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1  |  INTRODUC TION

Environmental change threatens biodiversity worldwide. Five major 
drivers of biodiversity loss have been recognized which are (i) habitat 
destruction, also referred to as land/sea-use change (e.g., deforesta-
tion for agricultural purposes), (ii) overexploitation of natural resources 
(e.g., overfishing), (iii) climate change (e.g., changes in temperature, 
rainfall, and extreme weather events), (iv) invasive alien species in-
cluding new pathogens, and (v) pollution (EC,  2020; IPBES,  2019; 
MEA, 2005). Traditionally, ecologists have focused on the first four 
drivers, while chemical pollution has been addressed mainly with 
regard to eutrophication (i.e., overfertilization with nitrogen and 
phosphorus) and occasionally the toxicity caused by a few selected 
classes of chemicals, most notably pesticides and some metal(loid)s 
(Groh et al., 2022). Similarly, to date, the ecology community has given 
minimal attention to chemical pollution as a global change factor 
(Bernhardt et al., 2017). However, since the “triple crises” of climate 
change, biodiversity loss, and an increasingly toxified natural environ-
ment are deeply interlinked (Baste & Watson, 2022; Secretariats of 
the BRS and MC, 2021a), they should not be addressed in isolation 
but rather need to be researched and acted upon from an integrated 
perspective. Here, we focus specifically on exploring the connections 
between biodiversity and anthropogenic chemical pollution.

Attaining progress in counteracting the negative impact of 
chemical pollution on biodiversity requires that the totality of 

anthropogenic chemicals in the environment be addressed through 
the collective efforts of scientists from different disciplines, including 
but not limited to ecology, ecotoxicology, and environmental chem-
istry (Groh et al., 2022; Sigmund, Ågerstrand, et al., 2022). Crucially, 
recent methodological and conceptual developments in these fields 
have now opened up the possibility of comprehensively tackling this 
complex problem, thus presenting an opportunity to advance a sem-
inal frontier in pollution ecology. Here, we briefly explain how the 
multitude of anthropogenic chemicals and their multifaceted effects 
in the environment pose a growing threat to biodiversity and eco-
systems and discuss possibilities for addressing chemical pollution in 
ecological research on biodiversity loss. Finally, we sketch ways for-
ward for improving interdisciplinary collaborations that could enable 
formative solutions for environmental protection.

2  |  A MULTITUDE OF ANTHROPOGENIC 
CHEMIC AL S

Chemical pollution can have profound and far-reaching effects on 
biodiversity and ecosystem health (Bernhardt et al.,  2017; Groh 
et al., 2022; Rillig et al., 2019; Secretariats of the BRS and MC, 2021a, 
2021b). Among the five major drivers of biodiversity loss, the greatest 
pressure is currently exerted by habitat destruction, whereas contribu-
tions from other drivers have been estimated to be 3–4 times lower 
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Abstract
Climate change, biodiversity loss, and chemical pollution are planetary-scale emergen-
cies requiring urgent mitigation actions. As these “triple crises” are deeply interlinked, 
they need to be tackled in an integrative manner. However, while climate change and 
biodiversity are often studied together, chemical pollution as a global change fac-
tor contributing to worldwide biodiversity loss has received much less attention in 
biodiversity research so far. Here, we review evidence showing that the multifaceted 
effects of anthropogenic chemicals in the environment are posing a growing threat to 
biodiversity and ecosystems. Therefore, failure to account for pollution effects may 
significantly undermine the success of biodiversity protection efforts. We argue that 
progress in understanding and counteracting the negative impact of chemical pollu-
tion on biodiversity requires collective efforts of scientists from different disciplines, 
including but not limited to ecology, ecotoxicology, and environmental chemistry. 
Importantly, recent developments in these fields have now enabled comprehensive 
studies that could efficiently address the manifold interactions between chemicals 
and ecosystems. Based on their experience with intricate studies of biodiversity, ecol-
ogists are well equipped to embrace the additional challenge of chemical complexity 
through interdisciplinary collaborations. This offers a unique opportunity to jointly 
advance a seminal frontier in pollution ecology and facilitate the development of in-
novative solutions for environmental protection.
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but nonetheless substantial (Sánchez-Bayo & Wyckhuys,  2019). For 
example, more than 11,500 out of 83,669 assessed animal species 
are considered to be impacted by pollution in the latest compilation of 
the Red List led by the International Union for Conservation of Nature 
(IUCN, 2022). Another study estimated that from the 20,784 species 
for which detailed Red List data were available, pollution threatened 
18.2%, while habitat destruction, overexploitation, invasive spe-
cies, and climate change impacted 88.3%, 26.6%, 25%, and 16.8% 
of these species, respectively; for 4.7% of species, pollution was the 
main threat (Hogue & Breon, 2022). Most recently, pollution ranked 
third among the five drivers, based on empirical comparisons of driver 
impacts documented through a comprehensive review (Jaureguiberry 
et al., 2022). Additional quantitative evidence has been delivered by 
investigations looking at specific ecosystems. For example, in lowland 
streams in Germany, pesticides were found to be the dominant stress-
ors for vulnerable insects (Liess et al., 2021). However, disentangling 
pollution impacts in a fully comprehensive and quantitative manner 
from the contributions by other factors remains a challenging and 
resource-intensive task, especially in complex ecosystems (Stubbington 
et al., 2022; Weitere et al., 2021). Due to these difficulties, detailed 
quantitative studies are still rare and, thus, remain a future research 
need. Another limitation stems from the narrow scope of pollutants 
considered in most of the assessments available to date, with gross 
nutrients and pesticides receiving the most attention despite a well-
documented environmental presence of a much wider variety of harm-
ful anthropogenic chemicals. Consequently, the impacts of pollution on 
biodiversity and ecosystem health could have been underestimated.

Indeed, by 2022 over 350,000 chemicals and mixtures of 
chemicals had been registered for commercial use worldwide, with 
even more new chemicals expected to appear in the future (Wang 
et al., 2020). Some modern chemicals may exhibit increased toxicity 
for particular groups of plants or invertebrates (Schulz et al., 2021). 
Persson et al.  (2022) summarized that global chemical production 
has increased 50-fold since the 1950s, with an anticipated tripling by 
2050 compared with 2010. Consequently, chemical monitoring stud-
ies worldwide routinely find dozens or even hundreds of anthropo-
genic chemicals in every environmental compartment studied, noting 
the dearth of data from Global South countries (Posthuma, van Gils, 
et al., 2019; Wilkinson et al., 2022). Chemicals that contaminate the 
environment typically occur in mixtures and can include, for example, 
metal(loid)s and organometal(loid) compounds such as chromated ar-
senicals, tributyltin, and methylmercury; organic substances currently 
or previously used in pesticides, pharmaceuticals, consumer products 
or industrial applications, including solvents, per- and polyfluoroalkyl 

substances (PFASs), polychlorinated biphenyls (PCBs), plastic ad-
ditives, as well as substances of unknown or variable composition, 
complex reaction products or biological materials (UVCBs), such as 
petroleum oil or essential oils (Lai et al., 2022; Persson et al., 2022; 
Wang et al., 2021). In line with recommendations elicited by the ac-
ademic community (Mueller et al., 2023), the need to tackle not only 
pesticides but also other hazardous chemicals when developing bio-
diversity protection measures has been recently agreed upon in the 
post-2020 global biodiversity framework (COP15, 2022).

Anthropogenic chemicals present in the environment can stem 
from a myriad of sources, ranging from the intentional application of 
pesticides in agriculture to emissions of chemicals from mining and 
manufacturing sites, to fugitive releases of chemicals from consumer 
products during manufacturing, use, and disposal, and to incidentally 
occurring, highly concentrated chemical plumes from industrial acci-
dents or spills. As shown in Figure 1, the sites of original releases and 
with them the initial rates of environmental contamination can vary 
greatly depending on the geographical location. This variation may 
stem from the differences in the primary location of industrial opera-
tions, such as mining sites in the case of mercury (Figure 1a), but may 
also reflect the differences in resources available for proper chemical 
management, as illustrated in the example of the global prevalence of 
wastewater treatment facilities (Figure 1b). Biodiversity in mid- and 
low-income countries may suffer from higher pollution pressure com-
pared with high-income countries, because of inequalities in capacity 
and resources. This, however, is not always the case. For example, a 
recent modelling study based on the Red List data showed that in the 
tropical regions, biodiversity pressures such as agriculture, hunting, 
and logging were more pronounced than pollution, whereas Europe 
was identified as a hotspot for pollution-induced loss of amphibian 
and mammalian biodiversity (Harfoot et al., 2021).

Since many chemicals are widely and diffusely distributed once 
released, they can become ubiquitous in the environment over time, 
as is illustrated by the global occurrence of, for example, pesticides 
(Silva et al.,  2019), pharmaceuticals (Wilkinson et al.,  2022), PFASs 
(Kurwadkar et al., 2022), PCBs (Jamieson et al., 2017), or chemicals 
associated with (micro)plastics, fibers, and tire wear particles (Tuuri 
& Leterme, 2023; van Sebille et al.,  2015). As a result, the Earth is 
now devoid of “pristine” ecosystems unaffected by anthropogenic 
chemicals. Therefore, any work on pollution ecology needs to rec-
ognize that ambient levels of chemical pollution are never zero but 
rather a baseline stressor that needs to be accounted for in any and all 
ecosystems. Ecologists need to reckon with this ubiquity of pollution 
when designing studies to understand and explain stressor- or global 

F I G U R E  1  Geographical differences in chemical releases across the globe, shown for the example of mercury and wastewater effluents. 
Panel (a) Artisanal gold mining and coal burning are the most important anthropogenic sources of mercury (Hg) emissions, which are then 
atmospherically distributed. Subsequently, microorganisms can transform elemental mercury into methylated Hg, which is highly toxic. The 
figure shows anthropogenic Hg emissions in 2015, as quantified on a global scale by members of the Minamata Convention and compiled in 
the 2018 mercury assessment report by the UN Environment Programme (UNEP, 2018). Panel (b) Wastewater treatment facilities are a crucial 
component of modern chemical management as they allow for reducing nutrient loads and micropollutant contamination of surface water, and, 
consequentially oceans. The proportion of wastewater that is being treated before being released into the environment widely differs between 
different countries, as demonstrated by the values taken from the 2021 report by the United Nations Human Settlements Programme (UN-
Habitat) and World Health Organization (UN-Habitat and WHO, 2021).
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change-affected processes in the environment (Rillig et al., 2022). In 
doing so, they could be helped by knowledge and methods developed 
by ecotoxicologists and environmental chemists, as we will explore 
later.

3  |  MULTIFACETED ECOLOGIC AL 
IMPAC TS OF CHEMIC AL S

Ecosystems are affected by chemical pollution via a multitude of direct 
impacts on exposed organisms, manifesting either as overt toxicity or 
as more subtle, non-lethal effects, as well as a variety of indirect influ-
ences, such as changes in species interactions, trophic chains, or abi-
otic factors (see below and examples in Figure 2a–d). Both direct and 
indirect impacts of pollutants can have negative consequences for bio-
diversity and ecosystem health (Köhler & Triebskorn, 2013). Currently, 
environmental assessment of chemicals focusses almost exclusively 
on three standardized and directly observable toxicity endpoints—
survival, growth, and reproduction of individual organisms—selected 
for being closely linked to population trajectories and, hence, consid-
ered ecologically relevant. Indeed, many environmental pollutants are 
known or suspected to cause strong effects on these endpoints. For 
example, pesticide application can cause acute mortality in sensitive 
species (Berny,  2007; Grilo et al.,  2020), while endocrine-disrupting 
chemicals can affect reproduction not only in humans but also in wild-
life (Bernanke & Köhler, 2009; Marlatt et al., 2022).

However, besides the acute toxicity manifestations, subtle non-
lethal effects, such as developmental malformations, physiological 
alterations, or behavioural changes may also exert significant im-
pacts on both an individual's and the whole population's fitness in 
the natural environment (Brodin et al., 2014; Ford et al., 2021). As an 
example, exposure of European perch to a psychoactive antidepres-
sant was shown to increase their overall activity, causing a higher 
predation risk (Brodin et al., 2013). In juvenile Coho salmon, low lev-
els of copper also increased the fish's vulnerability to predators, but 
via a different mechanism, namely by decreasing its ability to detect 
and respond to chemosensory cues indicating predator presence 
(McIntyre et al.,  2012). Zebrafish larvae were shown to smell the 
presence of certain insecticides in water and actively avoid contam-
inated areas, raising the question of whether chemicals can affect 
fish migratory behaviour as a result (Könemann et al., 2021). Similar 
effects can be expected to unfold in other animal species as well.

Furthermore, even in the cases where chemical exposure does not 
cause any visible effects on exposed organisms, energetic costs in-
flicted by chemical pressure may still need to be considered (Hamilton 
et al., 2017). That is, an organism that needs to expend a part of its re-
sources to counteract chronic chemical exposure may not have enough 
resources to invest in other needs, most notably reproduction, which 
might decrease population viability over time (De Coen & Janssen, 2003). 
Lastly, the development of tolerance as a selective adaptation to chemi-
cal pressure may lead to a decrease in genetic and phenotypic diversity, 
and consequently, a reduced ability to withstand other types of stress-
ors encountered in the future (Abdullahi et al., 2022).

Indirect impacts of pollutants, that is, impacts in the absence 
of direct chemical effects on the organism of interest, may only 
become visible in a certain ecological context, as they depend on 
specific interactions between different groups of organisms within 
and across species or trophic levels. For example, pollutants can 
change the trophic base for some organisms (Gessner & Tlili, 2016; 
Yamamuro et al., 2019) or disrupt social behaviours within an ani-
mal group (Michelangeli et al., 2022). In the two examples discussed 
above, where pollutants directly affected fish behaviour, and these 
behavioural alterations resulted in an increased predation risk for 
fish (Brodin et al., 2013; McIntyre et al., 2012), the co-occurrence of 
predators would be a necessary prerequisite for these direct effects 
of toxicants to manifest as adverse impacts. The end outcome, in this 
case, would thus depend on the interplay between direct and indi-
rect influences, involving both the direct effect (behavioural alter-
ation) and indirect effect (change in species interaction). Differential 
sensitivity of prey and predator species to toxicants is also a com-
mon phenomenon that can indirectly affect species dynamics across 
food webs and lead to changes in community structure (Hébert 
et al., 2021; Prosnier et al., 2015). Indirect effects of pollutants can 
also unfold through alterations in environmental microbiomes, as 
has been shown, for example, in the case of glyphosate (van Bruggen 
et al., 2021).

Of particular concern is the persistence of pollutants in the en-
vironment (Cousins, Ng, et al.,  2019; Schaeffer et al.,  2022). For 
example, PFASs remain in the environment for at least centuries 
after their initial emission, a property for which they are often re-
ferred to as “forever chemicals” (Cousins et al.,  2022). Examples 
of other highly persistent organic chemicals include PCBs, halo-
genated dioxins, and a suite of first-generation synthetic insecti-
cides, such as dichloro-diphenyl-trichloroethane (DDT) and lindane 
(Nizzetto et al., 2010). The use and release of such chemicals result 
in their global distribution (e.g., via long-range atmospheric trans-
port), and a continuous increase of environmental concentrations 
of these substances, even in “pristine” ecosystems such as Arctic, 
Antarctic or high altitudes. As a consequence, any adverse impacts 
occurring on living organisms can be difficult, if not impossible, to 
reverse (Cousins et al.,  2022; Wang et al.,  2017). Many of these 
chemicals bioaccumulate, which means they tend to concentrate 
in living organisms compared with their surrounding environments 
such as water, soil, sediment, or air. Such chemicals can also be 
biomagnified within trophic chains, with top predators typically 
exhibiting the highest accumulated levels (Boisvert et al.,  2019; 
McKinney et al., 2012). While some effects of these chemicals are 
already known (Desforges et al., 2018), other modes of impact and 
their consequences could yet be unknown. Such effects may man-
ifest only after long-term exposure in the future, thus precluding 
the reliable estimation of these chemicals' risks based on currently 
available knowledge (Cousins, Ng, et al., 2019). For these reasons, 
several groups of highly persistent, bioaccumulative, and toxic 
(PBT) organic chemicals have been banned worldwide, notably 
under the Stockholm Convention on Persistent Organic Pollutants 
(POPs; Nizzetto et al.,  2010). However, due to implementation 
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difficulties and multiple exemptions under the convention, as well 
as their inherent persistence, POPs remain present in most ecosys-
tems worldwide as legacy pollutants (Bogdal et al., 2013). Note that 

metals and metalloids are persistent and can also bioaccumulate 
and biomagnify (Córdoba-Tovar et al., 2022) as illustrated by mer-
cury example in Figure 2c.

F I G U R E  2  Examples of complex chemical impacts that were uncovered by interdisciplinary collaborations. Panel (a) In 2021, after 
spending over a decade investigating the high acute mortality of a particular salmon species, Pacific Northwest coho salmon, in urban 
creeks, researchers found that a globally ubiquitous tire rubber additive used as an antioxidant to decrease tire ageing can form a 
transformation product which is highly toxic to this species (Tian et al., 2021). Their discovery established a long-overlooked link coupling 
tire wear from terrestrial sources to effects in aquatic systems. Recently, researchers have also established a link between leachable 
tire wear additives and changes in microbial communities in coastal sediments (Ding et al., 2022), suggesting that tire wear additives can 
cause adverse effects for a wide range of taxa. Panel (b) Broad-spectrum neonicotinoid pesticides are still widely used in many countries 
worldwide (Klingelhöfer et al., 2022). They act by blocking synaptic transmission through interacting with nicotinic acetylcholine receptors 
(Main et al., 2018). While cases of acute poisoning are rare, exposure to low concentrations is of concern because of chronic sublethal 
effects and potential synergistic effects with other stressors (Hladik et al., 2018; Simon-Delso et al., 2015). Extensive adverse impacts on 
multiple non-target species have been documented, including not only honeybees but also many other non-target invertebrates in both 
terrestrial (Main et al., 2018; Pisa et al., 2015) and aquatic (Bartlett et al., 2018; Stepanian et al., 2020; Yamamuro et al., 2019) ecosystems. 
Massive declines in zooplankton were shown to disrupt food webs and, thus, lead to a reduction of fish populations as well (Yamamuro 
et al., 2019). Panel (c) Alluvial gold mining has caused mercury contamination hotspots in tropical ecosystems in South America (Asner 
& Tupayachi, 2016; Gerson et al., 2022) and South-East Asia (Yule et al., 2010), due to the tropical forests' exceptionally high capacity to 
accumulate mercury through air, leading to subsequent soil and water contamination via foliage exchange (Gerson et al., 2022; Teixeira 
et al., 2018). Because of its high biomagnification capacity, Hg concentrations tend to increase in organism at higher tropic levels (e.g., 
fish and birds). Mercury bioaccumulation in fish can be further worsened by forest fires which cause changes in the food web (Kelly 
et al., 2006). Mercury, especially after microbial methylation, is a neurotoxicant known to affect motor abilities and reproduction (Driscoll 
et al., 2013; Evers et al., 2008). By influencing top predators, it causes drastic deterioration of regional food webs (Bisi et al., 2012). Panel 
(d) Coral bleaching has been linked not only to increasing temperatures and ocean acidification (Ateweberhan et al., 2013; Hoegh-Guldberg 
et al., 2017) but also to oxybenzone, a UV filter chemical that is still widely used in sunscreen but is being banned in an increasing number 
of countries (Downs et al., 2022). Herbicides (Flores et al., 2021), nutrients (Donovan et al., 2020) and other chemicals can also contribute 
to coral bleaching (Ouédraogo et al., 2020). As climate change-related stressors and toxic chemical pressure jointly cause bleaching in the 
natural environment, their contributions need to be considered jointly when designing strategies to mitigate coral bleaching (Ouédraogo 
et al., 2020; Watkins & Sallach, 2021; Wear & Thurber, 2015).
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The challenge of managing the unexpected impacts of chemi-
cals on non-target species, exposed through food chains or by other 
means, can also arise for non-persistent but continuously used chem-
icals, also referred to as “pseudo-persistent” substances. For example, 
the widespread use of the anti-inflammatory drug, diclofenac, for live-
stock has caused a near-extinction of vultures in the Indian subconti-
nent. Vultures turned out to be very sensitive to diclofenac and died en 
masse due to renal failure developed after receiving even small doses 
of the compound from feeding on carcasses of diclofenac-treated cat-
tle (Green et al., 2004). The loss of vultures, in turn, leads to cascading 
effects such as an uncontrolled increase in insect populations and dis-
ease spread (Buechley & Şekercioğlu, 2016; Ogada et al., 2012). While 
vulture populations in India have been recovering following the ban 
on diclofenac, similar effects have begun unfolding in Europe where 
diclofenac has been approved for veterinary purposes since 2013 
(Moreno-Opo et al.,  2021). Additionally, diclofenac can also disturb 
aquatic ecosystems, with toxic effects documented for macrophytes, 
mussels, and fish (Joachim et al., 2021).

The impacts of chemicals can also be affected by non-chemical 
abiotic factors within a given ecosystem; thus, abiotic components 
such as temperature or pH of an exposed ecosystem can contribute 
to shaping the ecological consequences of chemical pollution (Rillig 
et al., 2021). On the one hand, they can influence the fate and be-
haviour of the chemicals involved (Cerveny et al.,  2021). For exam-
ple, high levels of UV radiation and elevated temperatures are known 
to decrease the stability of many chemicals by enhancing abiotic and 
biotic degradation (Schwarzenbach et al.,  2002). Differences in pH 

affect the distribution behaviour and bioaccumulation of ionisable or-
ganic pollutants (Sigmund, Arp, et al., 2022) as well as the speciation 
and bioavailability of (organo)metall(oids) (Caporale & Violante, 2016). 
On the other hand, such abiotic factors are often stressors in and of 
themselves, especially for organisms that live on the edge of their dis-
tribution range, and thus, the combination of chemical pollution and 
other abiotic influences could result in drastic deterioration of an en-
tire habitat (Zandalinas et al., 2021). Consequently, population vulner-
ability, community stability and ecosystem resilience under chemical 
pressure can vary depending not only on the types of chemicals but 
also on the characteristics of a particular ecosystem, including species 
composition, environmental conditions, and accompanying combina-
tions of other stressors (Figure 3).

Chemical pollution can cause a decline in populations of various 
exposed species, or even an extinction of particularly sensitive spe-
cies, and thus lead to a change in the structure and possibly func-
tions of communities and whole ecosystems. Pollution acts via a 
multitude of pathways and mechanisms, which can unfold in a highly 
ecosystem-specific manner (Saaristo et al.,  2019). Unfortunately, 
both the prospective and retrospective assessments of environmen-
tal risks of chemicals often fail to reflect this diversity of ecological 
contexts. In a prospective assessment, in-silico models, standardized 
laboratory tests and well-controlled field trials are used before a 
known chemical, such as a pesticide, is introduced into the environ-
ment. This is expected to allow for a reliable prediction of a chemical's 
environmental behaviour and resulting exposures and effects (Boivin 
& Poulsen, 2017). Standard tests for prospective assessments of risk 

F I G U R E  3  Combined effects of chemicals and other stressors on food webs. Chemicals can change existing food chains, be biomagnified 
via these same food chains and lead to direct toxic effects as well as indirect effects, for example, by affecting community interactions. 
Exposure to combined stressors (multi-stressors) such as chemical pollution and temperature can cause effects that can differ from those of 
a single stressor.
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are, however, commonly performed with just a few species, which may 
not be sufficiently protective for the multitude of species present in 
the environment. Moreover, because of time and resource consider-
ations, such assessments often focus on acute effects and individual 
chemicals. This gives only a poor reflection of the situation in the field, 
typically characterized by mixture exposures to low concentrations 
of chemicals over longer time periods. Retrospective assessments 
commonly focus on a few selected ecosystems to which known and/
or unknown chemicals are expected to have been introduced previ-
ously. Their ecological status can be typically evaluated by combining 
chemical analysis and monitoring of standardized indicator species, 
as is done for example in the European Water Framework Directive 
(Posthuma, van Gils, et al.,  2019). To date, ecosystems in mid- and 
low-income regions have been underrepresented in such analyses. 
Based on our discussion above and examples in Figure  2, currently 
applied approaches should be extended to enable better prediction 
of multi-species effects and chronic exposure outcomes. They should 
also consider the landscape context and ecological setting in which 
chemical pollution takes place, as a basis for providing adequate, 
solution-oriented options for environmental managers and policy 
makers (Schäfer et al., 2019). Importantly, extensive testing and im-
plementation of appropriate control measures at present are mostly 
happening in high-income countries, and as a result, many of the stan-
dardized testing methodologies have been optimized to suit Northern 
ecosystems in particular. This again highlights the issue of resource 
inequality, which may have dire consequences for numerous hotspots 
of biodiversity located in the mid- and low-income countries.

4  |  A SCIENTIFIC FIELD RIPE FOR 
DISCOVERY

Clearly, chemical pollution is an important factor exacerbating biodi-
versity loss worldwide. In line with that, in 2017 Bernhardt et al (2017) 
argued that ecologists need to recognize anthropogenic chemical pol-
lution as a global change factor, next to CO2 levels, temperature, and 
changes in water cycling, because (persistent) chemical pollutants will 
become distributed on a global scale. Notably, the diversity and quan-
tity of chemical pollution are increasing at higher rates than other driv-
ers of global change (Persson et al., 2022; Wang et al., 2020). Despite 
these trends, the fraction of pollution-focused ecology papers has 
remained very small compared with papers addressing other drivers 
of biodiversity loss and/or global change, as shown in our analysis of 
publications from the past 5 years (Figure 4).

One reason for the limited attention given to chemical pollution 
in the global change discourse may be that chemical pollution en-
compasses a wide variety of complex stressors that cannot be easily 
summarized by a single “one-for-all” parameter or endpoint, which 
is the case for other factors of global change such as global mean 
temperature or atmospheric carbon. The study of biodiversity loss, 
however, relies on a complex array of measures and metrics, thus 
suggesting that the biodiversity research community is ready for the 
challenge of chemical complexity as well.

Due to their scarcity, published studies to date have likely captured 
just a minuscule fraction of the multitude of chemicals contaminating 
the environment, thereby providing only a limited understanding of 
different physical states, environmental fate and transport, exposure 
patterns, modes of action and interactions between chemicals, organ-
isms, and ecosystems (Kristiansson et al., 2021; Strempel et al., 2012). 
Part of the problem lies in the interplay of public attention on specific 
chemicals and research funders' preference for “hot topics” such as 
phthalates or microplastics, which severely limits the scope of chem-
ical diversity that is being widely studied (Gould, 2015; Kristiansson 
et al., 2021; Sobek et al., 2016). This situation is further exacerbated 
by technical challenges such as the dearth of chemical standards for 
parent compounds and transformation products, which seriously ham-
pers empirical research. Lastly, most of the current regulations and 
testing requirements imposed on chemical manufacturers may not 

F I G U R E  4  Chemical pollution as an underrepresented factor 
in the ecological literature. Results of Web of Science search for 
papers published in the period between 2017 and 2021 in the 
“ecology” category (as defined by Web of Science), related to 
“global change” + selected factors (Temperature, Water, CO2) or 
pollution (represented by the terms “Synthetic chemical,” “Chemical 
pollution,” or “Contaminant”), or “biodiversity” + selected drivers 
for biodiversity loss (Land use, Climate change, Invasive species, 
Logging) or pollution (represented by the same terms). Land use and 
Climate change effects on biodiversity were the most intensively 
studied topics with over 5000 hits in total. In contrast, the search 
for chemical pollution amounted to less than 200 hits in total for 
the six search combinations shown.
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provide sufficient information on environmental toxicity and ecological 
effects of chemicals (Karamertzanis et al., 2019; Saouter et al., 2019). 
Furthermore, whichever information is available is often not publicly 
accessible. As a consequence of these factors, most researchers and 
regulators continue to focus on a narrow selection of “fashionable,” 
well-studied chemicals, while the general awareness and advance-
ment of chemical pollution knowledge remain low.

Recently, the ecology community has embraced environmental 
DNA (eDNA) metabarcoding (Thomsen & Willerslev, 2015). In con-
junction with modelling, this technique allows assessing biodiversity 
with less resource investment and with a much higher temporal and 
spatial resolution compared with the workforce-intensive and time-
consuming conventional sampling approaches (Carraro et al., 2020). 
A broader and systematic application of this approach can enable the 
community to develop highly reliable quantitative parameters that 
can be used for in-depth comparative studies of biodiversity across 
scales. Similarly, the last decade has seen pivotal advances in envi-
ronmental analytical chemistry with high-resolution mass spectrom-
etry methods allowing the measurement of known and unknown 
chemicals at very low environmental concentrations (Schymanski 
et al., 2014). In the meantime, (eco)toxicologists have developed new 
approaches to assess the biological effects of chemicals and chemi-
cal mixtures (Brooks et al., 2020; Schuijt et al., 2021) and determine 
chemical pressures by using high-throughput bioassays (Krewski 
et al., 2020) combined with tools from analytical chemistry (Brack 
et al., 2016; Dong et al., 2020). Together with recent developments 
in data science (Wu et al., 2022; Zhu et al., 2014), these fields are 
ready to make the complex impacts of chemical pollution on biodi-
versity more tangible, and targeted investigations feasible. Based on 
their experience with intricate studies of biodiversity, ecologists are 
well equipped to venture into this new sphere of pollution ecology, 
which offers a whole universe of interactions and effects to explore.

5  |  OPPORTUNITIES FOR THE 
COLL ABOR ATIVE ROAD AHE AD

There are numerous examples where an improved understanding 
of the environmental effects of anthropogenic chemicals has been 
used to inform policy decisions or guide changes in industry practices 
(Cousins, Goldenman, et al., 2019; Eggen et al., 2014; Scheringer, 2017). 
Collectively, these developments have led to substantial progress in 
chemical management and environmental protection. Starting with the 
publication in 1962 of Rachel Carson's “Silent Spring,” which spurred 
improvements in the management of organochlorine pesticides, eco-
toxicologists have revealed environmental impacts of many further 
chemicals, some of which we have discussed in the text above and il-
lustrated in Figure 2. Mitigation efforts that were initiated based on this 
knowledge have in some cases led to impressive successes in the resto-
ration of biodiversity, such as the recovery of mollusc populations after 
the ban of the anti-fouling chemical tributyltin (Wells & Gagnon, 2020). 
However, for a significant proportion of anthropogenic chemicals and 
their environmental mixtures, knowledge and data remain limited. This 

is due not only to the large chemical diversity but also to the complex-
ity of exerted effects and ecological interactions potentially affected. 
Therefore, to advance the assessment of chemicals' effects on biodiver-
sity and ecosystems, broader collaborations between ecologists, envi-
ronmental chemists, and ecotoxicologists are required.

The involvement of in-depth ecological expertise will enable ec-
otoxicologists to identify and overcome the existing shortcomings 
in their investigations. For example, this could help to find novel, 
ecosystem-relevant endpoints that can be used for screening chemical 
hazards, or contribute to the establishment of linkages between indi-
vidual and population levels in adverse outcome pathways being de-
veloped to link molecular measures to population-level effects (Ankley 
et al., 2010; Groh et al., 2015). In turn, through consideration of en-
vironmental chemistry and ecotoxicology knowledge, ecologists may 
find better ways of designing comprehensive studies that address an-
thropogenic chemical pollution in a targeted manner. Close integration 
between monitoring efforts focused on chemicals and biodiversity 
would be crucial to enable a reliable establishment of clear links be-
tween exposure to particular chemicals or mixtures and the effects on 
biodiversity. Working together, scientists from these three disciplines 
could attain a more impactful understanding of chemical effects on 
the natural environment. This can help establish early warning systems 
for pollution-related regional biodiversity loss and/or ecosystem col-
lapse, as well as identify novel strategies to thwart chemical pollution-
associated biodiversity loss (Rillig et al., 2019; Schaeffer et al., 2016).

To efficiently address the multiple planetary crises threatening biodi-
versity, ecologists need to have all the necessary tools at hand, including 
those required for studying chemical pollution. Therefore, to increase 
expertise in chemical pollution, both environmental chemistry and ec-
otoxicology concepts should be included in curricula for ecologists and 
adjoined disciplines to allow students to obtain a broad overview, while 
gaining in-depth knowledge and practical expertise in specific disciplines 
(Schaeffer et al., 2009). One important tool already employed by both 
ecologists and ecotoxicologists is the microcosm/mesocosm experimen-
tal approach, which enables studies at a scale relevant to understanding 
ecological effects. These have been used and further developed over 
the last decades to answer increasingly sophisticated questions (Benton 
et al., 2007; Petersen & Hastings, 2001). At an even larger scale, pollu-
tion ecology could use experimental ecosystems such as the Canadian 
Experimental Lakes Area in Northwestern Ontario, Canada, to conduct 
ecosystem-scale experiments without needing to unethically jeopardize 
intact natural ecosystems (Bath, 2018).

Systematic collaborations between these three disciplines can 
be expected to generate novel and unexpected perspectives, re-
search avenues, and paradigms. This interaction could, for instance, 
improve the development of management plans for protected areas, 
and to identify human activities that are likely to negatively influ-
ence biodiversity before the effects fully unfold. Such research may 
also help in determining tipping points in Earth's ecosystems. For 
example, with coinciding chemical pressure and pressures resulting 
from global warming, the continuous functioning of key ecosystems, 
including their capacity to sequester carbon (Rockström et al., 2021), 
could be jeopardized much earlier than expected.

 13652486, 2023, 12, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/gcb.16689 by Sw

edish U
niversity O

f A
gricultural Sciences, W

iley O
nline L

ibrary on [30/05/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



    |  3249SIGMUND et al.

A crucial task for environmental chemists and ecotoxicologists 
will be to inform ecologists about ecosystem-specific chemicals of 
concern, considering, for example, a chemical's preference to accu-
mulate in the soil, water, or air (Lohmann et al., 2007). The potential 
for the existence of certain chemical effects of interest in a given 
ecosystem could also be assessed using bioassays performed on the 
mixtures of chemicals extracted from an environmental sample of 
water or sediments (Muz et al., 2020; Posthuma, Brack, et al., 2019). 
In this way, for example, the estrogenicity of the whole mixture could 
be assessed, without the need to separately measure and identify 
individual estrogenic chemicals, and the resulting value could be 
linked, for example, to the risks of reproductive disturbance among 
local fish populations. In addition, ecotoxicologists can contribute 
to the understanding of ecosystem health by using biomarker-based 
environmental biomonitoring in sentinel species caught in the wild 

(Triebskorn et al., 2002; Wernersson et al., 2015). In turn, ecologists 
can help ecotoxicologists to identify (more) suitable test organisms 
that are tailored to an ecosystem of interest, thus further increasing 
environmental relevance. In this way, a set of measurements to en-
able a targeted assessment of chemical pressure could be jointly de-
veloped and incorporated into ecological study designs. Collectively, 
mutual exchanges among these research communities, further 
supported by advances in computational biology and data science 
approaches, could allow developing truly innovative study designs 
providing the long-needed holistic insights into ecological effects of 
chemicals across scales and landscapes (Schneeweiss et al., 2023). In 
turn, this would support development of novel predictive tools that 
could help inform risk assessment and identify promising policy op-
tions. Figure 5 illustrates possible synergies between the disciplines, 
highlighting already existing seeds of joint methodology to build on.

F I G U R E  5  Opportunities for collaborations to elucidate the effects of chemical pollution on biodiversity. Key expertise and methods of 
single disciplines can complement each other to systematically disentangle the effects of chemical pollution on ecosystems and biodiversity 
in a truly interdisciplinary manner. Approaches from data science (black) are already applied in different contexts by all three disciplines 
and could facilitate a common FAIR (findable, accessible, interoperable, and reusable) workspace, while other approaches are already 
widely used by two disciplines (inner arrows in turquoise).While academic and funding institutions continue to favour specialization, that 
is, increasing the depth of knowledge within disciplines, the most efficient way to find solutions to our planetary challenges may lie in 
conducting true interdisciplinary research, requiring a certain degree of generalization to enable bridge-building across disciplines. To 
facilitate interdisciplinarity, both academic institutions and funding agencies need to expand the existing funding schemes or develop 
new ones to foster collaborations between ecologists and (other) environmental scientists in addressing chemical pollution as one of the 
major drivers of global biodiversity loss. Efficient ways for this interdisciplinary knowledge to be incorporated into regulatory and policy 
frameworks aimed at ecosystem protection are also needed and could build on such initiatives and reach out to social scientists and policy 
experts early on as well.
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To facilitate interdisciplinary and cross-sectorial collaborations, 
as well as regulatory use, data on chemicals and biodiversity—derived 
both from public- and industry-funded research—need to become 
open, FAIR (findable, accessible, interoperable, and reusable), and 
easily translatable across disciplines (Wilkinson et al., 2016). To en-
sure interoperability, terminology, and language usage also need to 
be harmonized and/or translated between communities efficiently. 
The establishment of shared operating spaces accessible to different 
parties could further help to increase transparency and support mu-
tually beneficial activities. An important first step in that direction 
could be the organization of recurring conference sessions to host 
ecologists at environmental toxicology and chemistry meetings, as 
well as offering a dedicated spot for ecotoxicologists and environ-
mental chemists at ecology meetings.

6  |  CONCLUSIONS

As discussed above, anthropogenic chemical pollution is a significant 
driver of biodiversity loss, acting through a multitude of direct and in-
direct effects on organisms and ecosystems. Ecologists and biodiver-
sity scientists searching for effective solutions to mitigate and revert 
the ongoing crisis need to properly account for chemical influences 
in their work. Similarly, ecotoxicologists and environmental chemists 
should strive to integrate a holistic, ecosystem-wide perspective in 
their research. This can only be attained through interdisciplinary col-
laborations that seek to overcome the current siloes across research 
fields and study initiatives. Given recent methodological progress, 
conceptual developments, and computational advances, the time to 
seize the opportunity for such interdisciplinary collaborations is now. 
As biodiversity loss is accelerating at an unprecedented rate, the sci-
entific community should respond to this worrisome trend through 
joint efforts addressing the threats to biodiversity posed by chemical 
pollution, together with other factors of global change. We encour-
age the readers to consider these needs and to reflect on how their 
individual contributions could support such collaborative efforts. We 
hope that the discussed examples will help spur further ideas and 
creative approaches to advance this collective goal.
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