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Abstract
Grasslands are important carbon sinks, but the underlying processes for their soil carbon 
sequestration potential are still not well understood, despite much attention given to this 
topic. In Europe, grasslands, especially semi-natural grasslands, are also important for pro-
moting biodiversity. Moreover, recent global reports have highlighted the importance of 
biodiversity in supporting climate actions. In boreal and alpine regions in the Nordic coun-
tries, grasslands also play an important role in milk and meat production and food secu-
rity. Certain grassland features and management practices may enhance their soil carbon 
sequestration potential. Semi-natural grasslands maintained by optimized livestock graz-
ing are vital for aboveground biodiversity and show promise for belowground biodiversity 
and carbon sequestration potential. It is essential to assess the multiple functions of grass-
lands, particularly semi-natural grasslands, to facilitate the optimization of policy measures 
across policy areas. Climate and biodiversity policies should not counteract each other, as 
some do today. This essay addresses the multiple functions of grasslands and calls for more 
knowledge about carbon sequestration in Nordic grasslands. This will enable the manage-
ment of these ecosystems to align with climate mitigation, maintain biodiversity, and sat-
isfy the global need for increased food supply.
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1 Introduction

The potential of grassland soil carbon sequestration has gained increasing attention 
(Lorenz and Lal 2018). A recent review by Bai and Cotrufo (2022) estimated that grass-
lands store approximately one-third of the world’s terrestrial carbon stocks. Several 
European grassland studies also support the idea that grasslands can serve as important 
carbon sinks (Chang et al. 2015, Chang et al. 2016). The Food and Agriculture Organi-
zation of the United Nations (FAO) (2017) likewise emphasizes the substantial potential 
of grasslands to provide large and stable soil carbon sinks.

The carbon sequestration potential of grasslands, however, remains a subject of 
debate. Röös et al. (2017) claimed that this potential is limited while Godde et al. (2020) 
questioned “overly optimistic expectations” and stressed the high context dependency of 
soil carbon sequestration rates in grasslands. Factors such as climate, vegetation type, 
soil type and quality, the composition of soil biological communities, and management 
practices all influence carbon sequestration potential (Garnett et al. 2017). A Mediter-
ranean study emphasized the need for region-specific data on grassland soil carbon to 
reflect differences in climatic and agricultural conditions and called for a strategic plan 
to extend on-site field measurements (Aguilera et al. 2021). Their analysis highlights the 
necessity for refining carbon footprint estimation methods in life cycle assessments of 
agricultural products, including region-specific data on relevant processes, such as soil 
carbon sequestration.

Grasslands have, however, multiple functions, including providing habitats for biodi-
versity. The global report from the Intergovernmental Science-Policy Platform on Bio-
diversity and Ecosystem Services (IPBES 2019) highlights the importance of biodiver-
sity conservation as loss of biodiversity is as crucial as climate change. The land report 
from the Intergovernmental Panel for Climate Change (IPCC 2019), the global IPCC 
2022 report (IPCC 2022), and the UN Biodiversity Conference (COP 15) in December 
2022 have also pointed to the connections between the climate and biodiversity crises, 
highlighting the importance of biodiversity and other ecosystem services to counteract 
and adapt to climate changes, and the need for alignment of climate policy measures to 
support biodiversity. Loss of biodiversity is intensifying, with potential negative conse-
quences for ecosystem services, including the capacity of ecosystems for climate miti-
gation and adaptation to climate changes. Newbold et al. (2016) assessed that land use 
pressures have reduced grassland biodiversity beyond the planetary boundary suggested 
as a safe limit, indicating that continuing biodiversity loss will undermine efforts toward 
long-term sustainable development. The IPBES and IPCC reports call for the develop-
ment of a mix of policy instruments to motivate private and public decision-makers to 
implement both climate mitigation and biodiversity conservation measures while main-
taining high levels of other ecosystem services.

In addition to their importance for biodiversity and for carbon sequestration, grass-
lands can also play an important role in food security, especially in the Nordic coun-
tries, where cultivation is constrained by climatic factors. While the potential for carbon 
sequestration in grasslands worldwide largely lies in the restoration of degraded grass-
lands, large areas of Nordic grasslands remain, although they are under pressure from 
forest regrowth due to lack of grazing to maintain the open grasslands. In this context, 
this essay draws attention to the importance of grasslands for soil carbon sequestration 
and biodiversity conservation, as well as for other ecosystem services, such as grazing 
resources. Specifically, we discuss whether grassland management for biodiversity and 
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food production may have the co-benefit of climate mitigation through increased soil 
carbon sequestration. Since regional differences are important for these complex inter-
actions, we will focus the discussion on Europe and especially Nordic grasslands.

2  Grasslands in Europe

Grasslands are herbaceous vegetation types mostly dominated by grasses (Poaceae) or 
other graminoids (Cyperaceae, Juncaceae) and with a relatively dense vegetation cover 
(>25 % surface cover) (Dengler et  al. 2014). They are often transitional ecosystems 
maintained at a stable successional stage by disturbances such as grazing, mowing, or 
fire (Norderhaug et al. 1999; Fuhlendorf et al. 2006; Ratajczak et al. 2014; Scasta et al. 
2016). In Europe, grasslands can be classified as natural, semi-natural, or cultivated. 
Natural grasslands occur in areas where forest development is not possible due to dry 
or cold conditions or other factors that prevent tree growth. However, such areas are rare 
in Europe today, with small pockets of “genuine” steppe found in Ukraine and Romania 
(Emanuelsson et  al. 2009). On the other hand, semi-natural and cultivated grasslands 
have been developed by human management in naturally forested areas. These grasslands 
require human intervention to prevent overgrowth by trees. Semi-natural grasslands, 
which were created through low-intensity grazing or hay production, are often species-
rich. Some of the semi-dry and base-rich semi-natural grasslands found in Europe hold 
the world record for vascular plant-species richness on small scale (e. g. 89 species on 
 1m2) (Wilson et  al. 2012; Habel et  al. 2013). However, both natural and semi-natural 
grasslands in Europe have increasingly been converted to cultivated grasslands that are 
fertilized and intensively managed for grazing or for hay production, resulting in a loss 
of biodiversity (Bignal and McCracken 1996; Pykäla 2007).

3  Characteristics of grasslands with high potential for soil carbon 
sequestration

Certain grassland characteristics and management strategies may be particularly important 
for promoting or reducing soil carbon sequestration potentials. Here, we present some key 
points that summarize these characteristics and strategies, with a call for more research.

3.1  Highly developed root systems and high belowground biomass allocation

Grassland plant species are adapted to grazing and mowing through a low apical growth 
point, high allocation of biomass belowground, and a root/shoot ratio that is about 10 times 
higher than in forests (Jackson et al. 1996). The depth distribution of roots is a critical fac-
tor in the storage and stabilization of root carbon in the soil (Poirier et al. 2018). In fact, 
grassland soil carbon is often largely composed of root-derived carbon (Martinez et  al. 
2016; Yang et  al. 2021). As the mean residence time of root carbon increases with soil 
depth (Rasse et al. 2005), deeper-rooted plants may be particularly effective at sequester-
ing carbon in the soil (Sosa-Hernández et al. 2019). In addition, the organic matter in the 
subsoil contains more microbial-derived compounds than topsoil organic matter, which can 
be integrated into mineral-associated soil organic fractions with especially long mean resi-
dence (Rumpel and Kögel-Knabner 2011; Sosa-Hernández et al. 2019).
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3.2  High aboveground and belowground biodiversity

Increasing plant species diversity can increase root biomass and root exudates, poten-
tially promoting microbial necromass contribution to soil organic storage (Bai and 
Cotrufo 2022). In a 4-year managed grassland experiment with a biodiversity gradient 
ranging from one to 60 species, it was shown that carbon storage increased with sown 
species richness (Steinbeiss et  al. 2008). Additionally, manipulation of species rich-
ness in a 19-year grassland experiment showed that increasing plant species richness 
enhanced carbon storage (Pastore et  al. 2021). Aboveground biodiversity influences 
belowground diversity (Chen et al. 2018), and vice versa. For example, arbuscular myc-
orrhizal fungal diversity can increase plant diversity in grasslands, although the myc-
orrhizal community composition seems to be more important than the richness per se 
(Koziol and Bever 2019). However, the knowledge about the relations between above-
ground and belowground biodiversity remains limited (De Deyn et  al. 2005). Below-
ground biodiversity is however of high importance for carbon and nutrient cycling 
processes, and diversity across groups of organisms plays a decisive role in fully main-
taining these processes (de Graaff et al. 2015).

3.3  Mycorrhiza

Most grassland plants live in symbiosis with arbuscular mycorrhizal fungi, which 
depend on recent plant photosynthates for their growth and activity. Arbuscular myc-
orrhizal fungi colonize plant roots and form soil mycelia that scavenge for nutrients 
in larger soil volumes and smaller soil pores than roots (Sosa-Hernández et al. 2019). 
Some of the nutrients, particularly nitrogen, phosphorus, and sulfur, taken up by arbus-
cular mycorrhizal fungi are transported to the roots and may stimulate plant growth. 
Meanwhile, some nutrients are immobilized, along with carbon, in living and dead soil 
mycelium (Giovannetti et  al. 2017). Therefore, the mycorrhizal mycelium provides a 
direct pathway for recently fixed carbon into the soil matrix. This is in contrast to free-
living saprotrophic organisms that rely on carbon from decomposing organic material 
for their metabolism and thus elicit a net loss of soil carbon. Arbuscular mycorrhizal 
mycelium can also promote aggregate stability, leading to improved soil structure and 
carbon sequestration (Lehmann et  al. 2017). However, even though arbuscular myc-
orrhizal fungi lack the ability to decompose complex organic matter (Tisserant et  al. 
2013), they may still enhance decomposition and nutrient mineralization by stimulating 
saprotrophic organisms (Jansa et al. 2019). Therefore, the net effects of arbuscular myc-
orrhiza on soil carbon stocks in different types of grasslands are not yet well understood, 
although they likely have a positive long-term effect on soil carbon stocks, particularly 
in the subsoil (Sosa-Hernández et al. 2019, Lehmann et al. 2017).

3.4  Optimal grazing pressure

Grazing stimulates the accumulation of soil organic carbon by promoting root growth 
and turnover and by defoliation, which provides large inputs of organic matter to the 
soil (Ziter and MacDougall 2013). For example, Allard et al. (2007) found that 3 years 
of grazing in a French upland semi-natural grassland promoted the carbon sink, regard-
less of grazing intensity and fertilization. However, a meta-analysis in 17 grasslands 
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worldwide showed that the grazing effect on carbon storage depends on grazing inten-
sity, environmental conditions, such as precipitation and soil texture, and the types of 
grasses (classified as grasslands dominated by  C3 grasses,  C4 grasses, or a mixture of 
both) (McSherry and Ritchie 2013).  C3 and  C4 grasses have different photosynthetic 
pathways, and grazing impacts their root structure differently. European grasslands are 
predominantly  C3 grasslands (de Deus et  al. 2021; Still et  al. 2003). In general, soil 
carbon sequestration is positively correlated with grazing intensity in  C4 grasslands and 
negatively in  C3 grasslands (Garnett et al. 2017). Exploring interactions between grass 
type and grazing McSherry and Ritchie (2013) found that for  C3 grasses, grazing had 
a positive effect on soil organic carbon only at light grazing intensities, and this effect 
became negative at moderate to heavy grazing intensities.

While light to moderate intensity grazing is more likely to maintain soil carbon stocks 
and has greater potential to enhance sequestration, heavy grazing reduces plant growth, 
destroys the plant cover, and causes soil carbon losses (Garnett et al. 2017). Studies indi-
cate that moderate-intensity grazing promotes soil carbon sequestration more than no graz-
ing or high-intensity grazing (Ziter and MacDougall 2013; Chang et al. 2016). A nation-
wide survey of permanent grasslands in England confirmed that moderate management 
(grazing and fertilizing) resulted in the greatest soil carbon stocks (Ward et al. 2016). Some 
studies even conclude that carbon sequestration in grazed grasslands partly, or under spe-
cific conditions, entirely offsets greenhouse gas (GHG) emissions from livestock (Bellarby 
et al. 2013; Godde et al. 2020). Recent studies indicate that optimal grazing practices, such 
as optimal timing and numbers of livestock and moving ruminants between pastures to 
avoid overgrazing, may facilitate soil carbon sequestration (Stanley et al. 2018; Teague and 
Kreuter 2020). Moving grazing animals between pastures is a key aspect of sustainable 
management. Without fencing, grazing animals naturally move between pastures. Obser-
vations of dairy cows on mountain summer pastures in Norway indicate that they cover 
large areas during grazing, and traditional cow breeds moved longer distances (Hessle 
et al. 2014); this prevents overgrazing. The contrasting results on grazing and soil carbon 
sequestration potential illustrate the importance of considering the specific agro-ecological 
conditions (Garnett et al. 2017).

3.5  Sensitivity to physical soil disturbance and fertilization

Ploughing and tilling practices to revitalize grasslands and increase yield typically result 
in loss of soil carbon. According to Jastrow et  al. (2007), reducing soil organic carbon 
turnover by minimizing soil disturbance through tillage or erosion is crucial for enhanc-
ing carbon sequestration. Converting of grasslands into cropland also results in loss of 
soil carbon. Poeplau et  al. (2011) showed that 17 years after grasslands were converted 
to annual croplands, more than a third of their soil organic carbon stocks had been lost. In 
contrast, establishing grasslands on former croplands led to continuously increasing soil 
organic carbon for more than 100 years and a higher gain in soil organic carbon than when 
converting cropland to forest. This finding was confirmed by a literature review conducted 
by Conant et al. (2017). Moreover, fertilization can increase plant biomass and may there-
fore further promote soil carbon sequestration in non-tilled, permanent grasslands (Karltun 
et  al. 2010). In a study of chronic nitrogen fertilization of permanent grasslands, Cenini 
et  al. (2015) found that heavy (organo-mineral) but not light (organic) soil density frac-
tions showed increased soil carbon sequestration. However, inputs of nitrogen and phos-
phorous to grasslands lead to changes in the taxonomic and functional composition of soil 
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microbial communities (Leff et al. 2015), which can influence the entire belowground eco-
system. Hence, practices that affect soil organisms, such as soil disturbance and fertiliza-
tion, are likely to also affect soil organic matter dynamics, since these are tightly linked to 
the nutrient and carbon needs of the soil organisms (Janzen 2006).

4  Potential for carbon sequestration in grasslands

The characteristics that may support the potential of grasslands for soil carbon seques-
tration appear to be closely aligned with those of semi-natural grasslands, and to a large 
extent, natural grasslands. This suggests that semi-natural grasslands may have a good 
potential for carbon sequestration and potentially a higher soil carbon content than culti-
vated grasslands, although this has not been clearly documented. Many scientific papers 
discussing soil carbon sequestration and carbon stocks in grasslands do not specify the type 
of grassland studied. Permanent grasslands can be either improved, fertilized grasslands or 
semi-natural grasslands.

Semi-natural grasslands are the result of low-intensity agricultural practices that have 
been in place for a long time (Dengler et al. 2014). Over this time, they may have developed 
considerable root systems and built up large soil carbon stocks, while the carbon sequestra-
tion rate has diminished successively and approached an equilibrium (Garnett et al. 2017). 
This equilibrium may be maintained as long as the management remains unchanged (Gar-
nett et  al. 2017). On the other hand, the management of cultivated grasslands may vary 
from year to year, giving less opportunity for root system development. However, perma-
nent improved grasslands may have better developed root systems. Further, most of the 
plant species in semi-natural grasslands are associated with arbuscular mycorrhizal fungi 
(Norwegian Biodiversity Information Centre 2019) which probably improve soil carbon 
sequestration (Sosa-Hernández et al. 2019). In contrast, cultivated grasslands tend to have 
lower abundance of mycorrhizal fungi (Schnoor et  al. 2011; Bowles et  al. 2016, House 
and Bever 2018), although we do not know at which timescales permanent grasslands may 
reestablish biodiversity and characteristics of semi-natural grasslands.

In Europe, most remaining semi-natural grasslands are grazed. Several studies have 
shown that overgrazing causes loss of soil carbon stock and that light to moderate grazing 
could maintain soil carbon stocks and have a greater potential for soil carbon sequestra-
tion than heavy or too light grazing (Garnett et  al. 2017). A study of sheep grazing on 
low-alpine grasslands in Norway found that 7 years of grazing had little impact on soil 
carbon stocks, with high sheep stocking rates causing a small decrease and low stocking 
rates causing no or a slight increase (Martinsen et al. 2011). Furthermore, another study of 
lightly grazed grassland, Empetrum-dominated heath, and Salix-shrub-dominated vegeta-
tion in the Norwegian mountains showed that grassland had the largest total ecosystem 
carbon pool (Sørensen et al. 2018). In alpine regions, semi-natural and natural grasslands 
may have quite stable and substantial stocks of soil carbon (Castano et  al. 2022), but at 
the same time, may have limited potential for additional, short-term sequestration because 
soil processes are slow. However, alpine grasslands store more of the soil carbon in par-
ticulate form, often forming an organic topsoil, while temperate grasslands store relatively 
more carbon in mineral-associated organic matter in the subsoil. An interesting avenue 
for further research thus is to unravel mechanisms of carbon storage in organic topsoils 
versus mineral subsoils across climatic gradients, since minerals can get saturated with 
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organic matter, while carbon storage in particulate organic matter has no such limit (Bai 
and Cotrufo 2022).

Cultivated grasslands are more productive than semi-natural grasslands due to their 
higher nitrogen and phosphorous content, which allows for increased grazing animals and 
stimulation of aboveground biomass production and root growth. While fertilization of 
cultivated grasslands generally increases soil carbon stocks by stimulating plant growth, 
fertilization of semi-natural grasslands reduces biodiversity (Emanuelsson et al. 2009). As 
semi-natural grasslands are of high importance for biodiversity, management strategies 
aimed at increasing soil carbon stocks, such as fertilization, may not be suitable for sustain-
able management of these ecosystems.

5  Climate policy in synergy with other sustainable development goals: 
biodiversity and food production

Semi-natural grasslands play an important role in maintaining European biodiversity 
(Pykälä 2007). However, in Western Europe, the area of this type of ecosystem has sig-
nificantly decreased due to factors such as intensification of agriculture, abandonment of 
traditional agricultural practices, and land conversion. This trend has resulted in long red 
lists of endangered species of plants, fungi, insects, birds, and other animals that depend 
on semi-natural grasslands. In Norway, for instance, 29% of the threatened species live in 
semi-natural habitats of grasslands and coastal heathlands (Norwegian Biodiversity Infor-
mation Centre 2021), while in Sweden, semi-natural habitats are critical for 34% of red-
listed species (SLU Swedish Species Information Centre 2020), and in Finland, for 24% 
(Finland’s Environmental Administration 2019). The trends for grassland biodiversity are 
negative, and more and more species are being red listed (Jakobsson and Pedersen (eds.) 
2020; IPBES 2019), emphasizing the need to preserve remaining semi-natural grasslands 
to prevent further loss of biodiversity.

Furthermore, maintaining semi-natural grasslands can help preserve existing carbon 
stocks in the ground (Garnett et  al. 2017), keep the landscape open, and contribute to a 
higher albedo effect. Although albedo is not included in the reporting guidelines of the 
United Nations Framework Condition on Climate Change (UNFCCC), Bonan et al. (2008) 
emphasized that albedo can have large effects on climate feedbacks at northern latitudes. 
Compared to grasslands, boreal forests have lower albedo and absorb more solar radia-
tion, contributing to temperature increase in the atmosphere. Therefore, understanding the 
importance of grasslands versus forests for albedo in the context of climate mitigation, 
especially in the Nordic countries and other boreal regions, is essential.

Semi-natural grasslands need to be recognized for their multiple functions. To balance 
climate mitigation and grassland biodiversity preservation, Burrascano et al. (2016) sug-
gest aligning decision-making across policy sectors, focusing on a range of ecosystem ser-
vices and biodiversity issues, and valuing extensively managed (low-intensity) ecosystems 
for their multiple functions. The current agricultural policy in the EU lacks attention to 
the management of permanent grasslands, which is crucial for their environmental benefits 
(Pe’er et al. 2014).

The roles of grasslands differ among regions. In northern and alpine regions of Europe, 
where crop production is constrained by climatic and ecological conditions, grasslands 
play an important role in meat and dairy production (Nordic councils of Ministers 2017). 
Grazing ruminants can utilize grasslands which cannot be cultivated but still can contribute 
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to food for humans. In the Nordic countries, particularly in mountainous Norway where 
only 3% of the total land is cultivated, the areas of rangeland with semi-natural and natu-
ral grasslands are vital for improving the self-sufficiency and ensuring more reliable food 
security (Nordic Council of Ministers 2017). The World Resources Institute (2019) empha-
sizes the responsibility of all countries to utilize their possibilities for food production to 
secure a sustainable food future.

IPBES (2019) highlights that activities aimed at mitigating climate change carry the 
risk of negative side effects for biodiversity and food security. Afforestation, an important 
aspect of EU climate policy, is one such activity that has been criticized for loss of biodi-
versity, particularly when semi-natural grasslands are afforested (Burrascano et al. 2016; 
Veldman et  al. 2019). In addition, afforestation does not necessarily lead to higher soil 
carbon stocks (Poeplau et al. 2011). A Norwegian study conducted on partially afforested 
grazed grasslands found that even 50 years after planting, afforestation did not result in 
higher carbon sequestration than in the grassland (Strand et al. 2020).

6  Research needs

According to the reporting guidelines of the United Nations Framework Convention on 
Climate Change (UNFCCC), national inventories covering emissions and removals of 
GHGs from agriculture, forestry, and other land use (volume 4) should cover livestock and 
manure management (chapter 10) as well as carbon sequestration in grassland (chapter 6) 
(IPCC 2006). However, only grasslands classified as “managed land” by being fertilized, 
tilled, and sown are included in the national inventory reports, excluding semi-natural 
grasslands, even though these must be grazed or mown to be maintained. This presents a 
problem as semi-natural grasslands cover vast areas and may store large amounts of soil 
carbon. Yet grazing ruminants are classified as only contributing to GHG emissions, due 
to the lack of knowledge of soil carbon sequestration in grasslands, especially semi-natural 
grasslands. To enhance the knowledge basis for climate policy, more research is needed on 
grassland soil carbon, paying attention to regional differences in the complex interactions 
of grassland ecology and agricultural practices.

In a global perspective, it is especially important to acquire more knowledge on soil 
carbon in semi-natural grasslands, as attention has been drawn to grazing when the United 
Nations declared 2026 as the International Year of Rangelands and Pastoralists (United 
Nations 2022). It was then emphasized that keeping the vast areas of rangelands, with their 
large soil carbon sinks, managed under sustainable grazing practices, is essential for cli-
mate change mitigation (United Nations 2022).

Several measurement challenges exist when it comes to grassland soil carbon sequestra-
tion. One of these challenges is the spatial variability of soil carbon stocks. To effectively 
implement policies aimed at increasing soil organic carbon at a large scale and integrat-
ing soil organic carbon into national and international climate reporting, a combination of 
direct measurements and modeling is necessary (Smith et al. 2019). Standard protocols for 
measuring and monitoring soil carbon stocks would also facilitate comparisons between 
countries, regions, and land use types. However, it is essential to consider differences in 
climatic, ecological, and agricultural conditions when making such comparisons.

Assessing the soil carbon sequestration potential of grasslands is challenging due to 
the complexity of interactions between various factors such as vegetation characteristics, 
belowground biodiversity, grazing intensity, and management (Teague and Kreuter 2020). 
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Nonetheless, it is essential to gain more knowledge about the climate mitigation potential 
of grasslands, particularly semi-natural grasslands, to enhance the knowledge base for cli-
mate policy. For instance, do semi-natural grasslands have larger carbon stocks in deeper 
layers than cultivated grasslands? Can their management be optimized to increase carbon 
sequestration while maintaining their biodiversity? According to Janzen (2006), a better 
understanding of carbon flows in the soil and of the roles of soil microbes and fauna is nec-
essary to balance the different ecosystem services expected from grasslands. It is particu-
larly crucial to balance the need for carbon stabilization in the soil (i.e., climate mitigation) 
with the need for recirculation of dead organic matter to release nutrients to support plant 
growth (Janzen 2006).

7  Conclusion

We must take a fresh approach to climate policy and consider the potential of grasslands as 
vital carbon sinks. It is essential to focus on finding a balance between policies for climate 
mitigation and biodiversity management as the loss of biodiversity is as great a threat as 
climate change (IPBES 2019). Semi-natural grasslands are particularly important for bio-
diversity in Europe, and in some regions, they also contribute to food production and food 
security. Therefore, it is crucial to assess the multiple functions of grasslands, especially 
semi-natural grasslands, to optimize policy measures across sectors. To achieve this, more 
research is required to understand the potential of carbon sequestration in grasslands, par-
ticularly semi-natural grasslands, in different regions, so we can manage them optimally 
for climate mitigation and preservation of biodiversity, as well as other critical ecosystem 
services.
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