
1

Vol.:(0123456789)

Scientific Reports |        (2022) 12:21574  | https://doi.org/10.1038/s41598-022-24655-y

www.nature.com/scientificreports

Edaphic controls of soil organic 
carbon in tropical agricultural 
landscapes
Jon M. Wells 1,2*, Susan E. Crow 1, Carlos A. Sierra 3,4, Jonathan L. Deenik 5, 
Kimberly M. Carlson 1,6, Manyowa N. Meki 7 & Jim Kiniry 8

Predicting soil organic carbon (SOC) is problematic in tropical soils because mechanisms of SOC 
(de)stabilization are not resolved. We aimed to identify such storage mechanisms in a tropical soil 
landscape constrained by 100 years of similar soil inputs and agricultural disturbance under the 
production of sugarcane, a  C4 grass and bioenergy feedstock. We measured soil physicochemical 
parameters, SOC concentration, and SOC dynamics by soil horizon to one meter to identify soil 
parameters that can predict SOC outcomes. Applying correlative analyses, linear mixed model (LMM) 
regression, model selection by AICc, and hierarchical clustering we found that slow moving SOC was 
related to many soil parameters, while the fastest moving SOC was only related to soil surface charge. 
Our models explained 78–79%, 51–57%, 7–8% of variance in SOC concentration, slow pool decay, 
and fast pool decay, respectively. Top SOC predictors were roots, the ratio of organo-complexed 
iron (Fe) to aluminum (Al), water stable aggregates  (WSagg), and cation exchange capacity (CEC). 
Using hierarchical clustering we also assessed SOC predictors across gradients of depth and rainfall 
with strong reductions in Roots, SOC, and slow pool decay associated with increasing depth, while 
increased rainfall was associated with increased Clay and  WSagg and reduced CEC in surface soils. 
Increased negative surface charge, water stable aggregation, organo-Fe complexation, and root 
inputs were key SOC protection mechanisms despite high soil disturbance. Further development of 
these relationships is expected to improve understanding of SOC storage mechanisms and outcomes 
in similar tropical agricultural soils globally.

Several important soil properties are typically expected to correlate with soil organic carbon (SOC) storage: soil 
 texture1,2, both micro- and  macroaggregates3, and mineralogy, like clay type, non-crystalline mineral concen-
tration,  Ca2+, and  Mg2+4–7. These soil properties vary across the landscape as a product of soil forming factors 
that include time, climate, parent material, topography, and  biota8,9. Mineralogy has been well associated with 
SOC stabilization in the long term, with the inherently low surface areas of 1:1 silicate clays linked to limited 
sorptive capacity and shorter SOC storage  timescales10. In contrast, 2:1 clays like smectite have been shown to 
have longer SOC retention  times11. Torn et al.4 also suggest that non-crystalline mineralogy like amorphous Fe 
and Al hydroxides, which accumulate in weathered soils, can retain SOC for millennia. However, there is still 
need to disentangle long-term mineral driven SOC storage from less persistent short-term SOC kinetics and 
storage that is thought to be controlled by the equilibrium of soil organic matter (SOM) inputs and  outputs12.

Despite the many controlling relationships expected between soil physicochemical parameters and SOC 
storage and dynamics, many global ecosystem  models13–16 have estimated SOC without strong data-driven 
relationships between soil physicochemical parameters and SOC (de)stabilization. This contributes to a gap 
between simulation of SOC and accurate representation of soil mechanisms and  processes17,19. Global predictive 
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SOC models such as CENTURY 15,  RothC13, Biome-BGC14, and  CASA16 are based on climate or land use change 
and are typically derived from over-simplified or purely conceptual relationships between soil parameters and 
SOC. However, there have been important improvements to older models, such as the inclusion of Iron (Fe) and 
aluminum (Al) in a RothC based model for Japanese Andosols which found improved model predictions using 
detailed soil  mineralogy20. Further improving model accuracy will require development of generalizable relation-
ships between soil physicochemical parameters and SOC protection and stabilization beyond clay  modifiers21.

There is also a lack of synthesis of major drivers of SOC flow and storage across diverse  soils21,22, especially in 
the tropics. Establishing better predictive relationships will thus require more detailed and mechanistic concep-
tual  models23, as well as better aggregation and dissemination of existing tropical soil  data22. However, Powers 
et al.24 found only 80 usable studies for their analysis of biophysical controls of SOC stocks across tropical land 
use, with findings indicative of high uncertainty in SOC changes based on land use change. Thus, improving both 
statistical predictive models and mathematical system models will require better mechanistic understanding of 
SOC storage and more-detailed data in the tropics.

Movement towards empirically fit SOC dynamics models, like conceptual models built in SoilR and fit to 
soil fraction or soil incubation  data18, can further inform SOC kinetics and subsequently improve tropical SOC 
modeling capabilities. As time is not well accounted for in current models of SOC, identification of how SOC 
protection mechanisms control the rate of (de)stabilization of SOC through time must be resolved. Geospatial 
use of sound SOC sub-component models will also require connections between mechanism of SOC storage 
and predictive soil physicochemical parameters that can be measured across the landscape. Thus, to support and 
refine models of SOC storage and dynamics in tropical agricultural areas we investigated relationships between 
edaphic controls and SOC content/kinetics across a constrained landscape that experienced 100 years of similar 
agricultural input and disturbance. Greater understanding of mechanisms driving SOC response in disturbed 
tropical soils could allow this and other tropical agricultural areas to sustainably transition away from sugar 
production towards combinations of diversified agriculture, agroforestry, and biofuel feedstocks.

Methods
Study area and soil collection. Twenty NRCS map units were selected across Hawaii Commercial & 
Sugar Company (HC&S) in central Maui that represented seven soil orders, 10 NRCS soil series, and approxi-
mately 77% of the total plantation area (Fig. 1). Soil heterogeneity across the landscape allowed for the compari-
son of a continuum of soil and soil properties that have experienced the same  C4 grass inputs and agricultural 
treatment under sugarcane production for over 100 years. Conventional sugarcane production involved 2-year 
growth followed by harvest burn, collection of remaining stalks by mechanical ripper, deep tillage to 40 cm, no 
crop rotations, and little to no residue return. The sampled soils, collected from September-August 2015, thus 
represent a baseline of SOC after input-intensive tropical agriculture and long-term soil disturbance. Elemental 
analyses from this work show consistent agricultural disturbances led to degraded SOC content ranging from 
0.23 to 2.91% SOC of soil mass with an average of only 1.16% SOC across all locations and depths.

The homogenized land use history allowed focused investigation of soil property effects on SOC storage 
across heterogenous soils (Table 1). Though soil inputs (e.g. water, nutrients, root inputs, residue removal) and 
disturbance regimes (e.g. burn, rip, till, compaction, no crop rotation) were consistent across the 20 field loca-
tions, average annual surface temperatures varied from 22.9 to 25.1 °C with a mean of 24.4 °C, average annual 
relative humidity varied from 70.4 to 79.2% with a mean of 73.4%, and average annual rainfall varied from 306 
to 1493 mm with a mean of 575 mm. Gradients of rainfall, relative humidity, and elevation across the site gener-
ally increase in an east/north-east direction towards the prevailing winds and up the western slope of Haleakalā. 

Figure 1.  Hawaiian Commercial and Sugar in central Maui with main Hawaiian Islands inset (left). Soil series 
identified by NRCS across HC&S fields (right) with black dots indicating 20 locations where soils were sampled 
to test landscape level differences in topical soil kinetics and associated soil properties under conventional 
sugarcane. Maps from Ref.19 created using ESRI ArcGIS with soil series data from: Soil Survey Staff, Natural 
Resources Conservation Service, United States Department of Agriculture, Web Soil Survey, Available online at 
http:// webso ilsur vey. nrcs. usda. gov/. Accessed [07/30/2016]19.

http://websoilsurvey.nrcs.usda.gov/
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In contrast, surface temperatures increase in the opposite direction towards Kihei and the southern tip of the 
West Maui Mountains.

aSoil  descriptions26.
bInterpolated estimates from Ref.25.

Soil sampling and analysis. Pit locations were identified with a handheld GPS and were sampled using 
NRCS Rapid Carbon Assessment  methods27. A total of 75 horizons were identified from the 20 selected map 
units to a depth of 1  m28,29. The central depth of each horizon was sampled using volumetric bulk density cores 
up to 50 cm. After 50 cm, a hand auger was used to check for any further horizon changes. The bulk density 
of horizons past 50 cm were estimated using collected soil mass and known auger size. Collected soils were air 
dried, processed through a 2 mm sieve, and analyzed for total C and nitrogen percent, SOC percent, soil texture, 
iron (Fe) and aluminum (Al) minerals, pH, cation and anion exchange capacity, extractable cations, wet and 
dry size classes, aggregate stability, and soil water potential at -15 kPa. Total C and nitrogen were measured by 
elemental analysis (Costech, ECS 4010, Valencia, CA), with SOC content determined by elemental analysis after 
hydrochloric acid digestion to remove carbonates. Soil texture was measured using sedimentary separation, 
while a 10:1 soil slurry in water was used to test soil pH. Soil pressure plates were used to measure soil water 
potential at -15 kPa.

Fe and Al oxides were quantified in mineral phases using selective dissolutions of collected soils, including: 
(1) a 20:1 sodium citrate to sodium dithionite extraction, shaken 16 h, to quantify total free  minerals30, (2) 
0.25 M hydroxylamine hydrochloride and hydrochloric acid extraction, shaken 16 h, to quantify amorphous 
 minerals31, and (3) 0.1 M sodium pyrophosphate (pH 10), shaken 16 h and centrifuged at 20,000g, to quantify 
organo-bound  metals30. Extracted Fe, Al, and Si from al extractions were measured by inductively coupled 
plasma analysis (PerkinElmer, Optima ICP-OES, Norwalk, CT). Exploratory ratios of Fe/Al, Fe/Si, and Al/Si for 
the citrate/dithionite (c), hydroxylamine (h), and pyrophosphate (p) extractions were calculated. Crystalline Fe, 
operationally-defined as the difference between the citrate dithionite and hydroxylamine extraction, and Al + ½ 
 Fe32 were calculated for each extraction.

Plant-available phosphorus was extracted by the Olsen method using 0.5 M sodium bicarbonate adjusted to 
pH 8.5 and measured by continuous flow colorimetry (Hach, Lachat Quickchem 8500, Loveland, CO). Exchange-
able cations (i.e. calcium, magnesium, potassium, and sodium), effective cation exchange capacity, and anion 
exchange capacity were measured by compulsive exchange using barium chloride and magnesium  sulfate33. 
Cations were quantified by continuous flow colorimetry and flame-spectroscopy (Hach, Lachat Quickchem 
8500, Loveland, CO). Field soils were air dried and initially passed through a 2 mm sieve before size classes of 
macroaggregate (2 mm – 250 µm) and microaggregate (< 250 µm) were separated using a 250 µm sieve. Fur-
ther wet sieving at 250 µm was conducted on 4 g of dry sieved macroaggregates using a wet sieving apparatus 
(Eijkelkamp, Wet Sieving Apparatus, Morrisville, NC). In short, dry sieved macroaggregates were wet sieved 
at 60 oscillations a minute for 45 min in distilled water. Soil particles passing through the 250 µm sieve were 

Table 1.  NRCS soil classification and environmental conditions at 20 field sites.

NRCS  seriesa Taxonomic class  namea Elevationb (m) Temperatureb (°C) Rainfallb (mm) RH1 (%)

Alae Sandy or sandy-skeletal, mixed, isohyperthermic 
Ustic Haplocalcid

126 24.36 414.21 74.22

33 24.97 305.61 71.10

Ewa Fine, kaolinitic, isohyperthermic Aridic Hap-
lustoll

23 24.98 468.85 70.69

40 24.92 335.87 71.31

Haliimaile Very-fine, parasesquic, isothermic Oxic Dys-
trustept 264 23.28 1112.53 78.37

Hamakuapoko Fine, mixed, semiactive, isohyperthermic Andic 
Palehumult 306 22.89 1492.86 79.18

Jaucas Carbonatic, isohyperthermic Typic Ustipsam-
ment 46 24.85 394.84 71.62

Keahua Fine, kaolinitic, isohyperthermic Ustic Haplo-
cambids 205 23.81 642.57 76.61

Molokai Very-fine, kaolinitic, isohyperthermic Typic 
Eutrotorrox

123 24.27 686.56 74.27

21 24.98 474.26 70.66

Paia Very-fine, parasesquic, isohyperthermic Torroxic 
Haplustoll

103 24.24 1193.53 73.46

92 24.36 987.25 73.26

Pulehu Fine-loamy, mixed, semiactive, isohyperthermic 
Cumulic Haplustoll

44 24.86 407.02 71.53

71 24.72 432.86 72.29

33 24.96 346.82 71.08

16 25.08 316.54 70.44

Waiakoa Fine, kaolinitic, isohyperthermic Torroxic 
Haplustoll

188 23.96 345.87 76.15

204 23.86 333.56 76.63

63 24.74 399.17 72.24

85 23.22 420.71 73.24
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classified as non-water-stable aggregates, while soil particles retained were dispersed by 16 h of shaking in 2% 
sodium hexametaphosphate. After soil dispersion, roots and rocks were separated from remaining soil on a 
250 µm sieve using distilled water and light agitation with a rubber policeman. Roots were further separated from 
rocks using a combination of density separation in water and visual removal with tweezers. Though the Roots 
metric technically includes particulate organic matter (POM), most recovered material was visually identifiable 
as root biomass.

Soil incubation. The equivalent of 50 dry grams of soil were incubated for 90 days at 25 °C in 500 mL septa 
capped cell culture bottles after moisture adjustment to -15 kPa moisture content using soil pressure  plates28,29. 
Evolved gases were sampled using 10 mL syringes, stored in evacuated 3 mL Exetainers (Labco Limited, Lam-
peter, UK), and analyzed by GC (Shimadzu, GC-2010 Green House Gas analyzer, Kyoto, Japan) using a 4-point 
calibration curve of mixed  CO2,  N2O, and  CH4 standard gas. After each sampling event, incubation bottles were 
flushed with air, resealed, sampled for initial concentration, and returned to controlled environment chambers 
(Caron, 7000-33). All incubations were sampled on the same interval: day 0, 2, 4, 6, 8, 10, 12, 14, 17, 20, 23, 26, 
30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90. The mass of  CO2 evolved from the soil in each incubation cham-
ber was calculated with the gas law using the measured concentration, known volume, and Standard Ambient 
Temperature and Pressure (SATP). The mass of C from  CO2 (C-CO2) was normalized by the dry weight of soil 
in each chamber and cumulative flux curves of were tracked throughout the 90-day incubation experiment. C 
pools and fluxes were estimated using compartment models fit to cumulative C–CO2 incubation curves as they 
describe C mineralization kinetics of soils 18.

Modeling soil carbon pools using SoilR. To estimate kinetic SOC fractions, Bayesian solutions of two- 
and three-pool compartment models (Fig. 2) were implemented in R. Models were fit to cumulative C-CO2 
curves using the SoilR package and a generalized model of linear dynamical  systems18:

where I(t) is a time-dependent column vector of inputs to each compartment n, A(t) is a n × n square matrix that 
contains compartment decomposition rates and transfer coefficients between compartments, and C(t) is a n × 1 
vector of C compartment size (pools) at a given time t. Three-pool SOC models can be expressed generically by 
a system of differential equations of the form:

With initial conditions:

where ki represents the decay rate in each pool, αi,j represents the transfer rate of decayed C in pool j that flows 
to pool i, while γi represents the proportion of C in each pool, and Ii represents the input to each compartment. 
Two-pool models take the same form as Eqs. (2) and (3), except the third row of every matrix, and third column 
of the A(t) matrix, are removed. In this sense these matrix models can be scaled up or down to include as many 
compartments as desired, with the caveat that complex models with many compartments and transfers can 
become untenable.
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Figure 2.  Conceptual 2- and 3-pool models with series C flow, feedback between pools, and respiration loss 
from all pools.
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Equation (1) was thus fit to the cumulative  CO2 curve of each soil sample using a two-step parameter optimi-
zation involving initial classical optimization with a Nelder-Mead  algorithm34 followed by Bayesian optimization 
using a Markov Chain Monte Carlo (MCMC)  procedure35. Both optimizations were conducted in  R36 using a 
combination of the  FME35 and  SoilR18 packages.

Collinearity analysis indicated that two-pool models were the least collinear (i.e., the most likely to result in 
meaningful solutions) but would still require fixing at least two parameters. From the collinearity analysis, the 
best two-pool models used pool sizes (γ1, γ2) and decay rates (k1, k2), but required that the transfer rates (α2,1, α1,2) 
be fixed. To address this issue, we used the transfer rates from a soil fraction-based model developed by Crow 
et al.37 at one of the 20 sites investigated in this study. The transfer rates, which describe the amount of decayed 
C that flows through any given transfer path, are difficult to quantify and would require soil density fractiona-
tion and fraction-based compartment models, or controlled input and labeling experiments, to quantify, which 
have not been conducted. Thus, models were informed with best-available data by fixing the forward transfer 
rate (α2,1) and backward transfer rate (α1,2) at 0.85 and 0.15,  respectively37.

The resulting kinetic SOCC fraction estimates (i.e., pool sizes and decay rates) are framed here as depend-
ent variables that respond to differences in independent soil physicochemical parameters measured across this 
agricultural landscape. The slow pool decay rate  (k2) and fast pool decay rate  (k1) from two-pool models are 
presented in comparison to SOC. To discuss only the most identifiable solutions, the 3-pool models were not 
presented, and only 2-pool model results were used.

Linear mixed models and model selection. Several statistical models were created to investigate rela-
tionships between SOC content, SOC decay rates, and soil physicochemical properties (Table 2) that may pro-
mote SOC persistence despite long-term agricultural disturbance. For each C response variable (SOC,  k2, and 
 k1), three sequential linear mixed models (LMM), with pedon as a random effect, were constructed: (1) using no 
fixed effect (intercept-only; equivalent to a random effects ANOVA), (2) using only physicochemical properties 
as fixed effects that showed significant spearman’s ρ to the conditional residuals of the intercept-only LMM, and 
(3) a final model where root-mineral interaction terms and physicochemical properties with significant spear-
man’s ρ were further reduced by model selection using the Akaike Information Criterion for small sample sizes 
(AICc).

Due to computational and theory-based restrictions on model selection, it was necessary to first reduce the 
possible independent variables (i.e., soil physicochemical properties) to only those that have prediction potential 
before performing model selection. This was accomplished using the under-defined models, i.e. LMM(1), of each 
C response variable (SOC, k2, and k1) and identifying which physicochemical properties showed spearman cor-
relation to conditional model residuals, like Rasmussen et al.21. Soil properties that could explain residual model 
variance were thus candidates for final model predictors. The conditional residuals were also parsed above and 
below the median of each climate variable (i.e., rainfall, humidity, and surface temperature) to evaluate climate 
effects. Correlation significance was assessed using Bonferroni’s corrected α (0.05/308 = 0.000162), where 308 is 
the number of correlations conducted for each response variable. The correlative analyses allowed visualization 
of potential relationships between C response variables and physicochemical properties, as well as how climate 
may mediate these relationships.

Using this information allowed LMM (2) to be built with physicochemical properties that explained some 
residual model variance. For each response variable, LMM (2) was developed for the sole purpose of creating a 
global model for model selection by AICc. Interpreting LMM (2) of each response variable is not very produc-
tive as many soil metrics are collinear and a model with this many parameters will suffer from model overfit-
ting. Model selection by AICc was thus chosen to identify combinations of predictors that could best-explain C 
response while avoiding overly complex models and overfitting.

For parsimony, and under the assumption that similar soil properties should control both the decay rates 
and overall SOC outcomes, a unified list of significant factors across the intercept-only models of SOC,  k2, and 
 k1 was created as the basis of the third and final model, LMM (3). Root-mineral interaction terms were added 
to LMM (3) before model selection based on a-priori expectations that roots and mineralogy are major media-
tors of C input and storage in  soils38. Models were selected using AICc in R using the dredge function in the 
MuMIn  package39. Due to the high correlation between many soil properties (e.g., roots and depth, depth and 
mineralogy, mineralogy and mineral ratios, etc.), the model selection process for SOC also selected between 
highly correlated predictors to avoid confounding regression coefficient estimates. This was accomplished using 
logical subsetting in the dredge function of the MuMIn package to eliminate nested models where both cor-
related predictors occurred.

Climate variables are not included in any LMM. Instead, climate variables are framed as soil forming factors 
that established soil physicochemical properties and not as direct drivers of SOC storage or decay. For the same 
reason that collinear soil properties should not be included in a single model, including climate variables that 
correlate with soil physicochemical properties (e.g., rainfall and clay) will confound regression coefficient esti-
mates. Further, we assumed that direct climate influence on SOC have been constrained by consistent agricultural 
practices, mono-cropping, and landscape-scale irrigation that have normalized C inputs and losses over 100 years 
of sugarcane cultivation. We also expect that agricultural disturbance has reduced SOC to minimal levels with 
remaining C largely persisting due to physicochemical protection mechanisms like aggregation, organo-mineral 
complexation, and organo-metal ligand bonding. The moisture-adjusted and temperature-controlled incubation 
also removed direct influence of climate on comparative measurement of SOC dynamics across soil horizons. 
With these assumptions, we focused on soil physicochemical properties as key controls of SOC and dynamic C 
response in this system.
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Hierarchical clustering to evaluate depth and rainfall gradients. Visualization of relationships 
within the data between C responses and best predictors by depth and rainfall was accomplished using agglom-
erative hierarchical clustering. The clustering algorithm used Euclidean distance measures and Ward’s minimum 
variance method as implemented in the hclust function within the Stats package in  R36. Unscaled C responses, 
final model predictors, and depth data were clustered by minimizing total within-cluster variance, where addi-
tional clusters beyond the fifth showed little reduction in variance. The clustering procedure was repeated for 
surface soils by subsetting C response and final model predictors to only the topsoil, adding associated rainfall 
data, and clustering again based on minimized within-cluster variance. In the case of surface soils clustered by 
rainfall, additional clusters past the third showed little reduction in variance. Both clustering procedures (i.e., 
depth and rainfall) used unscaled data to take advantage of the numerically higher values of depth (0–100 cm) 

Table 2.  Potential physicochemical soil predictors of SOC content,  k2,  k1 in linear mixed models.

Parameter Analysis Interpretation

Fec Citrate/dithionite-extractable Fe (mg  g-1)

Total free oxidesAlc Citrate/dithionite-extractable Al (mg  g-1)

Sic Citrate/dithionite-extractable Si (mg  g-1)

Feh Hydroxylamine/HCl-extractable Fe (mg  g-1)

Amorphous oxyhydroxidesAlh Hydroxylamine/HCl-extractable Al (mg  g-1)

Sih Hydroxylamine/HCl-extractable Si (mg  g-1)

Fep Sodium Pyrophosphate-extractable Fe (mg  g-1)

Organo-complexed metalsAlp Sodium Pyrophosphate-extractable Al (mg  g-1)

Sip Sodium Pyrophosphate-extractable Si (mg  g-1)

Fec-h Fec–Feh (mg  g-1) Crystalline Fe oxides

Alc + 0.5  Fec

Al + 0.5 Fe within each extraction (mg  g-1) “reactive metal”, approximately normalized by atomic mass 
of Al and  Fe32Alh + 0.5  Feh

Alp + 0.5  Fep

Fep+Sip
Fep+Sip+Alp

Organo-Fe and organo-Si normalized by total organo-
complexes Fraction of more stable Fe and Si organo-complexes

Fec/Alc Citrate/dithionite-extractable Fe/Al ratio Total free oxide Fe/Al ratio

Feh/Alh Hydroxylamine/HCl-extractable Fe/Al ratio Amorphous Fe/Al ratio

Fep/Alp Sodium pyrophosphate-extractable Fe/Al ratio Organo-complexed Fe/Al ratio

Sic/Alc Citrate/dithionite-extractable Si/Al ratio Total free oxide Si/Al ratio

Sih/Alh Hydroxylamine/HCl-extractable Si/Al ratio Amorphous Si/Al ratio

Sip/Alp Sodium pyrophosphate-extractable Si/Al ratio Organo-complexed Si/Al ratio

Fec/Sic Citrate/dithionite-extractable Fe/Si ratio Total free oxide Fe/Si ratio

Feh/Sih Hydroxylamine/HCl-extractable Fe/Si ratio Amorphous Fe/Si ratio

Fep/Sip Sodium pyrophosphate-extractable Fe/Si ratio Organo-complexed Fe/Si ratio

Depth Continuous measurement (cm)

BD Bulk density (g  cm-3)

pH Soil pH

Phos Phosphorus (mg  kg-1)

Clay Particles < 2 µm (%)

Silt Particles 2–50 µm (%)

Sand Particles 50–2000 µm (%)

Clay + Silt Particles < 50 µm (%)

Macroagg Dry sieved macro-aggregates 250–2000 µm (%)

Microagg Dry sieved micro-aggregates < 250 µm (%)

WSagg Water stable macro-aggregates 250–2000 µm (%)

NWSagg Non-water stable macro-aggregates 250–2000 µm (%)

Roots Roots (%) Roots + particulate organic matter

Rocks Rocks (%)

WC15kPa Estimate of field capacity of soils at -15 kPa (%) Water held by dry soil at field capacity

CEC Cation exchange capacity at field pH  (cmolc  kg-1)
Soil surface charge

AEC Anion exchange capacity at field pH  (cmolc  kg-1)

Ca Extractable calcium (mg  g-1)

K Extractable Potassium (mg  g-1)

Na Extractable sodium (mg  g-1)

Mg Extractable magnesium (mg  g-1)
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and rainfall (306–1493 mm) compared to other data types. This negated the need to weight or scale the data and 
resulted in parameters clustered predominantly by the depth or rainfall gradient, respectively. Clear separation 
of clusters by depth and rainfall were found, which allowed for interpretation of the relationships between C 
response, soil physicochemical predictors, and depth and rainfall gradients.

Results and discussion
Physicochemical correlates to SOC,  k2, and  k1. Conditional residuals of intercept-only LMMs 
describing SOC content, k1, and k2 response were used to assess which soil physicochemical properties can 
explain SOC response across the measured landscape and how climate-induced changes in soil physicochemical 
development may mediate these relationships. Overall, pool and flux data showed fewer significant correlations 
to soil physicochemical properties and weaker correlations in general compared to those found between total 
SOC content and physicochemical soil properties across the landscape and through depth. Reduced correlation 
between dynamic C response and soil physicochemical properties may show a disconnect between the strength 
of physicochemical controls on total SOC content compared to dynamic SOC pools.

In areas of high rainfall, high humidity, and low temperature SOC was positively correlated with phosphorus, 
water stable aggregates, potassium,  Fep,  Fep/Alp, and  (Fep +  Sip)/(Fep +  Sip +  Alp) (Fig. 3). Sodium, AEC, and non-
water stable aggregates were negatively correlated with SOC. In contrast, SOC was positively correlated with 
roots, phosphorus, and  Sip, and the  Sip/Alp ratio in low rainfall, low humidity, and high temperature areas. Depth 
was also negatively correlated with SOC in both wetter/cooler and dryer/hotter systems but showed highest corre-
lation in dryer areas. However, the correlation between SOC and depth was reduced in areas of high rainfall. This 

Figure 3.  Physicochemical soil properties correlated to conditional residual variance within intercept-only 
linear mixed models of SOC content, the rates of fast pool C decay (k1) and slow pool C decay (k2). Residuals 
from LMM (1) for SOC,  k1, and  k2 were parsed by climate, above and below the median of each climate variable, 
and assessed for spearman correlation to measured soil physicochemical properties. Correlations within a 
response variable that are greater than the Bonferroni adjusted α of all comparisons (0.05/308 = 0.000162) are 
labeled as non-significant (NS).
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could be an indication that depth is not a consistent predictor of SOC across the climate gradients present in this 
system, which could be a consequence of greater soil weathering and deeper profile development in wetter areas.

In contrast to SOC content, both slow pool  (k2) and fast pool  (k1) decay rates have few potential physicochemi-
cal predictors with expected explanatory power. In the fast pool, the only signal above the Bonferroni cut-off was 
soil surface charge, as measured by AEC and CEC. Residuals of the  k1 intercept-only LMM suggest that AEC 
increases are associated with increased fast pool loss, while CEC increases have the opposite effect. Slow pool 
decay instead shows positive correlation with roots, potassium, and the accumulation of total Fe compared to Al 
 (Fec/Alc), with negative correlation with depth. This correlation procedure thus does not show a clear mechanism 
for k2 differences. Instead, the correlations seem to suggest that more root C means more overall loss, which may 
suggest proportional decay based on simple kinetics like pool size and temperature. These potential relationships 
were more formally tested using a LMM framework and model selection.

Generalized physicochemical predictors of SOC,  k2, and  k1. Model selection of SOC content,  k2, 
and  k1 using AICc resulted in several top models within two AICc points (Table 3), indicating they were not 
separable by information theory. AICc based model selection showed that CEC,  WSagg, Roots, and  Fep/Alp were 
strong predictors of SOC across soil orders, depths, and climate, meaning these predictors were generalizable 
across these gradients in this system (Fig. 4). In comparison, slow pool decay rates were less predictable by phys-
icochemical properties, with roots,  Fec/Alc, and percent clay most predictive based on AICc and marginal  R2. In 
contrast to SOC and slow pool decay rates, the fast pool decay rate was least related to physicochemical proper-
ties and only marginally predicted by soil surface charge, where CEC and AEC showed small opposing effects 
on fast pool decay rates across all horizons. Physicochemical properties in top SOC models explained 78–79% 
of the variance through depth and across the landscape, while models of  k2 and  k1 explained only 51–56% and 
7–8% of variance, respectively. Overall, measured physicochemical properties described SOC content better 
than SOC decay, with slow pool decay rates better predicted than the fast pool decay rates describing the most 
labile C fractions.

The difference in variance explained by physicochemical soil properties across C response suggests several 
possibilities: (1) we have not measured or identified all important physicochemical controls of SOC dynamics, (2) 
physicochemical metrics are not strongly predictive of dynamic SOC response, which may be better predicted by 
biological and enzymatic  investigations40, and/or (3) the difference in time-scale from a bulk SOC measurement 
developing over years to fast pool losses over a few weeks may lead to greater stochasticity and fewer predictable 
relationships. Though the data does not speak to why relationships between soil physicochemical parameters 
are worse for fast cycling C, it does suggest that slower C response is more related to pedogenic soil properties, 
and inversely that changes in fast C decay are largely decoupled from the soil properties that predict differences 
in long-term SOC outcomes. However, it is not resolved how a small effect could compound to increase SOC 
over long time periods and large amounts of soil.

Soil physicochemical parameters that were most predictive of SOC across gradients of depth and climate 
indicate several potential SOC stabilization mechanisms. SOC increased in accordance with  WSagg and sug-
gests that physical protection is an important mechanism promoting SOC storage in this consistently wetted 
and disturbed system. Potential mechanisms behind CEC and SOC relationships are more complicated. SOC 
increased with CEC, which suggests either increased adsorption of positively charged SOC on negatively charge 
soil surfaces, increased cation bridging, direct increases in CEC based on negatively charged SOC side chains, or 
some combination of these processes. Models of  k1 indicated that increased CEC was associated with reduced 
fast pool loss and inversely that decreased AEC was associated with reduced fast pool loss. Agreement between 
SOC and  k1 outcomes based on CEC suggests that increased negative surface charge can shunt SOC away from 
microbes and onto soil surfaces to reduce C turnover. In contrast, roots as a top SOC predictor indicate that C 
inputs were largely from roots, either through exudation or death and turnover. The interaction of roots and 
 Fep/Alp also showed that high root inputs, in combination with mineralogy that can adsorb and coprecipitate 
SOC, may synergize to promote SOC storage and persistence in this disturbed agricultural landscape. These best 
predictors based on AICc-based model selection also align with developing conceptualizations of soil protection 
 mechanisms23,41.

Table 3.  Model selection results for SOC content,  k2, and  k1 with associated marginal (fixed effect)  R2, 
conditional (fixed and random effect)  R2, and AICc. Models within 2 AICc points for each C response are 
presented.

Response Model terms Marginal  R2 Conditional  R2 AICc

SOC (1) (3.1) CEC,  WSagg,  Fep/Alp, Roots 0.780 0.816 130.2

SOC (2) (3.2) CEC,  WSagg,  Fep/Alp, Roots,  Fep/Alp: Roots 0.791 0.812 131.3

k2 (1) Roots,  Sip/Alp 0.544 0.687 166.6

k2 (2) Roots,  Fec/Alc 0.531 0.729 166.9

k2 (3) Roots 0.510 0.696 167.6

k2 (4) Roots, Clay 0.552 0.655 167.7

k2 (5) Roots,  Fec/Alc, Clay, 0.568 0.706 167.8

k1 (1) AEC 0.083 0.137 218.9

k1 (2) CEC 0.068 0.115 220.4
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Though the  Fep/Alp ratio is exploratory, it is widely understood that sorption and coprecipitation interactions 
between SOM and Fe oxides, oxyhydroxides, and short-range-ordered (SRO) phases can protect SOC from 
microbial  decomposition42,43. It has also been established that short-term redox fluctuations can generate SRO Fe 
mineral phases that promote SOC decay or storage based on Fe oxidation  state44–46. Fe(II) is associated with the 
Fenton reaction, the development of hydroxyl radicals, and increased soil redox potential and SOM  decay47, while 
Fe(III) can adsorb and coprecipitate with dissolved organic  C46. Hansel et al.48 further found that the secondary 
mineralization of ferrihydrite, as the precursor for most iron oxides in soils, is reduced by Al substitution and 
adsorption. Thus, we suspect that  Fep/Alp relates to increased development of stable Fe(III) oxides/oxyhydrox-
ides, as a result of low Al, and that long-term storage of SOC is occurring in this system through the adsorption 
and coprecipitation of SOC and Fe(III) oxides during secondary mineralization. However, the ratio could also 
imply that organo-Fe complexes are simply more stable than organo-Al complexes in weathered tropical soils. 
More detailed investigation into Fe and Al mineralogy in these soils and extracts is needed to resolve a potential 
mechanism behind  Fep/Alp.

Models of  k2 were dominated by Roots which explained most variance while combinations of  Fec/Alc,  Sip/
Alp, and Clay showed weak predictive ability. Though Clay is known to be poorly quantified in tropical  soils49, 
Clay has been used as a potential covariate for tropical SOC  dynamics50 and we found increased Clay, using 
standard sedimentary procedures, was associated with reduced slow pool decay. In contrast,  Fec/Alc and  Sip/
Alp both showed weak association with increased slow pool loss. Increased  Fec/Alc may relate to increased Fe 
redox reactions under anaerobic conditions that can promote lignin  decay47. However, neither the  Fec/Alc or  Sip/
Alp ratios are documented in the literature and further work to resolve if these relationships are meaningful or 
spurious is needed. Overall, our interpretation of  k2 is that soils with higher Roots, and associated higher SOC, 
decay more C based on simple reaction kinetics relating to pool size. Longer incubation experiments to identify 
and model C with lower turnover is required to resolve the soil parameters associated with the slowest C pools. 
However, the current data suggests that mechanisms that transport C into slower C pools (e.g., mineral adsorp-
tion, coprecipitation, and aggregation) are key, and that once protected in the slower C pools, SOC decays at a 
much slower and more conserved rate.

Due to the simplicity of the agricultural system and a lack of major SOM or forest litter pools, the confounding 
influence of free SOC that is not associated with soils was removed. Thus, we expect that the physicochemical 
soil parameters most associated with SOC,  k2, and  k1, fit across depth and contrasting soils, explain the strongest 
drivers of C response in this tropical agricultural system. The nature of the data and analysis also indicate that the 
predictors identified by model selection are generalizable through depth and across the landscape, even in the 
models with weak relationships and low variance explained. Thus, without knowing depth or climate regime we 
can estimate C dynamics in similar tropical agricultural systems based on several physicochemical soil param-
eters. Though expanded sampling and ground-truthing at similar locations are needed, these models represent 

Figure 4.  Partial regression plots of C response predicted by physicochemical soil properties across 20 field 
locations sampled by horizon to 1 m. Models with the highest marginal  R2 after model selection by AICc are 
visualized for each C response variable: SOC content (A), the slow pool decay rate, k2 (B), and the fast pool 
decay rate, k1 (C). All data were mean-centered and scaled by relative standard deviation for comparison. 
Regression coefficients are shown as fitted lines with 95% confidence intervals.
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an important conceptual step towards finding generalizable relationships and soil parameters that explain SOC 
dynamics based on measurable physicochemical properties and representative soil protection mechanisms.

Using the identified soil parameters and models, we plan to test application of ecosystem models in weath-
ered tropical soils throughout the depth profile and eventually assess their predictive ability on SOC stocks. For 
example, if the identified models and soil parameters are found generalizable and mechanistic, then changes 
in soil physicochemical parameters should be able to explain differences between SOC improvement studies 
in tropical agricultural soils. If so, estimates of SOC improvement potential in unstudied tropical agricultural 
areas could be estimated based on changes in these top physicochemical predictors. This would allow improved 
estimates of SOC offsets based on improved soil management.

Exploring depth and rainfall gradients. Hierarchical clustering was used to connect SOC content and 
predictive soil parameter values to distinctive groups along gradients of depth (Fig.  5) and rainfall (Fig.  6). 
Clusters showed contrasting relationships between SOC response, top predictors, and each gradient. As mod-
els of SOC content were fit across depth and climate gradients, the top predictors account for differences in C 
response based on measurable soil parameters established by these gradients over millennial timescales. Though 
clustering showed clear groups along both depth and rainfall gradients, it is not designed for strong statistical 
tests. Thus, using hierarchical clustering as a descriptive tool, we discuss relationships between SOC,  k2, and  k1 
in relation to depth and rainfall gradients as key factors in the development of soil parameters in this system.

Clustering SOC response and predictors by depth to 1 m showed strong reductions in Roots, SOC content, 
and  k2 with increasing depth (Fig. 5). Similarly, Clay,  WSagg,  Fep/Alp, and  Fec/Alc decreased with increasing depth 
but showed greater variance within each group and weaker association with depth. In contrast, changes in  k1, 
CEC, and AEC were not associated with depth. Further when surface soils were clustered by rainfall, several 
clear rainfall groups were found (Fig. 6). Increased rainfall was not associated with increased Roots or SOC in 
surface soils. In contrast,  k2 showed small increases with low rainfall, while  k1 showed small increases with high 
rainfall. However, both  k2 and  k1 had high variance that limit comparisons in the driest areas. Increased Clay 
and  WSagg, and reduced CEC, showed the strongest associations with increased rainfall in surface soils. These 
patterns align with weathering of clay minerals towards Fe and Al oxyhydroxides.

Hierarchical clustering also demonstrated that rainfall, as an important climate gradient, was not associated 
with the development of SOC and Roots. Thus, assumption that soil parameters are major controls of SOC 
storage and dynamics compared to climate were confirmed in this constrained system. Clustering by depth and 
rainfall also highlights that  WSagg and Clay develop with high rainfall and in surface soils that have greater cli-
mate interaction compared to deeper soil profiles. Increased rainfall was also associated with decreased CEC in 
surface soils. In contrast to CEC, changes in  Fep/Alp and  Fec/Alc were only associated with depth, which suggests 
that soil forming factors other than rainfall, like parent material and biological interactions are likely involved 
in the development of these predictive mineral ratios.

Figure 5.  Hierarchical clustering of C response, physicochemical predictors, and depth. Median values, first 
and third quantiles, and 95% confidence intervals are shown for each hierarchical depth group (A), SOC and 
best physicochemical predictors (B),  k2 alongside best predictors (C), and  k1 and best predictors (D).
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Conclusion
Increased negative surface charge, water stable aggregation, organo-Fe complexation, and root inputs are key 
SOC protection mechanism across this tropical agricultural system despite high soil disturbance. Root-mineral 
interactions also synergized to store more SOC. In contrast, no clear mechanisms described slow pool decay 
rate, with more roots related to more slow pool loss. However, fast pool decay was reduced in areas with negative 
surface charge. Increased negative surface charge, though a weak effect, may compound with time to shuttle SOC 
onto soil surfaces and into SOC pools with slower turnover time. Once adsorbed or coprecipitated on mineral 
surfaces, SOC in slower pools may decay based on simple reaction kinetics, like pool size and temperature. 
However, incubating soils for more than 90-days is needed to assess the slowest moving SOC pools and any 
associated soil physicochemical parameters and mechanisms.

Testing soil physicochemical predictors across continuous SOC response, depth, and climate allowed gen-
eralization across these gradients, giving SOC estimates created here direct application in similar tropical soils 
with a history of intensive cane cultivation. In contrast, SOC dynamics predicted by 2-pool incubation models 
were less effective, though it has not been resolved how weak effects of negative surface charge over long time-
periods may drive SOC storage. Our ability to estimate SOC response in post-sugar soils, which represents most 
agricultural land in the State of Hawaii, will improve with testing the effectiveness of identified models and 
predictors in other areas, and experiments that test mechanisms and causality. Exploring how identified predic-
tors can extend estimates from soil improvement studies into other areas, and inform underlying relationships 
in earth system models, could improve our understanding of SOC storage mechanisms and ability to estimate 
SOC outcomes globally.

Data availability
Soil respiration data are available at: https:// doi. panga ea. de/ 10. 1594/ PANGA EA. 943160. Soil carbon dynamics 
and physicochemical data are available at: https:// doi. panga ea. de/ 10. 1594/ PANGA EA. 943118.
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