcM trees in the surrounding vegetation. Accordingly, tree
species-specific leaf elemental properties showed different patterns across
latitudes (Figure 6). Leaf traits reflect a spectrum of slow, conservative, to
fast, acquisitive mechanisms of resource use and investment (Reich, 2014;
Diaz et al. 2016) and can reflect different types of root symbioses (Averill
et al. 2019). Nevertheless, plant phylogeny and geography may confound
the role of mycorrhizal type and N fixation in explaining leaf traits (Lin et
al. 2017; Jantzen et al. 2023).

By focusing on widespread tree species, including three from the same
family (Betulaceae), and by measuring root colonization by root-symbiotic
fungi and leaf §'°N to account for N fixation, I showed that leaves of N
fixers (4/nus) had tight coupling in leaf N-related properties that
distinguished them from the other species, i.e., higher N concentrations,
and no distinct latitudinal trends due to their obligate symbiosis with N»-
fixing Frankia bacteria (Menge et al. 2014). Dual-mycorrhizal 4A/nus
species showed little sign of P limitation across latitude, possibly due to the
improved P acquisition ability of A/nus-associated EcM fungal
communities (Walker et al. 2014) and the synergistic effect of Frankia and
AM fungi in N and P acquisition (Oliveira et al. 2005). I also found that
EcM colonization, the basal area of EcCM:AM trees, and coniferous EcM
trees in the surrounding vegetation explained significant variation in leaf
element profiles across A/nus species and Betula pendula, but DSE
colonization was also important on A. glutinosa, hinting at the effect of
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DSE on soil microbiomes shown in Paper I11. In comparison, on Sorbus
aucuparia, an AM-forming species, latitude and soil properties were more
important than root symbioses in explaining leaf element properties. These
results highlight the complex nature of root symbioses beyond mycorrhizal
types and N-fixing status, they also indicate functional variation within
symbiosis types (Chaudhary et al. 2022) and flexibility in plant-nutrient
acquisition strategies (Lambers et al. 2008).

Next, I examined leaf-associated bacterial and fungal communities and
found that climate explained less variance in the leaf microbiome than
vegetation (tree species and surrounding vegetation) and leaf element
properties, especially for bacteria (Figure 6). Within tree species, bacteria
and fungi on S. aucuparia and fungi on A. incana and B. pendula were
influenced more by climate and geography than leaf elemental chemistry.
For bacteria on A4. incana, and bacteria and fungi on A. glutinosa, leaf
element concentrations, particularly leaf Ca, were most important for
explaining variance in community structure. Tree species largely
determined the relative abundance of putative plant pathogenic fungi;
fungal endophytes positively correlated with MAT; and both tree species
and leaf Ca concentrations explained fungal alpha diversity. Leaf Ca also
explained bacterial and fungal phyla and class relative abundances across
species.

Host identity greatly influences leaf microbiome structure at local and
regional scales (Sapkota et al. 2015; Laforest-Lapointe et al. 2016; Lajoie et
al. 2020) and suggests that hosts filter leaf microbial communities (Leveau,
2019). Large-scale examinations of a single tree species (Redford et al.,
2010) or multiple species from the same genus (Finkel et al., 2011) have
yielded contradictory results regarding the effect of host versus climatic
region. My findings in Paper IV contribute novel evidence to the field of
leaf microbial biogeography by utilizing cooccurring widespread tree
species and by analyzing leaf elemental chemistry to demonstrate that host
identity and their leaf element profiles are generally more important than
geography and climate in explaining microbiome structure (Figure 6).
However, within species the effects of climate and leaf elemental chemistry
are context-dependent and partially, yet indirectly, due to differences in
nutrient-acquisition strategies via root symbioses. Previous research has
demonstrated the importance of plant functional traits in structuring the leaf
microbiome (Kembel et al., 2014; Leveau, 2019; Li et al., 2022), but this is
the first study to investigate the potential effect of root symbioses (root
colonization and the ECM:AM tree basal area) on leaf microbiomes by
influencing leaf nutrition across multiple species and climatic biomes.
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In Paper IV, I also highlight the importance of Ca in plant-soil systems
by showing distinct patterns in leaf Ca concentrations in tree species with
contrasting root symbioses across latitudes and, in turn, the potential effect
this has on leaf microbiomes, which impact host performance by
modulating the equilibrium between leaf health and dysbiosis (Vorholt,
2012; Vayssier-Taussat et al. 2014). Overall, Paper IV brings an important
above-and-belowground connection to my thesis (Figure 6) and contributes
additional evidence on the importance of root symbioses in shaping
microbial communities in plant-soil systems, as was shown for
belowground microbiomes in Papers I-111.
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Figure 6. Conceptual figure of the study setup and main findings presented in paper
IV; showing the major relationships explaining leaf element profiles and leaf
microbiomes across Europe. The direction of the relationships is indicated by the
direction of arrows, and the relative importance of relationships is indicated by the
width of arrows. Tree symbioses of AM, DSE, and EcM were represented by root
colonization rates and tree species, i.e., Alnus also forms N-fixing associations, yet N-
fixing symbiosis were not directly measured, yet inferred through leaf §°N signatures.
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5. Conclusion and future perspectives

In this thesis, I have addressed the role of plants—primarily trees—and
their root symbioses in shaping soil, root, and leaf microbiomes, as well as
leaf element properties, in a unique, large-scale, and broad-reaching
investigation. This role has been evaluated using a variety of methods,
perspectives, and scales, ranging from the effect of plant mycorrhizal type
on soil microbiome structure and function in vegetation communities at the
regional scale to the effect of colonization rates by root-associated fungi
(EcM, AM, and DSE) on soil and root microbiomes of common tree
species across a European latitudinal gradient. Furthermore, across the
same tree species and gradient, I examined how host identity can explain
leaf element and microbiome profiles in part through nutrient-acquisition
strategies via root symbioses.

My findings on the vegetation community level demonstrate some clear
differences in belowground microbial communities between AM and EcM
systems. My findings at the tree level across Europe revealed inconclusive
effects of EcM and AM colonization as primary predictors of microbial
community properties, while a potentially strong role for DSE colonization
was evident. And finally, my findings on the tree leaf level reveal that tree
species and differences in their leaf element properties together largely
explain leaf-associated microbial communities, and these differences may
be due to different root symbioses and the surrounding vegetation.

All my studies were field-based investigations with single time point
sampling and DNA-based measurements of potentially active microbial
communities and their functions. While they generated many hypotheses,
the actual functional implications will need to be investigated in future
empirical and experimental studies that employ a broader range of omics
techniques and direct functional measurements across temporal and spatial
scales. Furthermore, while mycorrhizal types are broadly classified as AM
and EcM, I have realized that it is important to acknowledge that there are
other types that should be studied in the future, as well as other root-
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associated fungi with cryptic lifestyles. More attention should be paid to the
functional variation of fungi within the symbiotic guilds of EcM, AM, and
root endophytes. Furthermore, studies must include a broader range of tree
species with a wider variety of traits from a range of climatic biomes to
account for the geographical and phylogenetic stratification of mycorrhizal
types. Common garden experiments, which can account for differences in
soil conditions, still hold a lot of promise in this regard.

Lastly, soil sampling in my studies was limited to the top 5 or 10 cm of
soil and cannot be generalized to deeper soil layers. Despite these
limitations, my thesis contributes novel findings on soil microbiome
differences between AM and EcM systems, the potentially important role
of DSE fungi in structuring the soil microbiome, and the central role of tree
species and the partial role of their root symbioses and leaf elemental
chemistry in shaping leaf microbiomes across Europe. Overall, the results
of my research indicate that biotic interactions between plants and their root
symbionts are important factors in determining the structure and function of
microbiomes across plant-soil systems. This suggests that under
environmental change, alterations in the interactions mediated by root-
symbiotic fungi between plants and soil microbiomes will determine the
direction of change in plant and ecosystem functions.
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Popular science summary

Vegetation communities, including forests formed by trees and other
plants, are responsible for maintaining an astonishing array of life on Earth,
including people. Nevertheless, the bacteria and fungi that live in and on
plants and in the soil are crucial to their functioning. Some of these
microorganisms, known as pathogens, are harmful to plants, while others,
known as saprotrophs, recycle nutrients from dead plants and other
organisms so that they can be used by living plants. Furthermore, others
can extract nitrogen from the air, a crucial element for plant growth and
development, and make it available to plants. Nevertheless, mycorrhizal
symbioses with fungi constitute some of the most significant and pervasive
relationships most plants form. These fungi grow in and on the roots,
foraging and acquiring nutrients from the soil to exchange them with the
plant for carbon, forming a mutually beneficial relationship. There are
different types of mycorrhizal relationships, including those formed with
ectomycorrhizal fungi or arbuscular mycorrhizal fungi, that vary in their
characteristics and functions depending on the species of fungi and plants
involved.

In general, plants and their mycorrhizal fungal partners may employ
either a slow and conservative or a quick and acquisitive approach to
nutrient cycling, which is dependent on interactions with microbial
communities in the soil and on plants, including on roots. It is not well
understood how exactly the broader microbial communities differ between
different mycorrhizal systems depending on the traits of the plants and
fungi involved and, furthermore, how this is influenced by different
environments such as climates, soil conditions, and the surrounding
vegetation communities. Understanding how terrestrial ecosystems and
their functioning may be affected by environmental change like global
warming and shifting rainfall patterns will require unravelling of the
complex relationships between plants, mycorrhizal fungi, and broader
microbial communities.
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In this thesis, I examine how plants, different types of mycorrhizal
fungi, and other root symbioses affect the structure and possible function of
microbial communities in the soil and on plants, as well as the nutrient
properties of leaves. I used different methods, like sequencing the DNA of
microorganisms and their genes that are involved in different functions
from field studies at different scales, ranging from vegetation communities
in a single region to tree species that grow all over Europe.

I found that vegetation communities dominated by plants with
arbuscular mycorrhizal relationships had more bacteria, fungal saprotrophs,
and pathogens in their soils than sites dominated by plants with
ectomycorrhizal relationships, and that coniferous ectomycorrhizal
vegetation, such as spruce and pine forests, was a very important factor in
determining soil conditions and the characteristics of microbial
communities. Across Europe, underneath widespread deciduous tree
species, I found that, compared to ectomycorrhizal and arbuscular
mycorrhizal root colonization, root colonization by a different type of
fungi, called dark septate endophytes, had a stronger effect on the
composition of root and soil microbial communities and their genes
involved in carbon and nutrient cycling and a negative effect on the
proportion of fungal pathogens and bacteria. Lastly, I found that tree
species with a variety of root symbioses, including nitrogen-fixing bacteria
and mycorrhizal fungi, had different concentrations of leaf elements, and
that this was partly related to the extent of root colonization by root
symbiotic fungi. Furthermore, tree species and their leaf elements were a
key factor in shaping leaf microbial communities and their diversity
compared to climate across Europe.

Overall, my results suggest that in order to understand how terrestrial
ecosystems and their functioning may be affected by environmental
changes, we need further studies of the interactions of plants with different
traits, a wide variety of root symbioses such as mycorrhizal and nitrogen-
fixing symbioses, other fungi that grow in roots such as dark septate
endophytes, and the multitude of other microorganisms living in the soil
and on plants.
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Popularvetenskaplig sammanfattning

Vixtsamhillen, inklusive skogar dér det finns savél trdd som andra véxter,
upprétthéller en hidpnadsvickande méngd liv pé jorden, inklusive
manniskor. Samtidigt dr de bakterier och svampar som lever i och pé véxter
och i jorden avgorande for hur de fungerar. Vissa av dessa
mikroorganismer, kinda som patogener, dr vixtskadegorare, medan andra,
kénda som saprotrofer eller nedbrytare, dtervinner néringsdmnen fran doda
véaxter och andra organismer sa att de kan ateranvédndas av levande véxter.
Somliga mikroorganismer kan fixera kvéve ur luften och leverera det till
levande véxter som behover det for sin tillvixt och fortplantning. Trots
detta dr det emellertid med mykorrhizasvampar som viaxter formar de
kanske mest betydelsefulla och genomgripande symbioserna. Dessa
svampar véxer i och pa véxternas rotter, genom vilka de byter
nédringsdmnen de hdmtar fran jorden i utbyte mot kolféreningar i ett
omsesidigt fordelaktigt forhallande. Det finns olika typer av
mykorrhizasymbioser, bland annat de som bildas med
ektomykorrhizasvampar (EcM) eller med arbuskuléra mykorrhizasvampar
(AMF), och dessa varierar i sina egenskaper och funktioner beroende pa
vilka arter av svampar och vixter som dr involverade.

I allménhet kan vaxter och deras mykorrhizasvamppartner klassificeras
i relation till sin ndringsomséttning som antingen langsamma och
konservativa eller som snabba och forvéirvande. Denna klassificering &r
beroende av interaktioner (samspel) med mikrobiella samhéllen i jorden
och pé vixter, inklusive pa rotterna. Vi vet fortfarande lite om hur dessa
bredare mikrobsamhéllen i marken skiljer sig &t mellan olika
mykorrhizasystem och till vilken grad olika faktorer som vixtegenskaper
och funktionella svampegenskaper spelar in i detta, samt hur detta i sin tur
paverkas av omgivande miljofaktorer som klimat, markforhallanden och
omgivande vegetationssamhéllen. For att béttre kunna forsta hur terrestra
ekosystem och deras funktioner paverkas av miljofordndringar, global
uppvarmning och skiftande nederbord, krévs att vi ocksé klargor de

65



komplexa relationer som préglar vixter, mykorrhizasvampar och de bredare
mikrobsamhillena i naturen.

I denna avhandling undersoker jag hur vixter, olika typer av
mykorrhizasvampar och andra rotsymbioser paverkar strukturen och
potentiella funktioner hos mark- och véixtmikrobsamhillen, samt 16vens
néringsinnehall och mikrobpavéxt. Jag har anvint mig av olika metoder,
som att sekvensera DNA fran mikroorganismer och deras funktionella
gener genom faltstudier pa olika skalor, fran olika biotoper i en region till
tradarter som vaxer over hela Europa.

Mina resultat visar att i vixtsamhéllen som domineras av vixter med
arbuskuldra mykorrhizasymbioser fanns det fler bakterier,
svampsaprotrofer och patogener i marken jamfort med platser dominerade
av ektomykorrhizavegetation. Jag fann ocksa att en
ektomykorrhizadominerad barrtradsvegetation, sdsom gran- och tallskogar,
paverkade bade markforhéllanden och mikrobsamhaillenas egenskaper. Nér
jag studerade tre 16vtrids-arter med utbredning dver hela Europa kunde jag
visa att en tredje sorts rotkoloniserande svamp som kallas for morka
septatendofyter, hade storre effekt pd sammanséttningen av
mikrobsamhaéllena pa vixtrotter och i marken, och deras funktionella gener
relaterade till kol- och niringsdmneskretslopp, &n vad savil ekto- som
arbuskuldr mykorrhizakolonisering hade. Dessutom hade morka
septatendofyter ocksa en negativ inverkan pd méngden svamppatogener
och bakterier. Slutligen fann jag att trddarter som karakteriseras av
symbioser med flera olika mikrober, som t.ex. kvidvefixerande bakterier och
mykorrhizasvampar, hade andra koncentrationer av néringsémnen i 16ven,
jamfort med de med enbart EcM eller AMF-mykorrhiza. Detta delvis kunde
forklaras av méngden rotkoloniserande symbiotiska svampar. Dessutom var
trddarter och deras innehall av ndringsémnen i bladen en nyckelfaktor for
bladmikrobsamhillens sammanséttning och méngfald, med storre effekt dn
klimatfaktorer 6ver hela Europa.

Sammantaget tyder mina resultat pa att for att forstd hur terrestra
ekosystem och deras funktioner kan péverkas av miljéforédndringar, sa
behover vi fler studier av bland annat interaktioner mellan véxter med olika
egenskaper, en mingd olika rotsymbioser sasom mykorrhiza- och
kvévefixerande symbioser och andra rotlevande svampar som mdrka
septatendofyter, samt myllret av alla andra mikroorganismer som lever i
marken och pa véxter.
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Abstract

Plant nutrient acquisition strategies involving ectomycorrhizal (EcM) and arbuscular mycorrhizal (AM) associations, are key
plant functional traits leading to distinct carbon (C) and nutrient dynamics in forests. Yet, little is known about how these strate-
gies influence the structure and functioning of soil communities, and if such mycorrhizal effects may be more or less pro-
nounced depending on the type of forest and various abiotic factors. Here we explore the potential interactions occurring
between plant-EcM and plant-AM systems with the diverse soil organisms occurring in forest soils, and in the process draw
attention to major issues that are worthy for future research directions. Based on these potential interactions, we suggest that
EcM systems, especially those involving gymnosperms in colder climates, may select for a soil community with a narrow set
of functions. These EcM systems may exhibit low functional redundancy, dominated by symbiotic interactions, where EcM
fungi maintain low pH and high C/N conditions in order to tightly control nutrient cycling and maintain the dominance of EcM
trees. By contrast, AM systems, particularly those involving deciduous angiosperm trees in mild and warmer climates, may
facilitate a functionally more diverse and redundant soil community tending towards the dominance of competitive and antago-
nistic interactions, but also with a range of symbiotic interactions that together maintain diverse plant communities. We propose
that the contrasting belowground interactions in AM and EcM systems act as extended nutrient acquisition traits that contribute
greatly to the prevailing nutrient and C dynamics occurring in these systems.

© 2020 The Author(s). Published by Elsevier GmbH on behalf of Gesellschaft fiir Okologie. This is an open access article
under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Keywords: Arbuscular mycorrhizal (AM) fungi; Ectomycorrhizal (EcM) fungi; Mycorrhizal associations; Plant-microbial feedbacks;
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Introduction nutrient dynamics in terrestrial ecosystems, by acting as
decomposers of soil organic matter (SOM), nutrient trans-

Soil organisms play key roles in the population and com- formers, plant mutualists, parasites/pathogens, grazers, and
munity dynamics of plants and associated carbon (C) and predators influencing patterns of plant diversity and produc-

tivity (Baldrian, 2017; Bever, Mangan, and Alexander,
2015; Tedersoo, Bahram, and Zobel, 2020). On a global
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abiotic factors, such as climatic conditions and soil proper-
ties (Bahram et al, 2018; Oliverio et al., 2020;
Phillips et al., 2019; Van Den Hoogen et al., 2019). On a
more local scale, however, plant identity and plant func-
tional attributes may strongly influence the community and
functioning of soil organisms through direct and indirect
interactions, especially those associated closely with the rhi-
zosphere, but also those inhabiting the bulk soil (Berg and
Smalla, 2009; Prober et al., 2015; Urbanova, gnajdr, and
Baldrian, 2015). Thus, plants and interacting soil organisms
may essentially act as an extended holobiont (Gilbert, Sapp,
and Tauber, 2012).

The strongest and most integrated interaction of the plant-
soil continuum is the association between plants and mycor-
rhizal fungi, a root symbiosis based on C and nutrient
exchange (Smith and Read, 2010). Multiple lines of evi-
dence suggest that mycorrhizal type, in particular ectomy-
corthizal (EcM) and arbuscular mycorrhizal (AM)
associations, is a key determinant of prevailing patterns of
forest population and community dynamics, facilitating
either co-occurrence or monodominance of tree species due
to plant-mycorrhizal-soil feedbacks (Connell and Low-
man, 1989; Peh, Lewis, and Lloyd, 2011). As both AM and
EcM fungi associate with trees of different functional types
and exist in boreal, temperate, and tropical forests, where
they show contrasting dominance patterns (Opik et al,,
2010; Read, 1991; Read and Perez-Moreno, 2003;
Soudzilovskaia et al., 2019), forest systems present a unique
opportunity to explore contrasting ecosystem-plant-soil
feedbacks.

Plant-EcM and plant-AM systems show great differences
in their morphological, physiological, ecological, and phylo-
genetic properties (Table 1), and they are typically associ-
ated with low and high nutrient conditions, respectively,
with contrasting nutrient acquisition strategies. This has led
to the idea of the mycorrhizal-associated nutrient economy
(MANE) (Phillips, Brzostek, and Midgley, 2013). Within
this framework, AM- and EcM-dominated systems have dis-
tinct C, nitrogen (N) and phosphorus (P) cycling dynamics.
AM systems tend to have high-quality litter that is rapidly
decomposed by saprotrophs leading to high C mineraliza-
tion, organic to inorganic N transformations, and nitrifica-
tion (Phillips et al., 2013). Hence AM systems represent an
inorganic nutrient economy, where AM fungi scavenge for
inorganic nutrients released from litter and SOM by other
soil organisms. By contrast, EcM systems tend to have low-
quality litter with slow decomposition rates and most

nutrients existing in organic form (Table 1). Supported by
large C inputs from the host trees, EcM fungi are able to
mine for organic N and P due to greater enzymatic capabili-
ties compared to AM fungi, making less mineral N available
for nitrification and losses via leaching, leading to a prevail-
ing organic nutrient economy (Checke et al., 2017;
Phillips et al., 2013).

However, the MANE framework is mainly based on tem-
perate and boreal forests, and may or may not hold for tropi-
cal forests or even in temperate and boreal forests after
accounting for different tree traits such as leaf habit
(Averill, Bhatnagar, Dietze, Pearse, and Kivlin, 2019;
Keller and Phillips, 2019; Lin, McCormack, Ma, and Guo,
2017). Furthermore, the biotic interactions occurring in soil
that drive differences in nutrient and C cycling in EcM and
AM systems are poorly characterised, and as most
soil organisms are usually studied in isolation, we lack an
understanding about the system-wide effects of trophic
and ecological interactions on ecosystem functioning
(Buchkowski, Bradford, Grandy, Schmitz, and Wieder,
2017; Phillips et al., 2013; Wall et al., 2008). EcM and AM
systems, in combination with certain biotic and abiotic fac-
tors, may select for different soil communities and form hol-
obionts with distinct functional properties. They are thus
forming systems that exhibit extended nutrient-acquisition
strategies, which have large implications for broad-scale C
and nutrient dynamics. We propose that particular combina-
tions of climates, trees, and mycorrhizal types influence soil
community structures and ecosystem functions in contrast-
ing ways. We also propose that EcM systems, primarily in
temperate and boreal ecosystems, along with more closed
nutrient cycles have a stronger and more direct influence on
soil communities, leading to less functional redundancy by
promoting more specialized soil organisms with a narrow
set of functions that maintain a low nutrient status and
slow nutrient cycling, compared to AM systems with
more open and rapid nutrient cycles, and with high func-
tional diversity and redundancy. We come to these
hypotheses through exploring the interactions of EcM
and AM fungi with different soil organisms in forests
while considering that climatic biome and tree functional
differences may strengthen or weaken specific ‘mycor-
rhizal effects’ on C and nutrient dynamics often associ-
ated with EcM and AM systems. We will subsequently
discuss how these systems may be altered under environ-
mental change and provide suggestions for future
research needs.
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Table 1. Overview of morphological, physiological, ecological, and phylogenetic properties of EcM and AM systems, for many properties
using evidence mostly obtained from boreal and temperate ecosystems, with a clear need to investigate many of these properties in tropical

ecosystems.

Property

Ectomycorrhizal fungi(EcM)

Arbuscular mycorrhizal fungi
(AM)

Fungal taxa involved

(Kivlin, Hawkes, and Treseder, 2011;
Opik et al., 2013; Brundrett and
Tedersoo, 2018)

Plant taxa involved
(Brundrett and Tedersoo, 2018;)

Specialized structures in and on host roots
(Bonfante and Genre, 2010)

External mycelium
(Agerer, 2001; Chagnon et al., 2013

Reproductive and dispersal strategies
(Horton, 2017; Vasutova et al., 2019)

Provision of C from host plants
(Tedersoo and Bahram, 2019)

Hyphal turnover

(Finlay and Read, 1986; Staddon, Ramsey,
Ostle, Ineson, and Fitter, 2003; Olsson and
Johnson, 2005; Wallander, 2006;

Ekblad et al., 2013; Pepe, Giovannetti, and
Sbrana, 2018)

Provision of nutrients to host plants
(Smith, Smith, and Jakobsen, 2003;

Smith and Smith, 2012; Phillips et al., 2013;
Tedersoo and Bahram, 2019)

Enzymatic capacity to break down organic
matter
(Tedersoo and Bahram, 2019)

Litter quality of hosts and decomposition
(Read, 1991; Tedersoo and Bahram, 2019)

Factors driving root colonization intensity,
external mycelium production

(Nilsson, Giesler, Baath, and Wallander,
2005; Soudzilovskaia et al., 2015;
Wang, Zong, and Li, 2019)

Proposed prevailing nutrient 1y
(Phillips et al., 2013; Averill et al., 2019;
Tedersoo and Bahram, 2019)
Relationship to top-soil C stocks
(Soudzilovskaia et al., 2019)
Contribution to tree basal area across

forest biomes
(Steidinger et al., 2019)

Plant-soil feedbacks
(Bennett et al., 2017)

Around 20,000 different fungal
taxa, mainly from the phylum Basi-
diomycota, but also Ascomycota
and Zygomycota

2% of terrestrial plants, mainly
woody

Intercellular hartig net and hyphal
mantle ensheathing the root tip rep-
resenting high fungal to root
biomass.

Extensive and varied with contrast-
ing functional exploration types

Sexual or asexual reproduction,
often production of fruiting bodies
that facilitate wind and animal
dispersal

7—-30% of photosynthates

2 weeks to 7 months, or even up to
2—10 years

Organic and inorganic N acquisition
is most important, but can also
access inorganic P perhaps more
efficiently than AM fungi

Low to high enzymatic capacity for
organic nutrient acquisition depend-
ing on EcM species/lineages,
although less capacity compared to
saprotrophic fungi

Low-quality, slower decomposition

Colonization highest in acidic soils
and mesic climates with constant
precipitation. Mycelium production
negatively correlated with nutrient
availability

Conservative closed organic nutri-
ent economy

EcM basal area fraction positively
correlated with top-soil C stocks
>90% of boreal forest basal area,
around 75% of temperate forest
basal area, and < 30% of tropical
forest basal area

Neutral to positive

250—1000 fungal taxa from the
phylum Glomeromycota

72% of terrestrial plants across a
broad phylogeny

Highly branched intracellular arbus-
cules representing less fungal to root
biomass compared to a mantle and
hartig net

Less extensive and more homoge-
nous types

Asexual reproduction, production of
large asexual resting spores, relying
on active and passive animal
dispersal

2—-20% of photosynthates

4-5 days, to weeks and potentially
months

Inorganic P acquisition most impor-
tant, and can acquire both inorganic
and organic N, but may compete
with host plants for N

Lacking

High-quality, faster decomposition

Colonization highest under conti-
nental climates with mild summers
and high soil N availability. Myce-
lium production positively corre-
lated with nutrient availability.
Rapid open/leaky inorganic nutrient
economy

AM basal area fraction negatively
correlated with top-soil C stocks
60—70% of tropical forest basal
area, > 20% of temperate forest
basal area, and < 5% of boreal for-
est basal area

Negative
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BOX 1. Tree and mycorrhizal types as key plant nutrient-acquisition traits across forest biomes

The EcM symbiosis requires a greater investment of C from the host plant than the AM symbiosis, equating to a more obligatory relationship
with less autonomy for the host, a physical barrier between its roots and the soil environment, and a greater extension of its zone of influence in
the soil (Table 1).Thus, EcM systems represent a more closed, stable and specialized active nutrient acquisition strategy that is less reliant on
other soil organisms for nutrient transformation and more competitive against these organisms and AM trees under limiting nutrient conditions
(Phillips et al., 2013; Cheeke et al., 2017; Averill et al., 2019). However, EcM systems are perhaps more vulnerable to disturbance and environ-
mental change due to less flexibility for the plant in the symbiosis, requiring more stable mesic conditions for success (Table 1). On the other
hand, the AM symbiosis gives the plant more autonomy in the soil with greater root-soil contact (Tedersoo and Bahram, 2019), they have a
greater reliance on other soil organisms for nutrient transformations (Phillips et al., 2013), a greater competitive ability compared to EcM trees
under high nutrient conditions, and a greater safety net for the plant against disturbance and environmental change due to a greater flexibility
for the plant in the symbiosis (Table 1).

In addition to mycorrhizal types, trees can be angiosperms or gymnosperms, further divided into deciduous or evergreen, which differ in
their distributions and commonality. Angiosperms tend to te gyl perms and b: d in most tropical and temperate for-
ests, while gymnosperms tend to dominate in cold and/or nutrient-poor soils, representing fast versus slow plant economic traits (Bond, 1989;
Reich, 2014). Accordingly, gymnosperms have greater longevity of their organs (foliage, stems and roots), facilitated by the production of resins
rendering protection from fungal and insect attack, whereas angiosperms tend to be more susceptible to such attacks (Brodribb et al., 2012).
The deciduous habit is more in i ms pared to g 'ms for whom the evergreen habit is more common (Gower and
Richards, 1990; Reich et al., 1997). And the greatest functional difference in fast versus slow plant economic traits in trees occurs between ever-
green gy perms and decid perms, with slower growth rates, conservative nutrient cycling, lower decomposition rates, and
thicker litter layers under the former (Augusto et al., 2015; Dawud et al., 2017; Angst et al., 2019).

Different tree and mycorrhizal types also exist across forest biomes that have varying aboveground biomass C stocks, soil C stocks, nutrient
dynamics and climatic conditions (Read, 1991). Despite large climatic differences, tropical forests are usually more biomass C dense and con-
tribute more to global forest aboveground biomass than temperate and boreal forests (Crowther et al., 2015; Liu et al., 2015). While boreal for-
ests contribute around a half to total global forest soil C stocks despite only covering a third of the global forest area, tropical forests, despite
accounting for over half of global forest area, contribute only around a third of global soil C (Scharlemann et al., 2014; Keenan et al., 2015). In
addition, boreal forests have a belowground C flux of around two thirds of their gross primary production, compared to around a half in tem-
perate forests, and around a third in tropical forests (Gill and Finzi, 2016). Tropical forests tend to have rapid nutrient cycles and produce
high-quality litter compared to boreal forests that have slow nutrient cycles and low-quality litter, with temperate forests in between (Vitousek,
1982). Nitrogen becomes increasingly limiting from tropical to boreal forests, while phosphorus is more limiting in tropical forests, accordingly,

Ithough there is heter ity in nutrient limitations within biomes (Vitousek et al., 2010; Gill and Finzi, 2016).

These broad scale observations on C and nutrient dynamics across biomes warrant further attention for differences in tree functional traits
including mycorrhizal type, given that boreal forests are domi d by gy perms, while temperate and tropical forests are dominated by
angiosperms (Poulter et al., 2011; Augusto et al., 2015; Crowther et al.,, 2015). Boreal gy ;perm forests p ially have around a two-fold
higher soil C density, while in temperate and tropical forests soil C content appears to be more equal between gymnosperms and angiosperms
(Zhong and Qiguo, 2001; Vesterdal et al., 2013). Furthermore, around 60% of the worlds standing trees may be EcM-forming, distributed
mostly across boreal and temperate forests, while AM-forming trees make up most of the remaining 40% concentrated mostly in the tropics
(Steidinger et al., 2019). Soil C is positively related to the abundance of EcM trees but differs depending on biome (Soudzilovskaia et al., 2019).
The different leaf habits are also unequally distributed across biomes, deciduous trees are found mostly in temperate and tropical forests, and
evergreen trees in boreal and tropical forests (Poulter et al., 2011; Crowther et al., 2015). Understanding these traits across forest biomes is
important as they may strengthen or weaken the prevailing closed versus open nutrient dynamics of EcM and AM systems, which may pro-
foundly affect soil community structures and functions.

Ecosystem-tree-mycorrhizal interactions with

soil organisms as extended nutrient-acquisition
traits

Myecorrhizal fungi interact directly and indirectly with other
soil organisms, while also moderating plant interactions with
these organisms. Such interactions span a spectrum from inhi-
bition to stimulation and direct competition to mutualism
(Fitter and Garbaye, 1994), and drive and maintain distinct C
and nutrient dynamics (Averill et al., 2019; Cheeke et al.,
2017; Phillips et al., 2013; Read, 1991). While there is some
overlap between EcM and AM in their interactions with soil
organisms, they likely have contrasting effects when it comes
to facilitation and inhibition of these organisms. EcM fungi,

especially when associating with gymnosperms in temperate
and boreal forests, represent a potentially greater facilitator or
inhibitor of soil biotic activity compared to AM fungi. This is
because of the greater physical presence of EcM in the soil,
their greater enzymatic capacity and activity (Tedersoo and
Bahram, 2019), their greater tolerance and potential mainte-
nance of acidic soil conditions (Rosling, Lindahl, Taylor, and
Finlay, 2004), and their contribution to and maintenance
of high C/N ratios in the soil (Franklin, Nasholm,
Hogberg, and Hogberg, 2014; Lin et al., 2017;
Tedersoo and Bahram, 2019). This has the potential to
trap systems in an N-limited state (Franklin et al., 2014),
as it affects factors which other soil organisms are sensi-
tive to (Bahram et al., 2018; Fierer, 2017).
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Mycorrhizal interactions with saprotrophs

The interaction of mycorrhizal fungi with soil saprotrophs
is considered to be a major factor influencing patterns of soil
C and nutrient dynamics in forest soils (Averill, Turner, and
Finzi, 2014; Brzostek, Dragoni, Brown, and Phillips, 2015;
Fernandez and Kennedy, 2016; Sterkenburg, Clemmensen,
Ekblad, Finlay, and Lindahl, 2018). These interactions are
generally seen as either inhibitory or stimulatory (Fitter and
Garbaye, 1994; Frey, 2019). The inhibition of soil sapro-
trophs, specifically saprotrophic fungi, by mycorrhizal fungi
is known as the ‘Gadgil effect’, and refers to the phenome-
non of EcM fungi suppressing the activity of fungal sapro-
trophs leading to decreased decomposition rates, or the
removal of EcM from a system enhancing decomposition
rates (Gadgil and Gadgil, 1971, 1975; Fernandez and Ken-
nedy, 2016). This is thought to be driven primarily by the
competition for organic matter colonization between EcM
fungi and saprotrophic fungi. Fueled by a large input of C
from host trees, some EcM fungi are able to proliferate and
selectively mine for N in organic matter (Lindahl and
Tunlid, 2015), in the process potentially outcompeting sap-
rotrophic fungi and leading to C accumulation
(Fernandez and Kennedy, 2016; Sterkenburg et al., 2018).

The ‘Gadgil effect’ has mostly been observed under tem-
perate and boreal evergreen gymnosperm trees (Gadgil and
Gadgil, 1971, 1975; Averill and Hawkes, 2016;
Fernandez and Kennedy, 2016), and may not hold for decid-
uous angiosperm trees in the same systems (Fernandez, See,
and Kennedy, 2019), nor under tropical evergreen angio-
sperm N-fixing trees (Mayor and Henkel, 2006). Further-
more, the presence of certain saprotrophic fungi can be
higher in EcM gymnosperm forests compared to other EcM
and AM forests (Awad et al., 2019; Bahram et al., 2020),
although overall decomposition is still likely to be slow.
While there is a lack of studies of the ‘Gadgil effect’ across
different types of forests, it may be specific to EcM forming
gymnosperms in boreal and temperate forests. Although first
described in introduced Pinus radiata plantations in New
Zealand (Gadgil and Gadgil, 1971, 1975), it may be most
pronounced or at least saprotrophic activity most reduced in
ecosystems with a significant ericoid mycorrhizal compo-
nent (Clemmensen et al., 2015), which have an even greater
saprotrophic capability than EcM fungi (Martino et al.,
2018). Ericoid mycorrhizal fungi produce highly melanized
mycelium  that is resistant to  decomposition
(Clemmensen et al., 2015), and their hosts have very low-
quality litter (Read, Leake, and Perez-Moreno, 2004). These
factors suggest that ericoid mycorrhizal fungi and their plant
symbionts may form an even more closed nutrient cycle in
their zone of influence, outcompeting other fungal guilds for
organic nutrient resources (Wurzburger and Hendrick, 2009).
Something resembling the ‘Gadgil effect’ has been shown
among certain tropical tree species, where the presence of
mycorrhizal hyphae retarded root litter decomposition under
tropical evergreen EcM gymnosperms as well as evergreen

AM gymnosperms and angiosperms in the same system
(Lin, Chen, and Zeng, 2019), suggesting that AM fungi may
also suppress saprotrophic activity in forests, although this
is not well supported.

‘When saprotrophs are C limited, and labile forms of C are
quickly depleted, the exudation of labile C by tree roots and
mycorrhizal fungi can stimulate saprotrophic breakdown of
more complex C forms, for which they would otherwise be
energy-limited to do so, a mechanism commonly known as
‘priming’ (Brzostek et al., 2015; Fernandez and Ken-
nedy, 2016; Verbruggen, Pena, Fernandez, and Soong,
2017). Both EcM and AM fungi have been implicated in
priming of decomposition (Clemmensen et al., 2015;
Hodge, 2014), which is in contradiction to the ‘Gadgil
effect’. Even though most evidence for AM-induced priming
comes from non-forest systems, AM fungi have been found
to colonize both fresh and partially decayed litter in a variety
of forests across biomes, as well as having higher coloniza-
tion rates in upper organic soil layers (Bunn, Simpson, Bul-
lington, Lekberg, and Janos, 2019; Sheldrake et al., 2017).
From these observations it is tempting to speculate that AM
fungi may engage in highly directed priming of saprotrophs
via release of soluble C in nutrient-rich patches and scav-
enge for the mineralized nutrients released by saprotrophic
activity (Bunn et al, 2019; Kaiser et al, 2015;
Sheldrake et al., 2017).

However, it is relatively unknown whether decomposition
of litter in AM systems is directly enhanced by the activity
of AM fungi or is already rapid due to high-quality litter
inputs, where AM colonization of litter may be inconsequen-
tial for overall C dynamics. In addition, plant roots may act
as the main primers of soil saprotrophs and may do so in a
more passive and diffuse way (Kuzyakov, Friedel, and
Stahr, 2000; Shahzad et al., 2015), compared to mycorrhizal
fungi (Kaiser et al., 2015). It is difficult to untangle the rela-
tive contribution of plant roots and mycorrhizal fungi to
these processes (Verbruggen et al., 2017). Nevertheless,
given that AM trees tend to have greater direct root-soil
access compared to EcM trees, whose root-soil interactions
are governed more tightly by EcM fungi, AM trees may be
responsible for more priming through a combination of
highly directed soluble C release by AM fungi and passive
and general soluble C release by AM tree roots. This is in
line with the more rapid nutrient cycling of AM systems
with greater saprotrophic activity (Phillips et al., 2013), as
there appears to be a greater capacity for AM systems to sup-
port a wider variety of saprotrophs, compared to EcM sys-
tems, where saprotrophic fungi that have -efficient
ligninolytic enzyme capabilities are more prominent
(Bahram et al., 2020). In EcM systems, however, the high
EcM mycelial biomass in the soil is likely a major
resource for saprotrophs  (Brabcova, Novakova,
Davidova, and Baldrian, 2016), and has been shown to
turnover rapidly (Clemmensen et al., 2015). Furthermore,
EcM and fungal saprotrophs may co-exist by inhabiting
different spatial niches especially in boreal forests with
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deep mor layers (Kyaschenko, Clemmensen, Karltun, and
Lindahl, 2017).

Opverall it is likely that mycorrhiza-saprotroph interactions
occur on a spectrum of inhibition to stimulation and are
likely to be spatially and temporally heterogenous. Thus, the
so called ‘Gadgil’ and ‘priming’ effects are context-depen-
dent and may both occur in the same system separated in
space and time. In EcM systems, especially under N limita-
tion such as boreal gymnosperm forests, regulation or sup-
pression of decomposition is facilitated by the input of low-
quality litter by EcM plants, allowing for a tighter control on
C and nutrient cycling (Smith and Wan, 2019). AM systems,
on the other hand, may favor stimulatory and neutral interac-
tions with saprotrophs, relying on their activity for minerali-
zation of organic nutrients that they scavenge for, with
reduced control on C and nutrient cycling (Frey, 2019). Yet
there is a lack of integration and consideration of these inter-
actions across climatic biomes and tree types. Furthermore,
most studies on mycorrhizal interactions with saprotrophs
and patterns of decomposition focus on fungal saprotrophs,
because fungi are considered the primary decay agents of
complex plant-derived C (Baldrian, 2017). However, evi-
dence suggests that the contribution of bacterial saprotrophs
to forest soil decomposition has likely been underestimated
(Lladd, Lopez-Mondéjar, and Baldrian, 2017). Bacteria are
extremely diverse and abundant in soils and have been
shown to be capable of decomposing complex C substrates
(Lopez-Mondéjar et al., 2018). Compared to fungal sapro-
trophs who may be better suited to utilize plant compounds,
bacteria may be better suited to utilize fungal and bacterial
necromass (Lladé et al., 2017, Lépez-Mondéjar et al.,
2018), and may dominate in the decomposition of EcM
mycelia in particular (Brabcova et al., 2016). It may well be
that the activity of fungal saprotrophs promotes the activity
of bacterial saprotrophs, through their substrate and decay
stage niche separation (Romani, Fischer, Mille-Lindblom,
and Tranvik, 2006), further enhancing decomposition and
partly explaining the contrasting C and nutrient dynamics in
EcM and AM systems. Thus, the relative contributions of
fungi and bacteria to decomposition in EcM and AM sys-
tems presents an important research area, as more complete
decomposition of both plant and microbial biomass may
require the activity of both saprotrophic bacteria and fungi
(L6pez-Mondéjar et al., 2018).

Mycorrhizal interactions with pathogens

Plant-soil feedbacks involving plant antagonists such as
pathogens have long been recognized to influence patterns
of forest diversity and plant succession (Connell, 1971; Jan-
zen, 1970; Van Der Putten, 2000). The holobiont perspec-
tive combined with the contrasting patterns of interactions
between trees and EcM and AM fungi with soil-borne patho-
gens (fungi, bacteria, protists, viruses, and nematodes)
across climatic biomes adds a new perspective that may help

explain distinct and differing plant and soil community
dynamics and functioning.

Accumulating evidence points to relatively greater soil-
borne pathogen prevalence in AM systems compared to
EcM systems, resulting in greater negative plant-soil feed-
backs in the former compared to positive and neutral feed-
backs in the latter (Bahram et al., 2020; Bennett et al., 2017,
Chen et al., 2019; Kadowaki et al., 2018; Teste et al., 2017).
It is possible that if there are increased competition and
interactions between different microbial groups in AM sys-
tems, this may lead to increased functional switching from
saprotrophic or commensal microbes to pathogenic
microbes in those capable of such switching, as proposed
under the pathobiome concept (Vayssier-Taussat et al.,
2014). Pathogens may also benefit from high nutrient access
or less competition with AM fungi for colonizing roots of
AM hosts (Ingham, 1988), compared to greater physical pro-
tection of EcM roots by EcM fungi (Branzanti, Rocca, and
Pisi, 1999). In addition, a relatively stable source of N as
shown in EcM trees facilitated by organic N acquisition by
EcM fungi (Corrales, Mangan, Turner, and Dalling, 2016),
may promote plant defense responses if N can be consis-
tently allocated to secondary metabolite production
(Blodgett, Herms, and Bonello, 2005). This greater activity
of pathogens in AM systems leads to greater negative den-
sity dependence of AM trees and potentially drives plant
community and population dynamics, facilitating higher tree
species richness in AM-dominated systems (Chen et al.,
2019; Laliberté, Lambers, Burgess, and Wright, 2015;
Tedersoo, Bahram, and Zobel, 2020). By contrast, the sup-
pression of pathogens by EcM trees may contribute to posi-
tive and neutral plant-soil feedbacks facilitating
monodominant conspecific EcM systems from the tropics to
the boreal forest (Connell and Lowman, 1989;
Corrales et al., 2016; Dickie, Koele, Blum, Gleason, and
McGlone, 2014; Tedersoo, Bahram, and Zobel, 2020).
Recent evidence suggests that the Janzen-Cornell hypothesis
may have limitations in explaining plant diversity. On a
broad scale, monodominant EcM systems may be an excep-
tion rather than the rule and related more to edaphic factors
(Ter Steege et al., 2019). It is also possible that mixed EcM/
AM forests facilitate more diverse plant communities
through a combination of negative, positive, and neutral
plant-soil feedbacks (Bahram et al., 2020), that would create
establishment mosaics for plants with differing regeneration
niches (Mariotte et al., 2018). The next step in studying
mycorrhizal-pathogen dynamics is to go beyond mere rela-
tive and absolute pathogen abundance analyses in these sys-
tems to analyzing actual pathogen attack or damage to
mycorrhizal hosts, perhaps by detecting and quantifying
necrosis (Minina et al., 2013), and relating this to mycor-
rhizal root colonization and community analysis.

One additional particular topic of interest for future
research is the role of viruses in mycorrhizal systems, as
viruses through cell lysis may be responsible for a large frac-
tion of C that cycles in the soil food web (Kuzyakov and
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Mason-Jones, 2018) And they are also key mediators of hor-
izontal gene transfer within and potentially across kingdoms
(Kimura, Jia, Nakayama, and Asakawa, 2008). Phages play
an obvious role in controlling bacterial populations, but
viruses also infect all other organisms in the soil
(Pratama and van Elsas, 2018). A recent study showed that
viruses that infect eukaryotic hosts, mostly fungi, appear to
be more diverse than phages in soils (Starr, Nuccio, Pett-
Ridge, Banfield, and Firestone, 2019). Thus, viruses of
eukaryotes likely play an important role in fungal commu-
nity dynamics, as well as C and nutrient dynamics in EcM
systems with high fungal biomass, compared to AM systems
where phages may play a greater role in bacterial community
dynamics, as well as C and nutrient dynamics, due to higher
bacterial biomass (Kimura et al., 2008; Kuzyakov and
Mason-Jones, 2018). Such questions could be addressed by
combining stable isotope probing with ‘omics’ techniques to
unravel if mycorrhizal systems host distinct viral assemb-
lages with contrasting C and nutrient flows through their
associated viromes, but general studies into viral communi-
ties using amplicon sequencing will also be useful in
advancing this research area.

Mycorrhizal interactions with soil grazers and
predators

The contrasting food web dynamics of AM and EcM sys-
tems is driven by their contrasting dominant energy chan-
nels; where AM systems with more rapid nutrient cycling
have a more bacterial-based energy channel and EcM sys-
tems with slower nutrient cycling have a more fungal-based
energy channel (Phillips et al., 2013; Wardle et al., 2004).
These energy channels may then merge at trophic levels due
to the omnivorous feeding of many soil animals
(Bengtsson, Setald, and Zheng, 1996) or by the activity of
protists who are major feeders on both bacteria and fungi
(Geisen, 2016). Given their different nutrient economies,
EcM and AM systems are expected to have very different
food webs driven by multitrophic interactions, and hence
these mycorrhizal associations influence the whole ecosys-
tem surrounding plants including associated soil animals
and protists.

The high bacterial to fungal biomass ratio of AM systems
as well as less AM protection of roots should promote a
higher density of bacterivores (primarily protists and nemat-
odes) and herbivores (root-feeding invertebrates like nemat-
odes), and their subsequent predators and pathogens
(Antunes and Koyama, 2017; Persson, Bengtsson, Menge,
and Power, 1996). The high fungal biomass of EcM systems
should promote a higher density of fungivores (various
invertebrates and protists), and their subsequent predators
(Antunes and Koyama, 2017; Cromack, Fichter, Moldenke,
Entry, and Ingham, 1988; Fitter and Garbaye, 1994). While
little is known about the effect of mycorrhizal type on

nematode community dynamics, evidence suggests that fun-
gal-feeding nematodes have higher abundances under EcM
trees, compared to bacterial-feeding nematodes under AM
trees (Cesarz et al., 2013). This observation may however be
ascribed to the strong pH effect on bacterial community
structure (Fierer, 2017), rather than mycorrhiza per se. Fur-
thermore, EcM fungi may provide more extensive and nutri-
tious hyphae for fungivores compared to saprotrophic fungi
which dominate AM forests (Anslan, Bahram, and Teder-
s00, 2018; Cromack et al., 1988; Dighton, Zapata, and
Ruess, 2000).

Protists may be key organisms that help to maintain
higher diversity and system functioning in the soil commu-
nity through consumption of bacteria and fungi, control of
their populations, and release of excess N that can be utilised
by other organisms (Clarholm, Bonkowski, and Griffiths,
2007; Coleman, 1994; Gao, Karlsson, Geisen, Kowalchuk,
and Jousset, 2019). This N may be preferentially targeted
for uptake by AM fungi, which may be an important source
of N for AM hosts (Koller, Rodriguez, Robin, Scheu, and
Bonkowski, 2013). We suggest that the importance of pro-
tists in N liberation is less important in EcM systems due to
the tight control of EcM on N cycling, yet protists may be
important in the turnover of EcM biomass, from which N
can be recycled back through the EcM symbiosis, and pro-
tists may also play an important role in EcM fungal commu-
nity dynamics (Gao et al., 2019; Geisen et al., 2016). But
ultimately the activity of protists may be influenced by
mycorrhizal mycelium which connects soil patches of
nutrients and soil moisture (Jentschke, Bonkowski, God-
bold, and Scheu, 1995), which protists are sensitive to and
require for movement and functioning (Geisen, Bandow,
Rombke, and Bonkowski, 2014). Yet, further studies into
protist communities from a mycorrhizal type perspective are
warranted, especially given the respective N cycling effects
associated with EcM and AM systems (Phillips et al., 2013).
As protists have been found to be more sensitive to N addi-
tion compared to other soil microbes in agricultural systems
(Zhao et al., 2019), it remains to be investigated whether
such effects of N availability on protist communities may
occur in forest settings across an EcM to AM dominance
gradient.

The presence of earthworms also plays an important role
in C and nutrient dynamics in tree-mycorrhizal systems, by
reducing soil organic layer thickness, altering bulk density,
and mixing organic matter with mineral soils across soil
horizons (Filser et al., 2016; Frelich et al., 2006;
Van Groenigen et al., 2014). Aside from climate, the pres-
ence and activity of earthworms is driven mostly by the
availability of high-quality litter (De Wandeler et al., 2018;
Szlavecz et al, 2018), and impeded by low pH
(Phillips et al., 2019). Earthworms can be grouped into three
functionally distinct groups according to their burrowing
behaviours. Burrowing anecic and endogeic worms are asso-
ciated with mull formation in forest soils, whereas, in mor
soils usually only epigeic (surface-living earthworms) are
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found (Bouché, 1977; Satchell, 1983). While not directly
explored from a mycorrhizal type perspective, across tem-
perate and boreal forests earthworm biomass, species rich-
ness and the occurrence of epigeic earthworms have been
found to be lowest in forests with a greater evergreen (EcM)
gymnosperm fraction and highest in forests with a greater
deciduous (AM) angiosperm fraction (De Wandeler et al.,
2018), largely consistent with the effects of lower pH on
earthworms. Consequently, at least in certain temperate for-
ests, the dominant feeding source of earthworms may also
vary between EcM- and AM-dominated systems, with epi-
geic and anecic fresh litter feeders dominating in younger
(AM-dominated) systems and endogeic soil organic matter
feeders dominating in older (EcM-dominated) systems
(Szlavecz et al., 2018). The role and distribution of earth-
worms in tropical forests is more complex to interpret from
an EcM and AM system perspective.

Mycorrhizal interactions with N-transforming
microbes

Bacteria are the most abundant and diverse free-living
organisms in soils acting as key N-fixing microbes, nitrifiers,
and denitrifiers (Lladé et al., 2017; Lopez-Mondéjar et al.,
2018). Archaea are also widely distributed in soils and
include members who play potentially important roles in
soil N cycling as ammonia-oxidizing archaea (AOA)
(Bates et al., 2011; Cavicchioli, 2011). The contrasting N
dynamics of EcM and AM systems is largely owing to their
interactions with microbes involved in N fixation and subse-
quent transformations, as mycorrhizal fungi lack the ability
to fix atmospheric N or carry out nitrification.

Both EcM and AM fungi interact with N-fixing bacteria,
which can provide a substantial amount of N input to these
systems (Pastor and Binkley, 1998; Son, 2001). N-fixing tree
symbioses occur in both EcM and AM systems but are most
abundant in tropical AM systems (Steidinger et al., 2019).
Yet rhizobial N-fixing trees in tropical forests tend to be
insensitive to soil N availability, and more facultative in their
relationship with their N-fixing symbionts (Vitousek et al.,
2002), while actinorhizal temperate and boreal N-fixing trees
are more sensitive to soil N availability with a more obliga-
tory relationship with their N-fixing symbionts, which are
more crucial for plant N acquisition (Menge, Lichstein, and
Angeles—PéreZ, 2014; Vitousek, Menge, Reed, and Cleveland,
2013). The success of actinorhizal N-fixing trees, that grow
quickly at early successional stages and are later outcompeted
by non-fixing trees (Liao and Menge, 2016), is likely related
to the relative proportion of EcM to AM trees. AM systems
may have greater turnover of canopy trees and gap creation
with heterogeneity in successional stages suitable for the
establishment of shade intolerant actinorhizal N-fixing trees,
compared to monodominant EcM systems (Tedersoo, Bah-
ram, and Zobel, 2020). AM trees also likely depend more on

symbiotic N fixation for their nutrient economies, due to a
looser control on N dynamics and reliance on other organisms
for N liberation, including a potentially higher reliance on
atmospherically fixed N especially in N-limited ecosystems
(Averill et al., 2019; Bagyaraj, 1990; Barea, Azcon, and
Azcon-Aguilar, 1992). However, it should be noted that
boreal forests dominated by EcM gymnosperms have a signif-
icant moss component, where moss-cyanobacterial associa-
tions may be responsible for a significant input of N into
these systems, which can be cycled through the EcM symbio-
sis, however this N is potentially only released into the soil
slowly or after disturbances (Carleton and Read, 1991;
Rousk, Jones, and DeLuca, 2013).

The contribution of free-living N-fixing bacteria in the
soil to overall N fixation tends to be smaller compared to
symbiotic N fixation and is less explored across biomes and
across mycorrhizal types, however, there seems to be little
difference between gymnosperm and angiosperm forests in
this respect (Reed, Cleveland, and Townsend, 2011;
Son, 2001). This N can be a significant input into forests
with few symbiotic N-fixing bacteria such as boreal and
temperate forests, and in evergreen compared to deciduous
forests (Reed et al., 2011). AM systems stand to benefit
more from the activity of free-living N-fixing bacteria in
soils. Yet, the more extensive EcM mycelium is associated
with greater moisture and soluble C sources compared to the
bulk soil, and may provide good habitat for free-living bac-
teria who require high-quality soluble C in order to under-
take N fixation, although at the same time decreased pH in
the ectomycorrhizosphere may inhibit N fixation
(Smercina, Evans, Friesen, and Tiemann, 2019). Both EcM
and AM trees host non-nodulating endophytic N-fixing bac-
teria, which may not only play important roles in N acquisi-
tion but also in the establishment and maintenance of the
mycorrhizal symbiosis (Aghai et al., 2019; Oses, Frank,
Valenzuela, and Rodriguez, 2018).

‘While N fixation is important for N dynamics, subsequent
nitrification is dependent on the activity of both ammonia-
oxidizing archaeca (AOA) and ammonia-oxidizing bacteria
(AOB), and then nitrite-oxidizing bacteria (NOB) to com-
plete the nitrification process (Stempfhuber et al., 2017).
AOA are thought to dominate in nutrient-poor and acidic
soils and are outcompeted by AOB with increasing N avail-
ability (Bates et al., 2011; Di et al., 2009; Xiang, He, He,
Myrold, and Chu, 2017). Thus, it is expected that AOB
would dominate ammonia-oxidation in AM systems, com-
pared to the dominance of AOA in EcM systems. Overall,
nitrification tends to be lower in EcM systems compared to
AM systems (Lin et al., 2017), due to enhanced competition
by EcM fungi for N with nitrifying prokaryotes
(Tatsumi, Taniguchi, Du, Yamanaka, and Tateno, 2019),
and a potential mismatch between ammonia-oxidizing
microbes and nitrite-oxidizing microbes in EcM systems,
particularly under EcM gymnosperm trees, who may even
inhibit the activity of AOA despite often being associated
with low pH conditions (Isobe et al, 2012;
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Stempfhuber et al., 2017; Stopnisek et al., 2010). It is tempt-
ing to speculate that in AM systems more so than in EcM
systems, AOB and NOB may form a symbiosis enhancing
the nitrification process (Daims, Liicker, and Wagner,
2016), facilitated by higher N availability and pH values
(Averill et al., 2019; Lin et al., 2017; Tedersoo and Bah-
ram, 2019). While general patterns of soil N cycling and the
contribution of different organisms remain unresolved
across different forest biomes, mycorrhizal and tree types,
the conservative N economy of EcM systems and the open
N economy of AM systems are seen as the defining contrast-
ing functional and ecological trait between the two, as
shown mainly in temperate forests (Averill et al., 2019;
Lin et al., 2017; Phillips et al., 2013), and interactions with
N-transforming microbes likely play a large role in these dif-
ferences.

EcM-AM interactions

Another important and often overlooked interaction is
between EcM and AM fungi, because they often coexist in
various ecosystems and even on the same tree individual
(Kubisch, Hertel, and Leuschner, 2016; Teste, Jones, and

Ectomycorrhizal
(Closed/organic nutrient

economy)
+

Dickie, 2019; Toju, Sato, and Tanabe, 2014). AM systems
may facilitate the establishment and survival of EcM trees,
while EcM systems may impede the establishment and sur-
vival of AM trees (Kadowaki et al., 2018;
Tedersoo, Bahram, and Zobel, 2020). Furthermore, the
mycelium of AM and EcM fungi may co-occur in the same
niche or occur via spatial separation in the soil profile
(Moyersoen, Fitter, and Alexander, 1998; Teste, Jones, and
Dickie, 2019). In addition, increasing evidence shows that
when growing together on the same root system, AM and
EcM may have a synergistic effect on plant-soil functioning,
which seems to be driven by extreme environmental fluctua-
tions such as soil moisture, nutrient availability, and temper-
ature, where EcM may dominate colonization under mesic
conditions and AM under extreme soil moisture conditions,
and high temperatures and nutrient availability
(Teste, Jones, and Dickie, 2019). Yet little is known about
the actual physical and chemical interactions between the
mycelia of EcM and AM fungi when in the vicinity of one
another, with obvious difficulties in exploring this. Greater
antagonisms may exist within guilds between functionally
equivalent taxa as opposed to between EcM and AM fungi,
due to competition for colonization sites, ultimately regu-
lated by the host’s attempt to balance C and nutrient budgets
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Fig. 1. Conceptual diagram exploring the relative trade-offs between strengthening and weakening effects on the closed and open nutrient
economies of EcM and AM systems by different tree functional trait and forest biome combinations. The position and direction of arrows of
the different tree/biome combinations is relative to their suggested balance between strengthening or neutralizing/weakening effects on EcM-
or AM- associated nutrient dynamics and where these combinations sit on the plant economic trait spectrum.



34 T. Netherway et al. / Basic and Applied Ecology 50 (2021) 25—42

(Bogar et al., 2019; Hortal et al, 2017; Smith and
Smith, 2012).

Mycorrhizal fungi select for distinct soil
communities

Overall, the EcM symbiosis represents a trade-off
between conservative nutrient acquisition and flexibility,
with EcM trees tending towards collaboration in nutrient
acquisition, while the AM symbiosis represents a flexible
and rapid nutrient acquisition over security trade-off, with
AM trees tending towards ‘do it yourself’ nutrient uptake
but also engaging in collaboration (Averill et al., 2019:
Bergmann et al., 2020). These trade-offs may be further
exacerbated due to different tree types and also different cli-
matic biomes, where the combination of EcM with gymno-
sperms in boreal forests represents the extreme of slow plant
economic traits and the combination of AM with angio-
sperms in tropical forests represents the extreme of fast plant
economic traits (Fig. 1) (Augusto et al., 2015; Bond, 1989;
Phillips et al., 2013; Vitousek, 1982). Within biomes and
tree types, the greatest difference is likely between evergreen
EcM trees and deciduous AM trees (Fig. 1) (Angst et al.,
2019; Augusto et al., 2015; Dawud et al, 2017;

Ectomycorrhizal
dominated system

Arbuscular mycorrhizal
dominated system

Prevalence

S
AN

Mutualistic interactions

Competitive interactions

Vesterdal, Clarke, Sigurdsson, and Gundersen, 2013;
Zhang et al., 2018).

Using this framework, we hypothesize that EcM systems
exert a selective pressure for a less functionally redundant
soil community and attempt to maintain low pH and high C/
N conditions to tightly control N cycling and maintain the
dominance of their hosts (Cheeke et al., 2017; Tedersoo and
Bahram, 2019; Tedersoo, Bahram, and Zobel, 2020). That
is, EcM fungi dominate the soil environment enhanced by
functional variation between EcM types (Chen, Koide, and
Eissenstat, 2018; Zak et al., 2019), while saprotrophs and
pathogens may be supressed and less functionally diverse.
In addition, N-transforming microbes as well as predators
and grazers may also be functionally less diverse (Fig. 2)
(Averill and Hawkes, 2016; Chen et al., 2019; De Wandeler
et al., 2018; Moore et al., 2015). Thus, EcM systems may
experience less temporal soil community turnover, have
reduced functional redundancy within the soil community,
and place a direct selective pressure on beneficial organisms
(Fig. 2) (Deveau et al., 2016; Frey—Klett et al., 2005), repre-
senting a more tight and closed nutrient acquisition strategy
within the holobiont.

By contrast, AM systems with more homogenous func-
tional variation within AM fungi (Chagnon, Bradley,
Maherali, and Klironomos, 2013), nevertheless, may facili-
tate greater multifunctionality within the soil community in

B Nutrient transformers
Predators

M Grazers
Bacterial biomass and viruses

B Ectomycorrhizal fungi

B Arbuscular mycorrhizal fungi
Saprotrophs

M Pathogens

B Fungal biomass and viruses

Fig. 2. Conceptual diagram exploring the relative prevalence of different soil organism groups as a system goes from EcM host dominance to
AM host dominance, and in accordance from more mutualistic interactions to more competitive interactions. In EcM systems compared to
AM systems, fungal biomass and viruses are greater than bacterial biomass and associated viruses, EcM fungi are the dominant soil guild,
saprotrophs, nutrient transformers, predators, pathogens, and AM fungi are all less prevalent and potentially suppressed, while those that are
present are likely to have more neutral or beneficial interactions with EcM trees and fungi, compared to more competitive and antagonistic

interactions with AM trees and fungi.
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BOX 2. EcM and AM systems under environmental change
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EcM and AM systems may respond differently to environmental change, such as accelerated climate change, due to their unique C and nutrient
dynamics driven by interactions between a greater ecosystem with trees, their mycorrhizal symbionts, and the entire soil community (Cheeke et
al., 2017). Warming, changing precipitation patterns, and alterations to N availability stand to benefit AM systems more than EcM systems,
due to a more flexible nutrient acquisition strategy and a lower C cost for the host (Soudzilovskaia et al., 2015; Jo et al., 2019; Pugnaire et al.,
2019; Steidinger et al., 2019), and as we propose here due to greater functional redundancy. Dual EcM-AM frees may also become increasingly
more common due to their ability to colonize new areas and function under a wider variety of fluctuating environmental conditions (Gerz et al.,
2018; Teste et al., 2019; Moyano et al., 2020). Recent research has shown EcM systems to experience greater negative alterations to their func-
tioning compared to AM systems under envir tal ch includi h dd tion of SOM (Kumar et al., 2020), decreased
EcM tree performance (Fernandez et al., 2017; Wheeler et al 2017; Avenll et al., 2018; Jo et al., 2019; DeForest and Snell, 2020), and
decreased prevalence and colonization by EcM fungi (Kilpeldinen et al., 2017; Boeraeve et al., 2019). Within EcM fungi as a guild there may be
a shift in dominance to short contact types that are less C-demanding and form less exvensive external mycelia, and thereby reducing the overall
presence of EcM fungi in the soil (Fernandet et al., 2017; Leén—Sanchez et al., 2018), k at reduced fi ional redundancy. These results
point towards AM p lly benefiting more from environmental change in many cases compared to EcM systems which may be
inhibited, in line with their opposing open and closed nutrient acquisition strategies, differing C costs for their hosts, and proposed contrasting

functional properties of their soil communities.

general (Fig. 2) (Battini, Cristani, Giovannetti, and Agno-
lucci, 2016; Rillig, 2004). The associated soil communities
will experience a greater range of pH and C/N conditions,
and a looser N cycle (Averill et al., 2019; Phillips et al.,
2013), and may also be more functionally redundant
(Banerjee et al., 2016), with less capacity for organisms to
reach monodominance both below and above ground (Ril-
lig, 2004; Tedersoo, Bahram, and Zobel, 2020;
Yang, Wagg, Veresoglou, Hempel, and Rillig, 2018). They
are thus representing an open and loose nutrient acquisition
strategy and a holobiont strategy, which involves highly pre-
cise nutrient foraging by AM fungi to supplement more pas-
sive plant nutrient uptake in a highly competitive soil
environment rather than an overall control on nutrient
cycling (Chen et al., 2018; Phillips et al., 2013). This has
obvious implications for C and nutrient dynamics under
global environmental change.

Future directions

‘We have put forward that AM and EcM systems may vary
greatly in their effects on soil communities and ecosystem
functioning. Hence there is a strong need to study AM and
EcM systems across biomes, tree types, and edaphic gradients
in order to get a more complete picture of these systems and
their functioning. Specifically, further research is needed to
untangle mycorrhizal type effects from environmental filter-
ing, and whether in fact different mycorrhizal systems have
the capacity to reinforce environmental controls on nutrient
dynamics by actively manipulating the biotic and abiotic envi-
ronment in their zone of influence. One approach to do so is to
study these contrasting mycorrhizal types together in con-
trolled environmental settings such as mesocosms, greenhouse
experiments, or at least under the same edaphic conditions
such as in common garden experiments. In addition, there

continues to be a need for field-based studies, especially in
mixed or neighboring EcM and AM systems in underrepre-
sented regions such as tropical forests, temperate forests of the
southern hemisphere, tree line ecotones, and boreal forests
where some sparse occurrences of AM-forming trees occur.
We further call upon researchers studying any processes and
organism groups (both above and belowground) in forests to
consider the presence and relative dominance of AM and
EcM trees to help further understand these systems. The ease
of this is facilitated by a recent plant mycorrhizal status data-
base (Soudzilovskaia et al., 2020). We also recommend
researchers studying soil processes in EcM and AM systems
to study multiple soil organism groups simultaneously, some-
thing that will be facilitated by constantly improving molecu-
lar  methods and cross-disciplinary  collaborations
(Baldrian, 2019). In line with assigning trees with a mycor-
rhizal status, there is also a need to continue to consider the
presence of mycorrhizal associations by assessing coloniza-
tion and biomass measurements or proxies of these
(Soudzilovskaia et al., 2015), as well as considering the contri-
bution of and further exploring the ecology of different func-
tional types within mycorthizal guilds. Finally, there
continues to be the need to incorporate EcM and AM system
dynamics into models predicting terrestrial processes and
environmental change.
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