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Abstract: The aim of the present work was to study seasonal and site-specific patterns of airborne
fungal diversity, focusing on plant pathogens. The sampling of fungal spores was carried out for
twelve months, i.e., between September 2017 and August 2018, using passive spore traps that were
placed at three different sites in western (Lenkimai), central (Dubrava), and eastern (Labanoras)
Lithuania. Samples were collected every 7–10 days, resulting in 146 samples altogether. Following
DNA isolation, samples were individually amplified using ITS2 rRNA as a marker and subjected to
high-throughput sequencing. Clustering and taxonomic classification of 283,006 high-quality reads
showed the presence of 805 non-singleton fungal taxa. The detected fungi were 53.4% Ascomycota,
46.5% Basidiomycota, and 0.1% Mucoromycota. The most common fungal taxon at Labanoras and
Lenkimai was Hannaella coprosmae (23.2% and 24.3% of all high-quality fungal sequences, respectively),
while at Dubrava it was Cladosporium macrocarpum (16.0%). In different sites, plant pathogenic fungi
constituted between 1.6% and 14.6% of all fungal taxa and among these the most common were
Protomyces inouyei (4.6%) and Sydowia polyspora (1.9%). The results demonstrated that the diversity of
airborne fungi was mainly determined by the surrounding vegetation and climatic factors, while the
occurrence of pathogenic fungi was affected by the availability of their hosts.

Keywords: biological invasions; fungal spores; microbial diversity; plant pathogens

1. Introduction

Biological invasions represent an important component of global change with major
ecological impacts on the conservation of native species, and on the integrity of natural
and managed ecosystems worldwide [1,2]. Interactions among climate changes, including
changes in mean temperatures and precipitation, global trade, and pests and pathogens
(indigenous or non-native) can be expected to have a serious impact on health and sustain-
ability of forest ecosystems. Apart from recent biological invasions, such as ash dieback in
Europe [3,4], many new, unprecedented forest health problems are likely to occur in the
future [5], leading to alterations in forest primary production and ecosystem functioning.
For instance, insects and pathogens may modify their ranges of distribution in response to
changes in the host tree distribution and changes in climatic conditions, thereby moving
into new areas and utilizing existing hosts or shifting to new hosts [6].

Different pathways of introduction of non-native forest pests and pathogens have
been suggested [5]. Dispersal by air is one of many mechanisms that allow plant pathogens
to spread both locally and globally [7–9]. Indeed, Leyronas et al. [10] demonstrated that
many plant pathogenic fungi can be disseminated via the atmosphere from micro- to macro-
geographical scales. Fungi are known to disseminate by the release of spores, mycelial
fragments, and/or other propagules into the atmosphere and each year they can circulate
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across wide geographic areas and over long periods of time [11]. By these means, certain
fungal pathogens may travel long distances, while surviving extreme temperatures, UV
radiation, and desiccation, remaining viable to cause disease [12]. The airborne fungal
structures are eventually deposited on the ground or water surfaces by sedimentation
(dry deposition) or precipitation (wet deposition) and contribute to the global cycling of
substances [13].

Despite the majority of airborne fungal spores being dispersed locally, they can also
travel over long distances [10]. This is determined by many factors including the physical
characteristics of the spores (size, shape, degree of surface roughness, density, and electro-
static charges) and environmental factors, including wind (speed, direction, turbulence,
gradients near the ground, and pattern of atmospheric circulation), rain, and topography
of the area [14]. Indeed, some fungal pathogens can make long distance jumps from one
susceptible host to another just in one growing season by following the direction of the
prevailing winds. For example, this is the case for oomycetes, responsible for tobacco blue
mold and cucurbit downy mildew [10].

Generally, the release of fungal spores is highly dependent on climatic factors [15]
which affect the abundance of fungal spores in the atmosphere of different geographical
regions [16–18]. For the release of fungal spores, some fungi require rather humid air
conditions, whereas others favor dry and windy conditions. For example, the mean air
temperature, relative humidity, and wind speed are known to be factors that determine
the spore release and distribution of Alternaria, Cladosporium, Drechslera-type, Epicoccum,
and Torula fungi [19–21]. Thus, the dynamics of microbiome in the atmosphere appears
to be governed by a combination of air movement, spore production, climatic factors,
local vegetation sources, and anthropological activities such as agriculture and large-scale
composting [18], all of which affect fungal growth and sporulation. The effect of each
factor varies by fungal species, with the complex dynamics not fully understood, even for
fungi causing various plant diseases [22]. Seasonal dynamics and life cycles of fungal foliar
endophytes, tree pathogens or mycorrhizal fungi can demonstrate their specificity and
adaptations for spread as this can be reflected in the aerial spore composition [23]. It was
found that the composition of spores in the air may depend on how the different fungal
species interact with their hosts, and the release of fungal spores may often coincide with
the growing activity of their hosts [24,25].

Despite attempts to study the movement of microorganisms in the atmosphere be-
tween different geographical locations [21], seasonal patterns of fungi in the air are still
scarce [13,26]. Such studies are often aimed at detecting the presence of fungal spores,
which may have an adverse effect on humans or animals [27–29]. However, the atmosphere
may also contain various plant pathogenic fungi whose airborne spores may play a crucial
role in plant disease dispersal [30–32]. Indeed, many economically important diseases of
forest trees and agricultural crops have airborne propagules and may disperse rapidly, and
over relatively large distances [33,34]. On the other hand, most fungal spores fall close to
their fruitbodies [35] and captured spores largely reflect site-specific and local diversity
of fungi [23]. Apart from Glomales, Chytridiomycota, and many Gasteromycetes, most
fungi disperse by airborne spores [36], forming a large proportion of the fungal diversity in
natural ecosystems [23].

The aim of the present work was to study seasonal and site-specific patterns of airborne
fungal diversity, focusing on plant pathogens.

2. Materials and Methods
2.1. Study Sites and Sampling

The sampling of fungal spores was carried out for twelve months, i.e., between
September 2017 and August 2018. In order to examine the possible site-specific fungal
communities and their variation during the sampling season. Study sites were selected
in three different locations situated in western (Lenkimai), central (Dubrava), and eastern
(Labanoras) Lithuania (Figure 1). The distance between different sites was at least 150 km.
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Study sites (within a radius of 200 m) at Labanoras and Lenkimai were of similar forest
type, namely composed of ca. 100-year-old Pinus sylvestris trees with Corylus avellana
and Juniperus communis in the understory. The ground vegetation consisted of Vaccinium
myrtillus, Vaccinium vitis-idaea, Calluna vulgaris, and Poaceae sp. By contrast, the forest at
the Dubrava site was composed of ca. 70-year-old Alnus incana, Betula pendula, and Alnus
glutinosa trees. The ground vegetation was composed of Melampyrum nemorosum, Hepatica
nobilis, and Dryopteris sp.
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At each site, fungal spores were collected using a passive spore trap with a filter pa-
per [37,38]. Specifically, each trap consisted of a 9 cm diameter Munktell filter paper (made 
of cotton linters, particle retention 5 to 6 μm, grade 1F) (Ahlstrom-Munksjö, Stockholm, 
Sweden), which was placed in between two 10 × 10 cm stainless steel grills (mesh size 1 × 
1 cm), which were horizontally attached to a 1.5 m-long stick to anchor the trap into the 
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Figure 1. Map of Lithuania (position on the north European map is shown in the lower left corner)
showing distribution of forests and tree species (colors of different tree species are shown in the lower
right corner). Study sites are indicated by black circles and numbered: 1—Labanoras (N 55◦14′3.38′′,
E 25◦33′21.81′′), 2—Dubrava (N 54◦51′47′′, E 24◦4′0.75′′), and 3—Lenkimai (N 56◦11′1.99′′, E
21◦18′42.23′′). The map was reproduced with permission from FORESTGEN, www.forestgen.mi.lt
(accessed on 25 January 2023).

At each site, fungal spores were collected using a passive spore trap with a filter pa-
per [37,38]. Specifically, each trap consisted of a 9 cm diameter Munktell filter paper (made
of cotton linters, particle retention 5 to 6 µm, grade 1F) (Ahlstrom-Munksjö, Stockholm,
Sweden), which was placed in between two 10 × 10 cm stainless steel grills (mesh size
1 × 1 cm), which were horizontally attached to a 1.5 m-long stick to anchor the trap into
the ground (Figure 2).

After installing the filter paper, the upper and lower grills were tightened together
using clips. At each site, the trap was placed at a height of ca. 1 m above the ground and
approx. 100 m from the forest edge. Filters with deposited fungal spores were collected
every 7–10 days [39] during a period of 12 months, resulting in a total of 146 samples.
Collected samples with fungal spores were labelled, packed into plastic bags, transported
to the laboratory, and stored at −20 ◦C before further processing.

The climate data, i.e., air temperature and precipitation, were obtained from the
meteorological stations nearest to each study site.

www.forestgen.mi.lt
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2.2. DNA Extraction, PCR Amplification and Sequencing

In the laboratory, samples with fungal spores were freeze-dried (Labconco FreeZone
Benchtop Freeze Dryer, Cole-Parmer, Vernon Hills, IL, USA) at −60 ◦C for 24 h. For
isolation of DNA, half of each filter paper was taken, cut into smaller pieces, and placed
into three 2 mL screw-cap centrifugation tubes together with sterile 3 glass beads, which
were 3 mm in diameter. The remaining materials were stored at −20 ◦C as a backup. A
total of 438 sub-samples (146 samples × 3 replicates = 438) were used for isolation of DNA.
Prepared samples were homogenized for 2 min at 4500 rpm using Precellys-24 biological
sample homogenizer (Bertin Technologies, Montigny-le-Bretonneux, France). Total DNA
was extracted by adding to each centrifugation tube 1000 µL of CTAB buffer (0.5 M EDTA
pH 8.0, 1 M Tris-HCL pH 8.0, 5 M NaCl, 3% CTAB) followed by incubation at 65 ◦C for
1 h. After centrifugation, the supernatant was mixed with an equal volume of chloroform.
2-Propanol was used to precipitate the DNA into a pellet. The pellet was washed in 500 µL
70% ethanol, dried and dissolved in 30 µL of sterile milli-Q water. All sub-samples from
the same filter paper were pooled together, resulting in a total of 146 DNA samples. The
concentration of DNA was measured using a NanoDrop One spectrophotometer (Thermo
Scientific, Rodchester, NY, USA) and adjusted to 10 ng/µL.

Amplification of ITS2 rRNA region was carried out using a fungal specific primer
gITS7 [40] and a universal primer ITS4 [41], both containing sample identification barcodes.
PCR reactions were performed in 50 µL reactions and included 0.25 ng/µL of template
DNA, 200 µM of dNTPs, 750 µM of MgCl2, 0.025 µM polymerase (5 U/µL) (DreamTaq
Green, Thermo Scientific, Waltham, MA, USA), and 200 nM of each primer. Amplifications
were carried out using the Applied Biosystems 2720 thermal cycler (Waltham, MA, USA).
The polymerase chain reaction (PCR) conditions included an initial denaturation step
at 95 ◦C for 5 min, which was followed by 27 cycles of denaturation at 95 ◦C for 30 s,
annealing at 56 ◦C for 30 s and 72 ◦C for 30 s. The final extension step was at 72 ◦C for
7 min. The PCR products were examined on 1.5% agarose gel stained with Nancy-520 using
gel electrophoresis system (Sigma-Aldrich, Stockholm, Sweden). The purification of PCR
products was conducted using 3 M sodium acetate (pH 5.2) (Applichem GmbH, Darmstadt,
Germany) and 96% ethanol mixture (1:2). The quantification of purified PCR products was
carried out using a Qubit fluorometer 4.0 (Life Technologies, Sweden). High-throughput
sequencing of amplified samples, which were pooled in an equimolar mix, was achieved
using the PacBio RSII platform and two SMRT cells (SciLifeLab, Uppsala, Sweden).
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2.3. Bioinformatics

The sequences produced were quality-filtered and subjected to clustering using SCATA
NGS sequencing pipeline (http://scata.mykopat.slu.se (accessed on 16 January 2023)).
Quality filtering of the sequences was performed by removal of short sequences (<200 bp),
sequences with low mean read quality, primer dimers, and homopolymers, which were
collapsed to 3 base pairs (bp) before clustering. The sequences that were missing a barcode
or primer were removed. Following quality filtering, the sequences were clustered into
different taxa using single linkage clustering based on 98% similarity, which was selected
following several preliminary clustering runs. For each cluster, the most common genotype
(real read) was used to represent each taxon. For clusters containing two sequences, a
consensus sequence was produced. The GenBank (NCBI) database and the Blastn algorithm
were used for taxonomic identification of different taxa. The following criteria were used for
identification: sequence coverage > 80%, similarity to taxon level 98–100%, and similarity
to genus level 94–97%. Sequences deviating from these criteria remained unidentified and
were given unique names. Representative sequences of fungal non-singletons are available
from GenBank under accession numbers MW757346–MW757980.

Fungal functional groups were assigned using the FUNGuild database (version
1.1) [42], and, if needed, were further refined using information at the MycoBank database.
In the case where the fungus had two possible functional groups, it was classified based on
the FUNGuild categorization.

2.4. Statistical Analyses

The rarefaction analysis was carried out using Analytical Rarefaction v.1.3 available at
http://www.uga.edu/strata/software/index.html (accessed on 16 January 2023). Differ-
ences in the richness of fungal taxa at three study sites (Dubrava, Labanoras, and Lenkimai)
were compared using the nonparametric chi-square test [43]. The qualitative Sørensen
similarity index, the Shannon diversity index (H-index), and principal coordinates analysis
(PCA) in Canoco v.5.02 (Microcomputer Power, Ithaca, NY, USA) were used to characterize
the diversity and composition of airborne fungal communities [43,44]. Permutational mul-
tivariate analysis of variance (PERMANOVA) with the Bray–Curtis distance metric, using
adonis2 function from the vegan package [45] in R [46], was used to assess the significance
of fungal community similarity among different study sites. Using the nonparametric
Mann–Whitney test in SAS v. 9.4 (Cary, NC, USA), we tested if the Shannon diversity index
among different study sites was statistically similar or not. Correlation analysis was carried
out to reveal the relationship between the obtained high-quality sequences or fungal taxa
and climatic factors (temperature and precipitation) using SAS v. 9.4 (Cary, NC, USA).

3. Results

A total of 652,193 sequences (403 bp on average) was generated by PacBio sequencing.
Quality filtering showed that 283,006 (43.4%) sequences were of high-quality and were
retained, while the remaining 362,399 (56.6%) low quality sequences were removed from
further analyses. Clustering of high-quality sequences resulted in 808 non-singletons and
5367 singletons, which were excluded.

Among the non-singletons, 805 (99.9%) represented fungi (Table S1). The climatic data,
the number of fungal sequences, the number of fungal taxa, and the H-diversity from each
study site are presented in Table 1.

A plot of fungal taxa from three sampling sites vs. the number of fungal sequences
resulted in rarefaction curves that approached the asymptote (Figure 3). When the same
number of sequences was taken from each site, species richness was significantly higher in
Labanoras and Lenkimai than in Dubrava (p < 0.0001). In a similar comparison, Labanoras
and Lenkimai did not differ significantly from each other (p > 0.05). Ascomycota was the
most dominant phylum, which accounted for 467 (53.4%) of fungal taxa of the study, fol-
lowed by 331 (46.5%) taxa of Basidiomycota, and 7 taxa (0.1%) belonging to Mucoromycota
and Chytridiomycota.

http://scata.mykopat.slu.se
http://www.uga.edu/strata/software/index.html
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Table 1. Generated high-quality fungal sequences and detected diversity of fungal taxa in spore
trap samples from Labanoras, Dubrava, and Lenkimai sites in Lithuania. The temperature and
precipitation data show average values for the sampling period. Shannon diversity index is denoted
by H-diversity.

2017 2018
IX X XI XII I II III IV V VI VII VIII Avg./Total

La
ba

no
ra

s Temperature. ◦C 13.2 6.9 3.5 0.9 −1.9 −6.9 −2.4 5.2 15.7 16.7 19.7 18.6 6.8
Precipitation, mm 76 87 54 55 60 19 24 32 38 29 76 60 610
No. of sequences 13,016 21,939 11,160 10,897 11,757 7123 11,504 13,890 13,219 12,427 4020 12,805 143,757
No. of fungal taxa 55 106 68 75 143 60 132 69 123 107 96 149 532

H-diversity 2.39 2.90 2.57 2.49 2.89 2.30 2.63 2.50 2.69 3.23 3.04 3.40 3.64
Temperature. ◦C 13.4 7.6 3.9 1.1 −1.6 −5.8 −1.8 5.6 17.3 17.5 20.2 19.1 7.4

Precipitation, mm 87 111 45 74 58 24 23 36 18 58 138 66 737
No. of sequences 11,139 8976 15,279 7127 7574 6575 3103 8805 8785 7864 8499 4257 97,983
No. of fungal taxa 38 19 27 28 53 32 16 43 32 34 29 25 183D

ub
ra

va

H-diversity 2.82 2.21 2.57 2.39 2.85 2.50 1.79 2.73 2.33 2.44 2.32 2.41 3.49

Le
nk

im
ai

Temperature. ◦C 12.7 7.1 4.0 1.6 −1.0 −6.2 −2.1 5.4 16.2 16.3 20.3 18.5 7.1
Precipitation, mm 145 97 87 71 47 15 16 48 22 24 78 60 710
No. of sequences 4108 5854 5572 1772 5189 2216 487 3822 2218 - 3339 6689 41,266
No. of fungal taxa 132 187 49 81 33 5 2 81 32 - 35 116 411

H-diversity 3.28 3.51 2.47 2.33 2.75 1.16 0.01 2.66 2.20 - 1.22 2.83 3.65
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Figure 3. Rarefaction curves showing the relationship between the cumulative number of fungal taxa
and the number of ITS2 rRNA sequences from three sampling sites.

Among all fungal taxa, 276 (34.2%) were exclusively found in Labanoras, 89 (11.2%) in
Dubrava, 169 (20.1%) in Lenkimai, and only 50 (6.3%) were common to all sites (Figure 4A).
There were 177 shared fungal taxa between Lenkimai and Labanoras, 29—between La-
banoras and Dubrava, and 15—between Lenkimai and Dubrava (Figure 4A). At all study
sites, 45 plant pathogenic fungi were detected and six of these were shared among all study
sites (Figure 4B). There were 15 unique plant pathogenic fungi at the Labanoras site, and
four unique plant pathogenic fungi at both the Dubrava and Lenkimai sites (Figure 4B).
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The distribution and relative abundance of fungal classes varied among differed sam-
pling sites and the four seasons of the year (Figure 5). Over the whole year, the most
dominant fungal classes at Lenkimai were Tremellomycetes (33.2%), Dothideomycetes
(15.1%), and Leotiomycetes (13.0%), at Labanoras—Tremellomycetes (37.1%) and Doth-
ideomycetes (24.5%), while at Dubrava—Dothideomycetes (23.8%), Malasseziomycetes
(15.5%), Eurotyomycetes (14.3%), Tremellomycetes (10.3), and Agaricomycetes (10.3%)
(Figure 5).

Identification, at least to genus level, was successful for 495 (60.6%) out of 805 fungal
taxa. Information on the 10 most common fungal taxa in each sampling site, representing
59.8–65.5% of all high-quality fungal sequences per site, is presented in Table 2. Among
these, two fungal taxa in Labanoras, two in Dubrava, and three in Lenkimai could not be
identified at the species or genus level (Table 2).

The most common fungi in Labanoras were Hannaella coprosmae (23.2%), Leucosporidium
drummii (8.5%), and Epicoccum nigrum (5.5%); in Dubrava—Cladosporium macrocarpum
(16.0%), Penicillium chrysogenum (10.9%), and Unidentified sp. 4258_1 (10.7%); in Lenkimai—
H. coprosmae (24.3%), Unidentified sp. 4258_8 (9.2%), and E. nigrum (5.7%) (Table 2).

The chi-square test showed that the relative abundance of the 10 most common fungal
taxa varied greatly among the three sampling sites (Table 2). For example, the relative
abundance of E. nigrum and Protomyces inouyei was significantly higher in Labanoras and
Lenkimai than in Dubrava (p < 0.05). The relative abundance of Unidentified sp. 4258_7
was significantly higher in Dubrava than in the other two sites (p < 0.05). The relative
abundance of Unidentified sp. 4258_8 was significantly higher in Lenkimai than in the
other two sites (p < 0.05).

Information on the 10 most common plant pathogenic fungal taxa, representing
between 1.6% and 14.6% of all high-quality fungal sequences per each site, is presented
in Table 3. The most common plant pathogenic fungi at Labanoras and Lenkimai were
P. inouyei (4.9% and 4.4%, respectively) and S. polyspora (2.3% and 1.3% respectively), while
at Dubrava they were Erysiphe heraclei (0.5%) and Fusarium sacchari (0.4%) (Table 3).

The assessment of fungal functional groups showed that the great majority of fungal
taxa could not be assigned to any functional group, primarily because they could not
be identified. Among the remaining taxa, 10.2–18.6% per each site constituted plant
pathogenic fungi, 13.2–24.6%—saprotrophs and 0.0–1.8% mycorrhizal fungi (Figure 6). In
terms of sequence reads, the distribution of fungal functional groups differed substantially
as compared to fungal taxa (Figure 6). Consequently, fungi of unknown functional group
constituted 40.9–73.2% of reads per different sites, pathogens—5.8–28.9%, saprotrophs—
19.2–50.7%, and mycorrhizal fungi—0.0–0.6%.

The correlation analysis of sequence reads vs. climate data showed that precipitation
had a more profound impact on the number of generated sequences (R2 = 0.0206, p < 0.01)
than had air temperature (R2 =0.0021, p < 0.05) (Figure 7A,C). The analysis also showed the
significantly positive correlation between the richness of fungal taxa and air temperature
(R2 = 0.0258, p < 0.05) or precipitation (R2 = 0.0538, p < 0.001) (Figure 7B,D).

Principal coordinate analysis (PCA) of fungal communities explained 16.4% variation
on Axis 1 and 6.8% on Axis 2. The PCA showed that fungal communities from the same
sampling site were more or less well clustered together (Figure 8). Although fungal
communities at Labanoras and Lenkimai sites were largely overlapping, they differed
significantly from each other (p < 0.03) (Figure 8). Furthermore, fungal communities at
both Labanoras and Lenkimai sites were largely separated (on Axis 1) from those at the
Dubrava site (p < 0.0001) (Figure 8). The Sørensen similarity index of fungal communities
was as follows: Labanoras vs. Dubrava—0.22 (low), Lenkimai vs. Dubrava—0.22 (low),
and Labanoras vs. Lenkimai—0.48 (moderate). The Shannon diversity index of fungal
communities ranged between 2.3 and 3.4 at Labanoras, between 1.79 and 2.85 at Dubrava,
and between 0.01 and 3.51 at Lenkimai (Table 1). Despite this variation, the Shannon
diversity index did not differ significantly among different sampling sites (p > 0.05).
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Table 2. Occurrence and relative abundance of the 10 most common fungal taxa (shown as a proportion of all high-quality fungal sequences) from spore trap
samples collected between September 2017 and August 2018 in Labanoras, Dubrava, and Lenkimai sites.

2017 2018

Phylum Fungal Taxa Genbank
Reference

Compared,
bp/Similarity, % IX X XI XII I II III IV V VI VII VIII All

La
ba

no
ra

s

Basidiomycota Hannaella coprosmae KY460840 217/218 (99) 21.98 17.44 23.19 22.16 35.03 38.76 16.57 24.15 32.35 15.12 11.19 23.09 23.23
Basidiomycota Leucosporidium drummii MK679580 234/234 (100) 3.09 10.86 0.58 0.73 6.61 15.09 22.51 11.32 7.94 0.47 25.52 8.62 8.47

Ascomycota Epicoccum nigrum MH102081 249/249 (100) 0.65 0.33 0.72 20.26 1.54 5.88 6.48 10.32 7.88 6.22 14.25 2.61 5.53
Ascomycota Protomyces inouyei KX067824 261/261 (100) 0.63 0.16 8.06 2.01 0.70 - 1.39 20.03 11.93 9.25 - 1.38 4.98
Ascomycota Cladosporium macrocarpum MK690548 243/243 (100) 2.64 5.28 7.10 0.01 3.73 3.24 4.59 3.70 10.38 1.76 5.70 4.80 4.48

Basidiomycota Vishniacozyma dimennae KY105820 247/247 (100) - 3.88 5.55 13.35 3.21 - 0.02 4.59 4.06 2.23 0.17 0.09 3.32
Ascomycota Candida parapsilosis MK638869 218/218 (100) 29.47 - - - - - - - - - - - 2.67
Ascomycota Aureobasidium pullulans MK686043 249/249 (100) 0.17 - 0.46 0.37 0.07 1.63 18.28 1.81 0.53 0.13 0.80 6.18 2.44
Ascomycota Unidentified sp. 4258_20 MG827923 243/243 (100) - 11.71 7.61 - - - - - - - - - 2.38

Basidiomycota Unidentified sp. 4258_1 MH451188 369/369 (100) 5.85 1.40 0.91 1.70 3.11 3.44 0.79 0.75 0.39 3.54 0.97 5.22 2.34
Total Labanoras 64.47 51.05 54.18 60.59 53.99 68.05 70.63 76.69 75.46 38.73 58.61 52.00 59.83

D
ub

ra
va

Ascomycota Cladosporium macrocarpum MK690548 243/243 (100) 10.63 8.69 11.58 21.24 6.89 28.17 - 11.22 30.86 8.95 30.80 24.83 16.02
Ascomycota Penicillium chrysogenum MK696383 258/258 (100) 1.18 31.47 9.50 7.90 17.53 5.63 2.06 4.52 17.19 15.41 7.09 4.77 10.88

Basidiomycota Unidentified sp. 4258_1 MH451188 369/369 (100) 12.90 11.82 9.78 13.23 13.97 13.72 22.24 3.98 2.98 9.30 9.70 17.62 10.72
Basidiomycota Unidentified sp. 4258_7 KX222221 302/302 (100) 0.66 11.33 5.88 4.42 4.96 2.56 45.38 14.21 3.63 2.81 8.31 4.72 7.10

Ascomycota Debaryomyces hansenii MH595408 288/288 (100) 3.01 15.14 16.47 - - 2.27 - 0.86 0.18 0.78 2.06 - 4.78
Basidiomycota Leucosporidium drummii MK679580 234/234 (100) - - 14.71 7.82 10.42 - - 6.73 1.79 - - - 4.43
Basidiomycota Hannaella coprosmae KY460840 217/218 (99) - - 3.73 1.25 - 4.78 - 1.83 - 16.15 20.65 0.23 4.25
Basidiomycota Malassezia sympodialis LT671825 327/327 (100) 1.21 3.35 0.19 3.23 4.61 1.02 13.57 2.40 0.57 1.59 4.28 4.70 2.53

Ascomycota Alternaria alternata MH892844 253/253 (100) 15.17 - 3.12 - - - - 1.42 0.17 - 0.14 - 2.37
Ascomycota Epicoccum nigrum MH102081 249/249 (100) 2.78 - 2.05 1.70 3.54 5.25 - - 0.24 4.92 - 12.99 2.37

Total Dubrava 47.54 81.81 77.02 60.78 61.92 63.38 83.24 47.17 57.61 59.91 83.03 69.86 65.45

Le
nk

im
ai

Basidiomycota Hannaella coprosmae KY460840 217/218 (99) 4.58 25.67 40.08 37.02 6.92 15.12 - 32.08 20.83 48.55 21.51 24.29
Ascomycota Unidentified sp. 4258_8 MG827641 244/244 (100) - 0.12 3.54 9.88 4.41 33.75 - 1.65 1.13 38.78 15.94 9.22
Ascomycota Epicoccum nigrum MH102081 249/249 (100) 2.22 3.91 1.04 1.19 14.72 46.44 - - 1.40 0.27 1.91 5.72
Ascomycota Protomyces inouyei KX067824 261/261 (100) - 1.83 9.92 22.74 11.51 - - 0.86 0.14 0.24 1.49 4.37

Basidiomycota Leucosporidium drummii MK679580 234/234 (100) 7.08 8.76 - 1.02 - - - 15.67 - 1.26 4.05 4.20
Ascomycota Candida palmioleophila KC111442 288/288 (100) 0.07 - 3.30 - 16.34 - - 6.10 1.22 - - 3.14
Ascomycota Cladosporium macrocarpum MK690548 243/243 (100) 2.68 1.35 1.17 3.50 1.08 - 0.21 0.13 0.99 2.40 11.94 3.10

Basidiomycota Unidentified sp. 4258_29 MG827488 289/295 (98) 0.29 0.26 1.44 0.34 - 0.14 - - - 6.23 10.72 2.52
Ascomycota Penicillium chrysogenum MK696383 258/258 (100) - - 0.09 - 7.65 - - 7.51 2.84 - 2.08 2.16

Basidiomycota Unidentified sp. 4258_1 MH451188 369/369 (100) 0.56 5.40 3.50 1.19 4.10 - - 0.03 0.14 - 0.22 1.91
Total Lenkimai 17.48 47.30 64.07 76.86 66.74 95.44 0.21 64.02 28.67 - 97.72 69.88 60.63
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Table 3. Occurrence and relative abundance of the 10 most common plant pathogenic fungal taxa (shown as a proportion of all high-quality fungal sequences) from
fungal spore trap samples collected between September 2017 and August 2018 in Labanoras, Dubrava, and Lenkimai sites.

2017 2018

Phylum Fungal Taxa Genbank
Reference

Compared,
bp/Similarity, % IX X XI XII I II III IV V VI VII VIII All

La
ba

no
ra

s

Ascomycota Protomyces inouyei KX067824 261/261 (100) 0.63 0.16 8.06 2.01 0.70 - 1.39 20.03 11.93 9.25 - 1.38 4.98
Ascomycota Sydowia polyspora MG888613 256/256 (100) 4.74 0.01 0.24 0.24 0.04 12.72 7.86 1.32 2.94 - 0.97 1.36 2.28
Ascomycota Ramularia coleosporii MH974744 237/237 (100) 1.10 1.22 20.56 0.34 1.91 0.11 0.12 0.71 0.10 0.39 - 0.41 2.23
Ascomycota Oculimacula acuformis MH861289 241/242 (99) - 13.70 - - 0.01 - 0.01 - - 0.01 - - 2.09
Ascomycota Fusarium lateritium MK633904 258/258 (100) 1.82 0.62 2.15 1.62 0.10 - 2.67 1.01 0.04 5.65 0.70 0.57 1.43
Ascomycota Fusarium graminearum MK212898 245/245 (100) - - 0.12 0.67 - - - 0.60 - 3.15 1.17 0.15 0.44

Basidiomycota Fomes fomentarius MF563980 286/286 (100) - 1.73 - - - - - - - - - - 0.26
Ascomycota Gremmeniella abietina MH857809 237/237 (100) - - - - - - 0.36 2.15 0.14 - 0.02 - 0.25

Basidiomycota Resinicium bicolor MF511087 291/291 (100) 0.05 0.57 - - 1.90 - - - - - - - 0.25
Basidiomycota Piptoporus betulinus MH856908 296/296 (100) 2.35 - - - - - - - - - - - 0.21

Ascomycota Lophodermium pinastri MH856647 239/239 (100) - 0.77 0.01 0.15 0.03 0.29 0.01 - 0.24 - 0.07 0.21 0.19
Total Labanoras 10.69 18.78 31.14 5.03 4.68 13.13 12.41 25.82 15.39 18.45 2.94 4.08 14.61

D
ub

ra
va

Ascomycota Erysiphe heraclei MK571420 274/274 (100) - - 2.26 - - - - - - - - 4.30 0.54
Ascomycota Fusarium sacchari MK713417 246/246 (100) - - - 5.81 - - - - - - - - 0.42

Basidiomycota Stereum sanguinolentum MH071730 294/294 (100) - - - - - 5.02 - - - - - - 0.34
Ascomycota Protomyces inouyei KX067824 261/261 (100) - - - - - - - 1.53 - - - - 0.14
Ascomycota Fusarium lateritium MK633904 258/258 (100) - - - - 0.83 - - - - - - - 0.06

Basidiomycota Chondrostereum purpureum MK788300 308/308 (100) - - - - - - - - 0.67 - - - 0.06
Ascomycota Ramularia coleosporii MH974744 237/237 (100) 0.01 - - - 0.11 - - - - - - - 0.01
Ascomycota Plectosphaerella cucumerina MK079567 263/263 (100) - - - - 0.09 - - - - - - - 0.01
Ascomycota Botrytis cinerea MH346332 240/240 (100) - - - - - - - - 0.05 - - - 0.004

Basidiomycota Ganoderma adspersum MN945139 293/293 (100) - - - - - - - 0.05 - - - - 0.004
Total Dubrava 0.01 - 2.26 5.81 1.03 5.02 - 1.58 0.72 - - 4.30 1.58

Le
nk

im
ai

Ascomycota Protomyces inouyei KX067824 261/261 (100) - 1.83 9.92 22.74 11.51 - - 0.86 0.14 - 0.24 1.49 4.37
Ascomycota Sydowia polyspora MG888613 256/256 (100) 4.92 0.43 - - 1.77 - - 0.16 6.18 - 0.06 1.05 1.29
Ascomycota Fusarium lateritium MK633904 258/258 (100) 0.44 2.60 - 0.11 - - - - - - 0.09 4.16 1.10
Ascomycota Ramularia coleosporii MH974744 237/237 (100) 4.80 3.14 - 0.06 - - - - - - 0.24 0.09 0.96
Ascomycota Lophodermium pinastri MH856647 239/239 (100) 0.19 0.03 3.46 1.81 0.17 - - 0.03 - - - - 0.59
Ascomycota Pyrenophora tritici-repentis AM887511 253/254 (99) - - - - - - - 1.94 - - - - 0.18
Ascomycota Botrytis cinerea MH346332 240/240 (100) - 0.29 - - - - - 1.28 - - - - 0.16
Ascomycota Taphrina nana MH857501 293/293 (100) - 0.84 - - - - - - - - - - 0.12
Ascomycota Heterotruncatella spartii MK012418 245/245 (100) 0.66 0.26 - 0.11 - - - - - - - - 0.11

Basidiomycota Exobasidium maculosum KR262418 288/288 (100) - 0.68 - 0.06 - - - - - - - - 0.10
Total Lenkimai 11.00 10.10 13.39 24.89 13.45 - - 4.26 6.31 - 0.63 6.79 8.98
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Figure 8. Ordination diagram based on principal coordinate analysis (PCA) of fungal communities
from fungal spore traps collected between September 2017 and August 2018 at Labanoras (Orange),
Dubrava (Grey), and Lenkimai (Pink) sites. Each point in the diagram represents a single sample and
the size of each point reflects the relative richness of fungal taxa.

4. Discussion

Early detection of native and invasive pathogens and identification of changes in their
abundance is an important component of forest biosecurity. Since dispersal by air is one
of the main mechanisms for many fungal species to spread and reach new susceptible
hosts, spore monitoring enables effective tracking of airborne fungal communities and
prediction of the risk of new disease outbreaks in agriculture and forestry. In the present
study, we characterized the diversity, composition, and specificity of fungal communities
deposited in spore traps from the three forest sites using high-throughput DNA sequencing.
Our study demonstrated that airborne fungal communities are influenced by a complex of
abiotic and biotic factors.

Results showed that the diversity and composition of fungal communities were largely
driven by the site conditions (Figures 3–5 and 8), thereby corroborating Redondo et al. [47]
that vegetation type determines the local spore deposition. Indeed, fungal communities
at the Lenkimai and Labanoras sites, which were dominated by P. sylvestris trees, were
similar in fungal species composition and richness (Figures 2–5 and 8). By contrast, the
fungal community at the Dubrava site, which was dominated by deciduous trees, showed
generally different fungal species composition and lower species richness (Figures 5 and 8).
There was also a seasonal variation in the abundance and composition of trapped fungi
(Table 1, Figure 5), which can probably be explained by seasonal changes in ground
vegetation cover and local climate conditions [48].

Indeed, temperature and precipitation were found to have a significant impact on
the detected fungal diversity (Figure 6). As climatic conditions change during the year,
in addition to other factors, climatic conditions likely affect the seasonal dynamics of the
airborne fungi. Other studies have also identified seasonal changes in the composition of
fungal communities [47,49,50]. Although previous studies have shown that temperature
is an important factor determining fungal spore production, release, and abundance in
the air [51,52], in the present study, precipitation was found to be an important factor
that can have a direct effect on spore deposition. In addition, precipitation may trigger a
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rapid discharge of fungal spores for some fungal species or may provide the humidity [52]
required for spore maturation [53].

Nicolaisen et al. [49] found similar fungal communities in the air across northwestern
Europe, indicating that the location explained only 8% of the variation between airborne
fungal communities. This was even though some fungi (polypores or corticoid fungi) were
highly specific for some locations [49]. Interestingly, it was shown that clear differences and
separation of fungal communities can be found in the decomposing wood of deciduous
and coniferous trees [54,55]. As there was a higher relative abundance of saprotrophic fungi
in the deciduous forest of Dubrava site vs. P. sylvestris forests at Labanoras and Lenkimai
sites (Figure 6, p < 0.05), this may have contributed to the observed differences in fungal
communities. Furthermore, the relative abundance of dominant fungal pathogens was
lower at the deciduous forest site (Dubrava) than at the coniferous forest sites (Lenkimai
and Labanoras) (Table 3), thereby repeatedly highlighting the specificity of these sites and
the potential impact on the composition of fungal communities.

The most common pathogenic fungus was P. inouyei (Table 3), which is ascomycetous
yeast causing disease on host plants. Kurtzman [56] stated that all known Protomyces spp.
have hosts in Apiaceae, Compositae, Umbelliferae, and other plants. Protomyces inouyei
induces gall symptoms on stems of Youngia japonica [57,58]. There are several related species
in Lithuania, namely., Hieracium vulgatum, H. murorum, H. umbellatum, that can be potential
hosts of this plant pathogen. These plant species grow in sparse, light, and dry forests
characterized by infertile soils such as present at the Labanoras and Lenkimai sites.

Another pathogenic fungus that was commonly detected at the Labanoras and Lenki-
mai sites, was S. polyspora. S. polyspora is known as an endophyte and/or foliar or seed
pathogen [59,60]. S. polyspora was shown to be responsible for seasonal needle necrosis, a
disease that affects Abies spp. trees in Europe [61] and the USA [62]. In agreement with the
results of the present study, this pathogenic fungus constituted a high proportion (3.5%)
of all sequence reads derived from coniferous forests in Sweden [59]. It appears to have a
broad ecological niche (classified as an endophyte, saprotroph, or even pathogen) and can
also often be transmitted by insects. Due to a broad ecological niche and efficient spread, it
can also be a primary colonizer of woodland litter [63–65].

Among other pathogens, there were three Fusarium species detected that were among
the ten most abundant plant pathogens in all sampling sites (Table 3). Fusarium is a
large cosmopolitan genus of imperfect fungi that includes a number of important plant
pathogens [66]. In the present study, Fusarium lateritium was among the dominant fungal
taxa in all sampling sites (Table 3). It was earlier reported as an agent of nut gray necrosis
on Corylus avellana [67,68] and as a new pathogen damaging fruits of Prunus persica [69].
Fusarium graminearum, detected only at the Labanoras site, is known as a pathogen of
maize, wheat, rice, and barley and is responsible for the disease known as Fusarium head
blight [70]. F. sacchari, that was only found at the Dubrava site, was shown to be associated
especially with maize diseases [71].

The pathogenic fungus E. heraclei, which was also detected in the present study, causes
powdery mildew in several plant species including dill, carrot, and parsley [72]. A higher
abundance of this fungus at the Dubrava site can probably be explained by more intense
agriculture in this geographical area. The disease cycle starts in the spring when ascospores
are dispersed by the wind or water, followed by spore germination on the leaf tissue of
relevant hosts while the disease symptoms appear gradually after that [73].

Although a number of other plant pathogens were also detected, their relative abun-
dance was relatively low (Table 3). The study revealed the presence of Chondrostereum
purpureum and Ganoderma adspersum at the Dubrava site, Piptoporus betulinus at the La-
banoras site, and Exobasidium maculosum at the Lenkimai site. Plant pathogen C. purpureum
is a causative agent of silver leaf disease in fruit trees such as plum, apple, apricot, and
cherry and can also infect many species of the Rosaceae family. E. maculosum is a causal
agent of the leaf and fruit spot disease of blueberry [74]. Furthermore, Gremmeniella abi-
etina, which was exclusively detected at the Labanoras site, is known as one of the most
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serious coniferous tree pathogens in the Northern hemisphere [75]. Gremmeniella abietina
attacks different coniferous tree species, including Picea abies, Pinus contorta, and P. sylvestris,
causing dieback of shoots and buds, and forming cankers on stems and branches [76,77].
In the present study, G. abietina was most abundant in the spring, especially in April,
but apart from July, it was undetected for the rest of the year. However, Laflamme and
Archambault [78] showed that the spore dispersal of G. abietina started in the middle of
July and ended in October, with a peak of spore release during the first three weeks of
August. The temperature was shown to have no direct effect on the release of G. abietina
spores, but there was a strong correlation between the relative humidity, rain, and spore
dispersal [78,79]. In addition, among 45 plant pathogenic fugal taxa detected in the present
study, there were also several important tree pathogens including Fomes fomentarius, which
causes white rot to forest trees [80], Heterobasidion annosum, which causes root rot mainly to
Pinus spp. and Picea spp. trees [81], Hymenoscyphus fraxineus, which causes ash dieback [82],
and Dothistroma septosporum, which causes needle blight of Pinus spp. trees [83]. Similar
composition of fungal pathogens in forest ecosystems were reported by Candelier et al. [84].
However, in the present study the relative abundance of these fungal pathogens was very
low (Table S1), thereby making analyses on their seasonal occurrences, site specificity,
and dependence on climatic factors hardly possible. Although the study revealed that
time of the year (season) influences airborne fungal communities, the results should be
interpreted with caution as long-term observations are needed to infer possible tendences.
Nevertheless, certain seasonal regularities in airborne fungal communities may persist in
different years, while observed variations may depend on the environmental conditions of
the area [85].

5. Conclusions

The diversity and composition of airborne fungal communities was found to largely
depend on the vegetation type of each study site. Although the temperature and precip-
itation were found to have a positive effect on the richness of fungal taxa, the seasonal
effect on the composition of fungal communities was less expressed. The majority of the
identified fungi were saprotrophs, but the presence at each site of different plant pathogenic
fungi demonstrated the relative importance of host plants.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/d15040539/s1. Table S1. The occurrence and relative abundance
of fungal taxa sequenced (shown as a proportion of all high-quality fungal sequences) from spore
trap samples collected between September 2017 and August 2018 in Labanoras, Dubrava, and
Lenkimai sites.
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