
Escamez et al. 
Biotechnology for Biofuels and Bioproducts           (2023) 16:65  
https://doi.org/10.1186/s13068-023-02315-1

RESEARCH Open Access

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/. The Creative Commons Public Domain Dedication waiver (http:// creat iveco 
mmons. org/ publi cdoma in/ zero/1. 0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Biotechnology for Biofuels
and Bioproducts

Genetic markers and tree properties 
predicting wood biorefining potential in aspen 
(Populus tremula) bioenergy feedstock
Sacha Escamez1†, Kathryn M. Robinson1†, Mikko Luomaranta1, Madhavi Latha Gandla2, Niklas Mähler1, 
Zakiya Yassin3, Thomas Grahn3, Gerhard Scheepers3, Lars‑Göran Stener4, Stefan Jansson1, Leif J. Jönsson2, 
Nathaniel R. Street1 and Hannele Tuominen1,5* 

Abstract 

Background Wood represents the majority of the biomass on land and constitutes a renewable source of biofuels 
and other bioproducts. However, wood is recalcitrant to bioconversion, raising a need for feedstock improvement in 
production of, for instance, biofuels. We investigated the properties of wood that affect bioconversion, as well as the 
underlying genetics, to help identify superior tree feedstocks for biorefining.

Results We recorded 65 wood‑related and growth traits in a population of 113 natural aspen genotypes from Swe‑
den (https:// doi. org/ 10. 5061/ dryad. gtht7 6hrd). These traits included three growth and field performance traits, 20 
traits for wood chemical composition, 17 traits for wood anatomy and structure, and 25 wood saccharification traits 
as indicators of bioconversion potential. Glucose release after saccharification with acidic pretreatment correlated 
positively with tree stem height and diameter and the carbohydrate content of the wood, and negatively with the 
content of lignin and the hemicellulose sugar units. Most of these traits displayed extensive natural variation within 
the aspen population and high broad‑sense heritability, supporting their potential in genetic improvement of feed‑
stocks towards improved bioconversion. Finally, a genome‑wide association study (GWAS) revealed 13 genetic loci for 
saccharification yield (on a whole‑tree‑biomass basis), with six of them intersecting with associations for either height 
or stem diameter of the trees.

Conclusions The simple growth traits of stem height and diameter were identified as good predictors of wood sac‑
charification yield in aspen trees. GWAS elucidated the underlying genetics, revealing putative genetic markers for 
bioconversion of bioenergy tree feedstocks.
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Introduction
Lignocellulosic woody biomass represents the majority of 
biomass on land [2]. This biomass contains mostly three 
types of natural polymers: cellulose, hemicelluloses and 
lignin, each of which can be converted into precursors 
for biofuels and other bioproducts [41]. However, the 
processes for deconstructing these polymers into usable 
units remain costly due to structural and chemical hin-
drance, a problem known as biomass recalcitrance [32]. 
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Overcoming biomass recalcitrance requires the identifi-
cation of less recalcitrant feedstocks as well as knowledge 
on the biological basis of lignocellulose recalcitrance 
[33, 59, 62, 65, 68]. Fast growing trees from the Populus 
genus (poplars, aspens and hybrids) represent promising 
feedstocks [35] on account of their lignocellulose compo-
sition [50], advanced domestication and efficient cultiva-
tion techniques [7]. Furthermore, genomes of numerous 
Populus species have been sequenced [12, 24, 28, 30, 44, 
49, 57, 61, 67], which enables investigation of the genetics 
underlying lignocellulose properties for a better under-
standing of the biochemistry behind and breeding for less 
recalcitrance.

Our knowledge of the genetic basis for plant traits 
has greatly advanced owing to genome-wide associa-
tion studies (GWAS), which relate variation in traits to 
variation in the sequence of the genomes of different 
individuals, down to single nucleotide resolution. These 
variations of nucleotide composition at single loci, also 
known as single nucleotide polymorphisms (SNPs), can 
reveal genetic markers for quantitative variation in traits, 
or even reveal involvement of genes in shaping a quanti-
tative trait [39].

In a striking example, GWAS of the timing of bud set 
identified a single locus explaining the majority of local 
adaptation along a latitudinal gradient in a Swedish pop-
ulation of European aspen Populus tremula [61]. How-
ever, individual loci found by GWAS usually explain only 
a fraction of the total trait variance, and often a large por-
tion of the genetically heritable variance remains unde-
termined by significant associations [8, 39]. Nevertheless, 
finding SNPs associated with only a fraction of the vari-
ation in traits of interest could still lead to progress 
through marker-assisted selection (MAS) or genomics-
assisted selection (GAS) for beneficial wood properties 
[8].

In Populus trichocarpa, GWAS revealed SNPs and 
genes significantly associated with four wood chemi-
cal composition traits [20]. Furthermore, associations 
were discovered between SNPs and 16 wood chemical 
composition and wood structure traits in P. trichocarpa 
[43]. Wood chemical composition traits were also linked 
to SNPs by GWAS in P. nigra [21] and P. deltoides [11]. 
Xie et  al. [66] re-evaluated previous associations in P. 
trichocarpa [36, 43] by focusing on a chromosome known 
to harbour quantitative trait locus (QTL) for lignin 
composition, resulting in the identification and char-
acterization of a new transcriptional regulator of lignin 
biosynthesis. Using both single and multi-trait GWAS, 7 
SNPs were identified in association to wood anatomical 
properties of a P. trichocarpa natural population [5].

Advances in genome (re)sequencing and statisti-
cal methods for finding associations in GWAS have 

facilitated these recent findings [8, 28]. Yet, the emerging 
picture of the genetics underlying highly quantitative or 
complex traits, such as wood properties and bioconver-
sion potential, remains limited, in part due to our limited 
precision in the quantifications of these traits for entire 
tree populations [8, 58]. For example, lignin is composed 
of different types of monomers, and measurement of only 
the total amount of lignin in wood obscures the influence 
and the regulation of the abundance of the different types 
of lignin monomers [58]. Increasing the number of ana-
lysed traits and the depth of the analyses is likely needed 
for GWAS analyses of especially the complex traits [8, 25, 
58]. Extensive phenotyping also allows better characteri-
zation of the relationships between traits, for example to 
identify which wood chemical composition and structure 
traits determine wood bioconversion potential.

Here, we present a large-scale phenotyping effort, 
monitoring 65 traits related to wood properties, tree 
growth, and wood saccharification in a common garden 
trial comprising a collection of natural aspen (Populus 
tremula) genotypes (the so-called SwAsp collection) col-
lected across Sweden [29]. Through genetic correlation 
and multivariate analyses, we identified wood chemical 
composition and structural traits correlating with recal-
citrance as well as whole stem bioconversion potential. 
Through GWAS, we identified several novel genetic loci 
linked to both tree growth and whole stem bioconversion 
potential.

Results
Natural variation in 65 growth, wood, and biorefinery traits 
in aspen
Natural variation in wood and biorefinery traits was 
investigated in 113 clonally replicated aspen trees of the 
SwAsp collection. After ten years of growth in a common 
garden in southern Sweden, we measured stem height 
and diameter, wood chemical composition (20 traits), 
wood structural and anatomical properties (17 traits), as 
well as recovery of monosaccharides from wood sacchar-
ification with or without acidic pretreatment (25 traits), 
amounting to 64 traits (Fig. 1a, Additional file 1). Finally, 
we estimated total wood glucose yield (TWG; Additional 
file 1). While glucose release provides information about 
biomass recalcitrance to saccharification, TWG provides 
a proxy for overall tree performance.

All traits showed phenotypic variation among the gen-
otypes (Fig. 1a, Additional file 1). Around 30% of the total 
variation was explained by the two first components in a 
principle component analysis (Fig. 1b), with these largely 
being influenced by variation in the saccharification traits 
(Fig. 1c). Indeed, the saccharification traits, such as glu-
cose release after enzymatic hydrolysis with pretreatment 
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Fig. 1 The SwAsp natural variants display a wide range of phenotypic variation. a 65 traits related to tree growth, wood chemical composition, 
wood structure and anatomy, and saccharification traits of woody biomass in 10‑year‑old aspen trees from 113 genotypes. Each point represents 
the median scaled and centred measurement of a trait for one genotype (z‑transformation across the tree population for each trait). Coloured labels 
around the plot indicate categories of traits (chemical composition; structure and anatomy; saccharification and growth). Abbreviations are defined 
in Additional file 1. b Principal component analysis (PCA) scatter plot showing that the SwAsp genotypes differ from each other based on their 
wood properties and saccharification. The broad‑sense heritability for PC1 was 0.515 (95% confidence interval 0.404 to 0.623) and for PC2 0.189 
(95% confidence interval 0.08 to 0.314). Colours indicate the 12 different locations of origin for the different genotypes in Sweden. c Coefficients 
scatter plot of traits. Each point corresponds to a trait; while the colours indicate which trait category they belong to (as in a)
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and total wood glucose yield, displayed almost 50% 
increase from the lowest to the highest yielding genotype 
(Fig. 2, Additional file 1). Lignin traits, such as total lignin 
content and the ratio between the syringyl (S) and guaia-
cyl (G) type lignin (SG), that are central in determining 
feedstock recalcitrance, also varied substantially among 
the different genotypes (Fig.  2, Additional file  1). Tree 
growth varied most of all traits. Two genotypes (47 and 
76) stood out as having remarkably high stem height and 
diameter (Additional file 1). These genotypes had also the 
highest TWG.

We estimated the broad-sense heritability  (H2) of the 
different traits (Additional file  2). Some traits, such as 
those linked to wood xylose units and xylose released 
by saccharification, showed nearly no heritability, while 
traits related to tree growth and wood anatomy showed 
moderate to high heritability (H2 > 0.5). Wood chemi-
cal composition traits showed varying heritability; gen-
erally lower for wood monosaccharide units and higher 
for lignin composition traits, especially the S-type and 
G-type lignin content (Additional file 2).

Next, genetic correlations were estimated among the 
different traits. The tree growth traits (height and diam-
eter) correlated positively with wood density, xylem cell 
wall thickness, xylem cell diameters and wood carbohy-
drate content (Fig. 3, Additional file 3). The correlations 
for the saccharification traits varied somewhat depend-
ing on the sugar analysed, but the release of sugars hav-
ing the highest abundance in wood, glucose (GLUEHPT) 
and xylose (XYLEHPT), correlated positively with the 
growth traits of the trees and negatively with lignin con-
tent. Another striking result was that the glucose release 
GLUEHPT correlated negatively with the wood content 
of all hemicellulose sugar units (Ara, Fuc, Gal, GalA, 
GlcA, Man, 4-O-meGlcA, Rha, Xyl) (Fig.  3, Additional 
file 3). A slight positive correlation was present between 
GLUEHPT and the S-to-G lignin ratio (SG).

In a phenological study of the SwAsp population, the 
timing of bud set was shown to correlate with the geo-
graphical origin of the genotypes [61]. On the other 
hand, studies of secondary metabolites or leaf shape in 
that same population showed no correlation between 
these traits and the geographical origin of the genotypes 
[26, 37]. These previous observations raise the ques-
tion of whether wood and biorefinery traits display a 
geographical cline. The growth traits, stem height and 
diameter, showed an expected, clear relationship to the 
geographical origin of the genotypes (Fig.  2, Additional 
file  1). Even though the traits related to wood chemical 
composition, wood anatomy and structure, and sacchari-
fication did not show clear geographic clines on a popula-
tion level (Fig. 2), correlation analysis on the clonal basis 
showed significant effect of the geographic origin for 

several traits. For instance, relative carbohydrate content, 
cell wall thickness, vessel diameter and wood density cor-
related negatively with the latitude of the clonal origin, 
while relative lignin content, content of hemicellulose 
sugar units and S/G lignin ratio correlated positively with 
the latitude (Additional file 1). Since the heritabilities for 
these traits were high (Additional file  2), these results 
suggest that aspen genotypes from northern Sweden had, 
on average, more total lignin, S-type lignin and hemicel-
luloses, and less carbohydrates, lower vessel diameter 
and wood density than genotypes from southern Sweden. 
Decreased wood density towards the north is surpris-
ing since in several tree species wood density normally 
increases with decreased volume growth [4].

Identification of traits that influence wood recalcitrance
To better characterize the traits influencing wood recal-
citrance to bioprocessing, we performed multivariate 
analyses for the glucose release from saccharification, as 
well as for the TWG. We employed orthogonal projec-
tions to latent structures (OPLS; [55], which considers all 
traits simultaneously, to get an overview of the relation-
ships between wood properties and glucose release or 
TWG (Fig. 4). OPLS models were created that explained 
high proportion of the variation for both the glucose 
release after enzymatic hydrolysis with pretreatment 
(GLUEHPT) and for TWG (R2 = 0.56 and 0.52, respec-
tively), but the predictivity of the model was not strong 
(Q2 = 0.17 and 0.29, respectively). The OPLS models 
supported negative contribution of wood hemicellulose 
sugar units and lignin on both GLUEHPT and TWG, 
while several wood anatomy traits, such as diameter of 
the fibres and the vessels, the ratio of fibres to vessels 
(FibPerVess) and coarseness (weight of fibres over a cer-
tain length of wood), contributed positively to the models 
of both traits (Fig. 4).

Genetic polymorphisms are significantly associated 
with the total wood glucose yield
To further decipher the genetics underlying wood prop-
erties and amenability to improvements in bioprocessing, 
we performed a genome-wide association study (GWAS). 
In this analysis, latitude of origin of each SwAsp genotype 
was included as a covariate due to the presence of the 
latitudinal clines (Additional file 1). An FDR cutoff of 0.1 
was selected to identify putative associations [52].

Single nucleotide polymorphisms (SNPs) with FDR 
value less than 0.1 (q-value < 0.1) were identified in 17 
loci for five traits (Table 1, Additional file 4). Most of the 
SNPs were located in intergenic regions or upstream/
downstream of gene coding regions.

No significant associations were observed for glu-
cose release rates, but 11 associations for TWG with 
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Fig. 2 Wood and biorefining traits and geographical origin of the SwAsp trees. The average values are shown for key representative traits for 
growth, wood chemical composition, wood anatomy and structure, and traits related to saccharification for the 113 different genotypes of the 
SwAsp collection. The values are grouped according to the geographic origin of the genotypes in 12 locations across Sweden. The locations for the 
different geographic origins (Pop1–Pop12) are illustrated on the map in the upper left corner
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Fig. 3 Pairwise genetic correlations between 58 traits in SwAsp trees. The vertical sidebar represents the four categories of traits: wood chemical 
composition (red), wood structure and anatomy (yellow), growth (green) and wood saccharification (black). Six analysed SwAsp traits were omitted 
from the correlation analyses due to very low heritabilities. Trait abbreviations are defined in Additional file 1
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q-value < 0.1 were identified on 11 chromosomes, with 
each individual SNP explaining 22 to 26% of phenotypic 
variation (Table  1, Additional file  4). Six of the loci for 
TWG associations intercepted with loci containing SNPs 
for either stem diameter at breast height (DBH) or stem 
height (Height) (Table 1, Additional file 4). These six loci 
were all intergenic except for chr9_2882991_T_C which 
was located 362  bp upstream from Potra2n9c19049 
(Oxa2A membrane insertase) and 757  bp down-
stream from Potra2n9c19048 (hypothetical protein) 
(Table  1, Additional file  4). The chr9_2882991_T_C 
SNP also showed statistically significant differences in 

the phenotypes between the SwAsp genotype groups 
with homozygous and heterozygous alleles for not 
only TWG but also DBH and height (Fig.  5b–d). While 
the proportion of phenotypic variation explained by 
chr9_2882991_T_C was 0.26, the minor allele frequency 
was low (0.05) such that there was only one SwAsp 
genotype with a homozygous minor allele for this SNP 
(Fig. 5d, Additional file 4). In addition to the six loci inter-
cepting with the DBH and/or height, GWAS revealed a 
locus with 12 TWG-SNP associations with q-value < 0.1 
(Fig. 5a) in an intergenic region in the chromosome 1, in 
a region spanning 3327 base-pairs and including 38 SNPs 
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Fig. 4 Multivariate analysis of the potential relationships between wood properties and glucose release or TWG. a, b Orthogonal Projection to 
Latent Structure (OPLS) scatter plot showing separation in glucose release after pretreatment (a) and total wood glucose yield (b). The points on 
the scatter plot correspond to SwAsp genotypes, while their colour indicates the median for the trait in each genotype. The predictive component 
separates the lines along the X‑axis of the scatter plot, while separation along the Y‑axis is not predictive. c, d OPLS loadings plot for glucose release 
after pretreatment (c) and total wood glucose yield (d) in relation to wood chemical composition and wood anatomy traits. The bars indicate 
the coefficient (“weight”) of each trait in the OPLS model. The traits with positive values correlate positively and the traits with negative values 
negatively with glucose release after pretreatment (c) and total wood glucose yield (d). Predictive squared correlation coefficient  (Q2) scores over 
0.5 indicate significant predictivity of a model
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with R2 values > 0.2, considered to be in linkage disequi-
librium with the 12 significant SNPs (Additional file  4). 
The most significant SNP by P-value and q-value in this 
locus was chr1_28056992_G_A (with a major allele fre-
quency of 0.132 and PVE of 0.26). The SwAsp genotype 
groups with homozygous and heterozygous alleles for 
the chr1_28056992_G_A significantly partitioned the 
variance of TWG as well as DBH and height (Fig. 5e–g). 
Out of the remaining putative associations for TWG, 
the only SNP that resided in the coding region of a gene, 
chr10_2830421_T_G, corresponded to Potra2n10c20558 

(E1 subunit of 2-oxoglutarate dehydrogenase). Although 
this result is based on only two SwAsp genotypes (47 and 
76) with the homozygous recessive allele (Fig.  5j, Addi-
tional file  4), it also showed statistically significant dif-
ferences in the height and DBH phenotypes among the 
allele groups (Fig. 5h and i).

SNPs with q-value < 0.1 were found for the fraction 
of the wood made of fibres (FibFrac) and vessels (Vess-
Frac) downstream of Potra2n12c24540 (DnaJ homolog 
subfamily member) and upstream of Potra2n12c24542 
(Major facilitator superfamily protein member) 

Table 1 Genes and genomic features associated with SNPs at q‑value < 0.1 in the SwAsp genome‑wide association study of 65 traits 
monitored in the Swedish aspen collection

1 The full name of the P. tremula gene models includes “Potra2n” in front of the “gene”
2 The feature upstream and downstream indicates location of the SNPs within 2 kbp from the coding region, while the feature intergenic indicates location of the SNPs 
further than 2 kbp from the coding region

Gene1 Feature2 Description(s) The number of SNPs associated with each trait

DBH Wall thickness FibFrac Height VessFrac TWG 

7c16159; 7c16161 Intergenic 1 1

15c29048; 15c29049 Intergenic 1 1 1

9c19049; 9c19048 Upstream; downstream Oxa2A membrane insertase; hypo‑
thetical protein

1 1

3c8002 Downstream MATE efflux family protein 1

1c2354; 1c2355 Intergenic 18 12

4c9179; 4c9180 Intergenic 2 2

5c11372; 5c11373 Intergenic 1 1

10c20558 Exonic 2‑Oxoglutarate dehydrogenase, E1 1

10c21196; 10c21197 Upstream; downstream Geranyl diphosphate synthase 1; 
hypothetical protein

1

16c29591 UTR3 L‑Galactono‑1,4‑lactone dehydro‑
genase

1

17c31917; 17c31919 Intergenic 1

18c33227; 18c33228 Intergenic 1

10c22263; 10c22264 Intergenic 1

14c26895 Intronic AGAMOUS‑like 20 1

3c6553; 3c6554 Intergenic 6

12c24540;12c24542 upstream; UTR3‑downstream DnaJ homolog subfamily B mem‑
ber; Major facilitator superfamily 
protein

5 5

17c31483 Downstream NA 1

(See figure on next page.)
Fig. 5 Genome‑wide association analysis of total wood glucose yield (TWG). a Manhattan plot for total wood glucose yield (TWG). Each point 
indicates location of a SNP along the 19 chromosomes of Populus tremula. The blue horizontal line indicates the q‑value level of 0.1. The least 
significant SNPs (P‑values > 0.05) have been omitted for plot clarity. b–j Tree height, diameter at breast height (DBH) and TWG in relation to their 
SNP genotype for the three most significant associations for TWG. Boxplots show phenotypic values of height, diameter and TWG amongst allele 
classes for the SNPs with the smallest p‑values in the association tests; chr1_28056992_G_A had the highest statistical significance among the 
SNPs in the chromosome 1 GWAS hotspot for TWG (see also Additional file 4). The jittered points around each box represent median phenotypic 
values of the SwAsp clonal replicates. Analysis of variance F‑ratios and P‑values are reported, where the dependent variable is the phenotype and 
the independent variable is the SNP genotype class The significances are indicated at. < 0.1, * < 0.05, and ** < 0.01. The three traits are shown for the 
SNPs chr9_2882991_T_C (b–d), chr1_28056992_G_A (e–g) and chr10_2830421_T_G (h–j)
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Fig. 5 (See legend on previous page.)
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(Table  1, Additional file  4). Furthermore, six SNPs with 
q-value < 0.1 were identified for cell wall thickness of the 
wood cells (wall thickness) in an intergenic region.

Discussion
Wood biomass from fast growing trees represents a 
promising source of biofuels and other bioproducts in 
the forthcoming transition away from fossil fuels [41, 47]. 
The high cost of deconstructing woody biomass, how-
ever, hinders wood biorefining [32]. To overcome this 
biomass recalcitrance, it is necessary to understand how 
wood properties relate to wood recalcitrance. We report 
here the phenotyping of a population of aspen geno-
types for 65 traits related to tree growth, wood anatomy 
and structure, wood cell wall chemical composition, and 
wood bioprocessing yield.

Using genetic correlations and multivariate modelling, 
we identified a set of wood traits that correlate with the 
glucose yield from saccharification. Lignin content and 
especially G-lignin content had a negative influence on 
the glucose yield after enzymatic hydrolysis with pre-
treatment, which is in line with a positive effect of S/G 
ratio in our earlier analysis of 40 transgenic Populus 
lines [10], as well as in the analyses of P. trichocarpa [53, 
68] and Salix viminalis [40] natural variants. A nega-
tive effect of S/G ratio was reported in a small selection 
of natural P. trichocarpa variants, and it was proposed 
that S/G ratio might instead influence xylose release 
after enzymatic hydrolysis [33]. We could not confirm 
this as no correlation was found between xylose release 
after enzymatic hydrolysis and S/G ratio in our dataset 
(Fig. 3). In addition to lignin, a consistent negative influ-
ence on sugar (glucose) yields after saccharification with 
pretreatment was imposed by the hemicellulose sugars 
(Figs. 3 and 4). This is most probably related to the fact 
that the pretreatment was adjusted to a rather mild level 
of severity, resulting in part of the hemicelluloses remain-
ing intact in the feedstock: the wood xylose unit content 
was 0.2–0.3 g/g DW depending on the clone, while 0.12–
0.16 g/g DW xylose was retrieved from the biomass into 
the pretreatment liquid (Additional file  1). Hemicellu-
loses are, in addition to lignin, the most important wood 
recalcitrance factors [31]. It is therefore likely that the 
hemicelluloses retained in the wood after the pretreat-
ment limited the saccharification efficiency. Furthermore, 
the contents of the hemicellulose sugars also correlated 
in a similar, negative fashion with the relative carbohy-
drate content of wood (Fig. 2), which could also contrib-
ute to the negative influence of the hemicellulose sugars 
on the glucose release.

Identifying the genetics underlying wood properties 
that foster bioprocessing potential help with selecting 
or creating superior biorefinery feedstocks [11]. GWAS 

has frequently been used to identify single nucleotide 
polymorphisms associated with wood properties [5, 
43, 58]. GWAS for saccharification traits is rare in for-
est tree species, but a notable association was found in 
Salix viminalis for glucose release in a non-coding region 
of the genome [40]. We did not find any associations for 
glucose release, but several loci of putative associations 
for the total wood glucose yield (Table  1). One of these 
was located in the coding region of E1 subunit of 2-oxo-
glutarate dehydrogenase (E1-OGDH) (Potra2n10c20558) 
which participates in the mitochondrial TCA cycle to 
provide reducing power for oxidative phosphorylation 
and carbon skeletons for various metabolic pathways. 
Since variation in E1-OGDH was not only linked to vari-
ation in TWG but also tree height and diameter (Fig. 5h–
j), it is possible that the association between E1-OGDH 
and TWG was caused by variation in tree growth. This 
is supported by the well-known relationship between 
mitochondrial metabolism and growth both in plants 
and animals [38, 45]. Also TCA cycle has been linked 
to plant productivity [69], and OGDH has been pro-
posed as one of the enzymes controlling the flux through 
the TCA cycle [1]. Work in Arabidopsis has shown that 
mutations in the two E1-OGDH genes (AT3G55410 
and AT4G26910) resulted in impaired photosynthesis, 
reduced levels of chlorophyll and nitrate, reduced fitness 
and reduced growth [6]. The exact mechanism underly-
ing the observed reductions in the different growth traits 
was, however, not clarified. The OGDH substrate 2-oxo-
glutarate is important for several different metabolic pro-
cesses including biosynthesis of some amino acids. It is 
therefore possible that natural variation in E1-OGDH 
contributes to the activity of the enzyme to control not 
only the flux of the TCA cycle, but perhaps also entry of 
2-oxoglutarate into the various metabolic pathways, such 
as biosynthesis of amino acids that are needed for tree 
growth. Interestingly, the Oxa2A membrane insertase 
(Potra2n9c19049) and the geranyl diphosphate synthase 
(Potra2n10c21196), located in close proximity to a SNP 
for TWG, are both mitochondrial proteins [9, 27], sup-
porting the link between mitochondrial function and 
TWG yield.

TWG is a composite trait consisting of glucose 
yields after saccharification on a whole-tree-biomass 
basis. Consequently, we identified six polymorphic 
loci that intercepted for TWG and the biomass-related 
parameters of tree height and stem diameter (Table 1), 
pointing out the importance of tree biomass yields 
on TWG. For breeding purposes, it is an interesting 
question which one is more important for saccharifi-
cation yields on a whole tree basis; biomass produc-
tion or saccharification efficiency (per g material). In 
an earlier study of transgenic hybrid aspen trees, we 
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found that increased biomass production compensated 
for the loss of glucose release (per gram) caused by 
the transgene expression [15]. Vice versa, gains from 
increased glucose release after saccharification of lig-
nocellulosic feedstocks have frequently been offset by 
decreased biomass production of trees [3, 22, 59, 60]. 
It therefore seems that saccharification yields can be 
efficiently increased simply by increasing biomass pro-
duction of the trees. Biomass production is influenced 
by tree volume and wood density, and it was inter-
esting that in the currently investigated population 
of aspen trees it was the tree volume-related traits of 
height and diameter that correlated better than wood 
density with the glucose release after saccharification 
with pretreatment (Fig.  3), and that tree height and 
diameter were the traits that intercepted with TWG in 
the GWAS analysis (Fig. 5). Furthermore, the two gen-
otypes with the highest stem volume had also the high-
est TWG (Additional file  1). These results imply that 
the simple measurements of tree height and diameter 
might be sufficient to predict saccharification yields 
on a whole-tree basis. Earlier studies have seldom 
approached this question since saccharification has 
traditionally been defined on a process basis, resulting 
in identification of chemical composition as the most 
important factor influencing sugar yields. However, a 
very similar conclusion was drawn in a recent analysis 
of field grown P. trichocarpa trees where stem diam-
eter was identified as the main driver for ethanol yield 
on a whole-field basis [23]. This leads to the ques-
tion of what is the impact of tree volume on the other 
traits determining biomass production or saccharifi-
cation. Notably, positive genetic correlation existed 
in our population between the tree volume traits and 
wood density as well as glucose release, which both 
act to increase the TWG (Fig.  3). Furthermore, nega-
tive correlation existed between tree growth and lignin 
content and hemicellulose sugars, implying that breed-
ing efforts towards increased tree volume production 
might, similar to the currently investigated material, 
suppress the accumulation of wood chemical proper-
ties that have negative influence on glucose release 
rate and TWG.

Conclusions
We identified significant natural variation in growth and 
wood-related traits in aspen, which allowed identifica-
tion of chemical and genetic markers for bioprocessing 
purposes of lignocellulosic feedstocks. Our data indicate 
that whole tree saccharification yields can be improved, 
at least in Populus feedstocks, by simply breeding for 
increased tree volume growth without a negative impact 
on wood parameters, such as wood density or the content 

of lignin and hemicelluloses, that also influence sacchari-
fication efficiency and yield. An outstanding example of 
this was the two genotypes that had the largest stem vol-
ume as well as the highest saccharification yields within 
the SwAsp population. Interestingly, polymorphism in 
a mitochondrial TCA cycle enzyme OGDH associated 
with the variation in both the volumetric tree traits and 
the saccharification yield, and is hence an interesting can-
didate for a genetic marker linked to stem volume and 
saccharification yield.

Materials and methods
Plant material
The Swedish Aspen (SwAsp) collection consists of 113 
Populus tremula aspen genotypes from 12 locations 
across Sweden [29]. The genotypes represent potential 
sub-populations (Fig.  2), but whole-genome sequencing 
and sequence comparisons have shown that these geno-
types are mostly unrelated [61].

The genotypes were clonally propagated in 2003 from 
root cuttings and grown in a randomized block experi-
ment in a plantation in southern Sweden (Ekebo, 55.9°N). 
Three to five trees per genotype were successfully estab-
lished in 2004 [29, 61].

After ten years of growth, tree height and diameter at 
breast height (DBH) were measured, and wood samples 
were collected from the stem. At 79  cm above ground, 
a 1-cm-thick section of the stem was collected, and the 
south-western facing quarter of the stem section was ali-
quoted for wood chemical composition analyses. In addi-
tion, 80–90 cm above ground, another piece of stem was 
harvested for analysis of wood anatomical and structural 
properties from the south-western facing quarter of the 
stem section. We obtained a full set of successful pheno-
typic measurements for a total of 418 trees (Additional 
file 1).

Analyses of wood chemical composition
The wood quarters selected for compositional analyses 
were manually debarked, cut into roughly match-stick-
sized wood pieces and freeze dried (CoolSafe Pro 110–4, 
LaboGene A/S, Denmark). This material was homoge-
nized by coarse milling (Retsch ZM 200 centrifugal mill, 
Retsch GmbH, Germany) and sieved (Retsch AS 200) 
into two particle size fractions. The fraction of particle 
size between 0.1 mm and 0.5 mm was aliquoted for sub-
sequent saccharification experiments (see below), while 
the fraction of particle size under 0.1 mm was aliquoted 
for pyrolysis coupled with gas chromatography followed 
by mass spectrometry analysis (pyrolysis-GC/MS) and 
monosaccharide composition analysis. Both analyses 
were performed as technical duplicates for each tree.
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Carbohydrate content, lignin content, lignin com-
position, and content of other phenolics were deter-
mined by pyrolysis-GC/MS as previously described [17]. 
Briefly, 40 µg—80 µg of homogenized wood powder was 
loaded into an autosampler (PY‐2020iD and AS‐1020E, 
Frontier Labs, Japan), allowing a sub-sample (~ 1  µg) 
into the pyrolizer of the GC/MS apparatus (Agilent, 
7890A/5975C, Agilent Technologies AB, Sweden). Fol-
lowing pyrolysis, the samples were separated along a DB‐
5MS capillary column (30 m × 0.25 mm i.d., 0.25‐µm‐film 
thickness, J&W, Agilent Technologies), and scanned by 
the mass spectrometer along the m/z range 35–250. The 
GC/MS data were processed as previously described [16]. 
Results were normalized by expressing the area of each 
peak as a percentage of the total peak area considering all 
peaks.

Cell wall monosaccharide units were quantified fol-
lowing the acidic methanolysis and trimethylsilyl (TMS) 
derivatization method as described previously [14]. 
Briefly, wood powder was washed with HEPES buffer 
(4  mM, pH 7.5) containing 80% ethanol, as well as 
methanol:chloroform 1:1 (V:V) and acetone to gener-
ate alcohol-insoluble residues (AIRs) which were then 
dried. To avoid contamination with glucose from starch, 
the AIRs were treated with 1 unit per AIR mg of type I 
α-amylase (Roche 10102814001, Roche GmbH, Ger-
many). The de-starched AIRs, and inositol as an internal 
standard, were methanolysed using 2  M HCl/MeOH at 
85  °C for 24  h. Following repeated washes with metha-
nol, the samples and standard were silylated using Tri-sil 
reagent (3–3039, SUPELCO, Sigma-Aldrich, Germany) 
at 80  °C for 20  min. The solvent was evaporated under 
a stream of nitrogen and pellets were dissolved in 1 mL 
hexane and filtered through glass wool. The filtrates were 
evaporated until 200 μL remained, of which 0.5 μL were 
analysed by GC/MS (7890A/5975C; Agilent Technolo-
gies AB, Sweden) according to Sweeley et  al. [54]. The 
levels of the sugars and sugar acids are presented in the 
hydrous form.

Saccharification assays and total wood glucose yield (TWG)
Saccharification assays without or with acid pretreatment 
of the biomass were performed following an established 
methodology [14]. In short, 50 mg of dry wood powder 
(moisture measured with an HG63 moisture analyser, 
Mettler-Toledo, USA) with particle size between 0.1 mm 
and 0.5  mm were pretreated with 1% (w/w) sulphu-
ric acid (fraction of sulphuric acid based on the mass of 
the whole reaction mixture) during 10 min at 165  °C in 
a single-mode microwave system (Initiator Exp, Biotage, 
Sweden), or remained untreated. The pretreated samples 
were centrifuged to separate the solid fraction from the 
pretreatment liquid. The solid fraction was washed with 

ultrapure water and sodium citrate buffer (50  mM, pH 
5.2). The washed, pretreated solid fraction as well as the 
untreated samples were enzymatically hydrolysed 72 h at 
45 °C under agitation, using 25 mg of a 1:1 (w/w) mixture 
of liquid enzyme preparations Celluclast 1.5  L (measured 
CMCase activity of 480 units per gram of liquid enzyme 
preparation, following Ghose [18] and Novozyme 188 
(measured β-glucosidase activity of 15 units per gram 
liquid enzyme preparation, following Mielenz [34] 
(Sigma-Aldrich). Sodium citrate buffer (50 mM, pH 5.5) 
was added to reach 1 g of final reaction mixture. During 
enzymatic saccharification, samples were collected at 2 h 
and 72  h. Glucose production rates were determined at 
2 h using an Accu-Chek ®Aviva glucometer (Roche Diag-
nostics Scandinavia AB, Sweden). Monosaccharide (ara-
binose, galactose, glucose, xylose and mannose) yields 
in pretreatment liquids and enzymatic hydrolysates col-
lected at 72 h were determined using high-performance 
anion-exchange chromatography with pulsed ampero-
metric detection (Ion Chromatography System ICS-5000, 
Dionex, USA) as previously described [63]. Saccharifica-
tion was performed on technical duplicates for each tree.

The total-wood glucose yield from an entire tree 
trunk (TWG) was calculated using the formula 
TWG = 1/3 × π × height × (diameter/2)2 × wood den-
sity × glucose  release(AFTER PRETREATMENT), as previously 
described [10], assuming a conical shape of the tree stem.

Anatomical and structural characterization
Anatomical and structural features were determined 
on parallelepipedal wood pieces across the stem diam-
eter using the SilviScan® instrument (CSIRO, Australia) 
which consists of three separate units: (i) a cell scanner 
with a video microscope for measurement of the num-
bers and sizes of fibres and vessels; (ii) a density scan-
ner recording X-ray absorption images for measuring 
wood density; and (iii) a diffraction scanner recording 
X-ray diffraction images for measuring the microfibril 
angle. The measurements on these parallelepipedal wood 
pieces were then projected onto the entire wood section 
to reflect the average values for the entire wood section 
of each tree. Full description of the different traits from 
the SilviScan measurements can be found in Additional 
file 1.

Statistical estimations of the genetic parameters
The genetic parameters for each trait were esti-
mated statistically based on measurements on indi-
vidual trees for each genotype according to the model 
 Yijk = µ +  bi +  cj +  eijk where  Yijk is the observation k in 
block i for clone j, µ is the mean of the trait in this trial, 
 bi is the fixed effect of block i,  cj is the random effect 
of clone j (normally and independently distributed 
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with mean 0 and variance  Vc; NID[0,Vc]), and  eijk is 
the random error term for observation ijk (NID[0,Ve]). 
The variances  Vc and  Ve were estimated for each trait 
according to the Restricted Maximum Likelihood 
(REML) method using the ASREML software [19]. To 
estimate genetic parameters, we considered that  Vc 
is equal to  VG (the genotypic variance among clones 
for the trait) and  Ve is equal to  VE (the environmen-
tal variance for the trait). Correlation analysis was 
not performed for traits ARA_EH_PT, GAL_EH_PT, 
Total_SUGAR_PT, Total_XYL_PL + EH_PT, XYL_PL_
PT and PENT_PT due to very low heritabilities.

For each trait, broad-sense heritability (H2) was 
estimated by dividing genotypic variance  (VG) by the 
total variance of this trait  VT where  VT =  VG +  VE. The 
genotypic coefficient of variation  (CVG) for a trait was 
calculated by dividing the genotypic standard devia-
tion of the trait 

√
VG  by the mean value of the trait 

( x ) , and multiplying the result by 100. The genetic 
correlation  (rG) between trait 1 with genotypic vari-
ance  VG1 and trait 2 with genotypic variance  VG2 was 
calculated by dividing the genotypic genetic covari-
ance  (covG1G2) between these traits by the square root 
of the product of their individual genetic variances; 
rG = covG1G2

/√
VG1 × VG2 .

Multivariate analyses
Multivariate analyses using all wood traits to predict 
glucose release by saccharification, or total wood glu-
cose yield (TWG), were performed using Orthogonal 
Projections to Latent Structures (OPLS) regression 
[55], with 1 + 3 components.

Genome‑wide association study (GWAS)
Phenotypic data were subjected to a scripted pipe-
line, comprising a set of quality control steps and the 
estimation of a best linear unbiased predictor (BLUP) 
phenotypic value for each SwAsp genotype and for 
each trait in the GWAS. The pipeline is described in 
[49] and scripts are available at https:// github. com/ 
saraw estman/ Genome_ paper. Briefly, phenotypic 
outliers were removed using the ‘OutlierTest’ func-
tion of the ‘car’ package in R [46],version 3.0.10; [13], 
phenotypes were tested with the Shapiro–Wilk test 
and any non-normally distributed random effects 
or error terms were transformed using an Ordered 
Quantile normalization in the ‘bestNormalize’ pack-
age in R (version 1.6.1, [42]). Subsequently, a BLUP 
with a restricted maximum likelihood approach was 

used to estimate the genotypic effect of a given phe-
notype, as detailed in Wang et al. [61] using the model 
 zjkl = u +  bj +  gk +  ejkl where  zjkl is the phenotype of the 
lth individual in the jth block from the kth genotype, 
u is the grand mean and  ejkl is the residual error term. 
The genotype and residual terms were considered ran-
dom effects, and field block was considered a fixed 
effect.

Details of the SwAsp DNA sequencing and SNP 
calling, filtering and functional annotation have been 
described previously [48, 49], resulting in 99 unre-
lated individual genotype sequences for GWAS with 
6,806,717 bi-allelic SNPs. Similar to Mähler et al. [37], 
SNPs were considered as intergenic if they laid further 
than 2 kbp away from a gene, while SNPs within 2 kbp 
of a gene were considered associated with that gene.

Genome-wide association mapping was conducted 
using GEMMA [70] with univariate Linear Mixed 
Models (LMMs), which are association tests between 
SNP markers and phenotypic BLUP values. Two covar-
iates were included in the GWAS model: although 
relatedness in the SwAsp collection was weak, the first 
covariate was a relatedness matrix of all individuals in 
the study that was centre-scaled in GEMMA (using 
the parameter “-gk 1”) as previously described [61]; 
the second was the latitude of origin of each SwAsp 
genotype, which was applied to eliminate any spuri-
ous associations resulting from size differences of the 
trees that result from the latitudinal sampling cline 
that influences seasonality-determined growth in the 
SwAsp collection [29]. False discovery rate (FDR) of 
each association was calculated as the “q-value” using 
R [51] following the principle of the Benjamini–Hoch-
berg procedure [52]. The percentage of phenotypic 
variance explained (PVE) by each SNP, for each trait, 
was also estimated using the formula described pre-
viously [61]. GWAS results were visualized using 
Manhattan plots generated in the ‘qqman’ package 
in R [56]. Allele boxplots were generated using the 
‘ggplots2’ package in R [64]. The distributions of the 
phenotypic data were tested  for normality using Sha-
piro–Wilk tests, transformed with ordered quartile 
normalization (described above), and homogeneity 
of variances tested with a Bartlett test in R prior to 
analyses of variance amongst SNP genotype groups. 
The ‘anova’ function was applied in R to a linear model 
where the phenotype was the dependent variable and 
the SNP allele class the independent variable. Boxplots 
were plotted using the ggplots2 package in R [64].

https://github.com/sarawestman/Genome_paper
https://github.com/sarawestman/Genome_paper
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