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Abstract 

Background Under the growing pressure to implement mitigation actions, the focus of forest management is shift-
ing from a traditional resource centric view to incorporate more forest ecosystem services objectives such as carbon 
sequestration. Estimating the above-ground biomass in forests using airborne laser scanning (ALS) is now an opera-
tional practice in Northern Europe and is being adopted in many parts of the world. In the boreal forests, however, 
most of the carbon (85%) is stored in the soil organic (SO) matter. While this very important carbon pool is “invisible” to 
ALS, it is closely connected and feeds from the growing forest stocks. We propose an integrated methodology to esti-
mate the changes in forest carbon pools at the level of forest stands by combining field measurements and ALS data.

Results ALS-based models of dominant height, mean diameter, and biomass were fitted using the field observa-
tions and were used to predict mean tree biophysical properties across the entire study area (50  km2) which was in 
turn used to estimate the biomass carbon stocks and the litter production that feeds into the soil. For the soil carbon 
pool estimation, we used the Yasso15 model. The methodology was based on (1) approximating the initial soil carbon 
stocks using simulations; (2) predicting the annual litter input based on the predicted growing stocks in each cell; 
(3) predicting the soil carbon dynamics of the annual litter using the Yasso15 soil carbon model. The estimated total 
carbon change (standard errors in parenthesis) for the entire area was 0.741 (0.14) Mg  ha−1  yr−1. The biomass carbon 
change was 0.405 (0.13) Mg  ha−1  yr−1, the litter carbon change (e.g., deadwood and leaves) was 0.346 (0.027) Mg 
 ha−1  yr−1, and the change in SO carbon was − 0.01 (0.003) Mg  ha−1  yr−1.

Conclusions Our results show that ALS data can be used indirectly through a chain of models to estimate soil car-
bon changes in addition to changes in biomass at the primary level of forest management, namely the forest stands. 
Having control of the errors contributed by each model, the stand-level uncertainty can be estimated under a model-
based inferential approach.
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Background
Forest management planning is traditionally focused 
on sustainable utilization of wood resources whereas 
other market-based or non-market-based services 
have received less attention. However, over the last 
20–30 years, many efforts have been invested in accom-
modating other services in quantitative and consistent 
long-term strategic forest management analysis. Sev-
eral recent studies have explored the trade-offs between 
resource extraction, ecosystem services and biodiversity 
in production forests, where timber harvesting and other 
forestry-related activities will tend to affect ecosystem 
structures and functions [1–10].

Among the United Nations’ Sustainable Develop-
ment Goals, climate change mitigation received much 
attention, and in particular due to the momentum cre-
ated by the Paris Agreement [11]. To stabilize the global 
temperature possibly below 1.5  °C above pre-industrial 
levels, large contributions across all economic sectors 
including agriculture and forestry is required [12–14]. 
This has direct implications for the required land-based 
mitigation efforts. Measures to avoid loss and to increase 
uptake in all carbon pools are viewed as essential [15]. 
Furthermore, under the current legislation of the Euro-
pean Union (EU) adopted in May 2018, EU Member 
States must ensure that accounted greenhouse gas emis-
sions from land use, land use change or forestry sector 
are balanced by at least an equivalent accounted removal 
of  CO2 from the atmosphere in the period 2021 to 2030 
[16]. In October 2020, the EU Commission amended 
the existing Land Use, Land-Use Change and Forestry 
(LULUCF) legislation with a delegated act [17] setting 
forest reference levels that each country must apply 
between 2021 and 2025.

The United Nations Framework Convention on Cli-
mate Change (UNFCCC) has included five carbon pools 
for estimating the impacts of land-use change and for-
estry activities: above-ground biomass, below-ground 
biomass, dead wood, litter, and soil organic matter [18], 
which is reflected in IPCC [19] technical guidance for 
greenhouse gas inventories. Soil is the largest terrestrial 
carbon reservoir [20] and a major source of uncertainty 
in ecosystem carbon predictions [21]. Boreal forest eco-
systems account for approximately 50%, or more, of the 
global forest carbon stocks [22]. Furthermore, boreal for-
est soils hold more carbon compared to the overstory 
[23–26]. Indeed, soil carbon in boreal ecosystems has 
been reported to account for about five times the total 
carbon in the standing biomass or approximately 85% 
of the total biome carbon [22]. Yet, soil carbon pools 
are rarely considered in those decisions that affect the 
climate impact of the forests the most, namely the daily 
management of forests across the entire boreal zone. 

Quantification of soil carbon pools and their changes at 
a local level where practical management decisions are 
implemented in the form of harvesting, thinning, tend-
ing and other actions, is also difficult and costly, whereas 
data and methodologies for quantification of other pools 
such as living aboveground biomass, are extensively 
investigated and described [27], but still not commonly 
taken into account in the actual management of forests.

Reliable estimation of changes in different forest car-
bon pools has for several reasons become a prominent 
issue in forest inventory at a broad range of geographi-
cal scales. At local levels, forest management invento-
ries conducted for individual forest estates or for groups 
of estates within an administrative area, are in many 
cases the most reliable source of information on for-
est resources and carbon stocks. Such inventories are 
often designed to provide cost-effective estimates of cur-
rent timber resources and are less optimized for future 
monitoring of changes. However, with the methodology 
already established in such local or district-wise invento-
ries it may provide an advantageous option for measure-
ment and verification of carbon offset activities or local 
monitoring of carbon stocks. The individual forest stands 
are usually considered the basic treatment units under 
management regimes currently adopted across the boreal 
forests (cf. [28]). This geographical unit is therefore fun-
damental when addressing carbon pools and how they 
are affected under practical management.

Various remote sensing technologies have been used 
extensively to estimate forest resources. Airborne laser 
scanning (ALS) data has high spatial resolution and is 
rich in information on vertical structure of above-ground 
vegetation, which is why it has emerged as one of the 
best suited and cost-effective remote sensing technolo-
gies for estimating above-ground tree biomass and car-
bon stocks. Studies of biomass change estimation with 
ALS started to emerge with the opportunities created by 
repeated acquisitions at either local [29–33], regional [34, 
35] or cross-regional scales [36]. In some countries, local 
forest management inventories assisted by ALS have 
over the past two decades become the main methodol-
ogy for stand-wise estimation of forest attributes needed 
for forest management planning [37]. Use of bi-temporal 
data from ALS has recently been adopted for some of the 
time-dependent attributes needed in the planning pro-
cess, such as site productivity reflecting growth potential 
over time [38]. Næsset et al. [32] demonstrated how areal 
changes for different categories of management activi-
ties and associated changes in above ground biomass can 
be estimated by repeated measurements of a sample of 
field plots supported by coincident and repeated meas-
urements with ALS. However, there is little evidence in 
existing literature on how soil carbon can be estimated 



Page 3 of 20Strîmbu et al. Carbon Balance and Management           (2023) 18:10  

at the stand level for management purposes based on 
sparse and non-destructive sampling on the ground, pos-
sibly combined with commonly adopted remotely sensed 
data, such as those acquired by ALS. Soil accumulation 
is highly dependent on the local topography [39, 40], 
and Kristensen et al. [41] showed that while ALS derived 
topographic indexes are good predictors for soil carbon 
stocks, above-ground ALS metrics and even forest char-
acteristics measured in the field did not relate well with 
the soil pool. Local topography corroborated with rain-
water [42, 43] move the soil carbon away from the pro-
duction site which makes it difficult to isolate the carbon 
balance of an individual forest stand using only carbon 
stocks measured or predicted spatially. Hopkinson et al. 
[44] proposed to estimate changes in soil carbon by sub-
tracting ALS based biomass changes from the total flux 
measured atmospherically. This approach while promis-
ing on larger scales, would be difficult to operationalize 
at the stand level due to high costs and interference of 
atmospheric flux from neighboring stands.

To be able to set targets on e.g. the magnitude of car-
bon stored in different pools at a stand level and to esti-
mate expected changes in different pools over time as 
a consequence of different active treatments, there is 
a need for (1) inventory methods and estimation tech-
niques to quantify the initial magnitude of the carbon 
pools and (2) for methods to estimate changes over time 
in the past and future as a result of prescribed treatment 
actions. Akujärvi et al. [45] proposed a framework to map 
the future development of carbon stocks in biomass and 
soil by simulating the effect of future silvicultural treat-
ments. In the present study, based on similar principles 
that link the living biomass to the soil carbon accumula-
tion, our primary objective was to develop an integrated 
stand-level methodology to estimate the carbon change 
in five forest pools using field plots with coincident and 
repeated ALS measurements. To reveal the benefit of the 
magnitude of carbon stored in different pools at a stand 
level and to estimate expected changes in different pools 
over time as a consequence of different active treatments 
[46] we demonstrate the methodology in a case study of a 
Norwegian forest.

Materials and methods
Materials
Study area
The study area (Fig.  1) lies in Krødsherad municipality, 
southeastern Norway. It is a typical boreal forest domi-
nated by Norway spruce [Picea abies (L.) Karst.], Scots 
pine (Pinus sylvestris L.), and, to a less extent, birch spe-
cies (Betula pendula Roth and Betula pubescens Ehrh). 
The forested area consists of 3324 managed forest stands 
spanning approximately 50  km2.

Field data
A total of 116 circular area plots (232.9  m2) were distrib-
uted systematically within three strata: young forest (39 
plots), mature forest with poor site quality (38 plots, site 
index ≤ 11), and mature forest with good site quality (39 
plots, site index > 11). The plots were measured in two 
campaigns, approximately 15 years apart. The first cam-
paign was conducted in 2001 followed by a second when 
all plots were revisited in 2016 and 2017. For the second 
campaign that spanned two years, 2016 was set as refer-
ence year. The diameters of all trees above 10 cm (4 cm in 
the young forest stratum) were measured with a caliper, 
and the heights of a relascope-based subsample of around 
10 trees per plot were measured with a hypsometer. The 
following variables were calculated: mean diameter ( D ), 
mean height ( H ), dominant height ( Hdom ), and number 
of trees per hectare ( N  ). Using allometric models [47], 
total living biomass per hectare ( BMS ) was estimated. All 
sample plot variables were assumed to be without error.

Airborne laser scanner data
The ALS acquisition temporally overlapped the field data 
collection, the entire study area having been scanned 
under leaf-on conditions in 2001 and 2016. The field sur-
veys and ALS acquisitions are described in greater detail 
in [48] and [49].

The ALS point clouds were normalized and tessellated 
with a grid of 15.26  m × 15.26  m cells having the same 

Fig. 1 Study area. The field plot locations are marked with black dots
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area as the field plots. For each cell, metrics describ-
ing the vertical distribution of the laser returns were 
computed:

– Height percentiles HALS_10 , HALS_20 , …, HALS_90 cor-
responding to the 10th, 20th, …, 90th percentiles

– Mean height ( HALS_mean)
– Cumulated densities DALS_1 , DALS_2 , …, DALS_10 as 

proportions of points above ten equally spaced height 
levels from 1.3 m to the 95th height percentile.

The set of ALS metrics were calculated for the 116 geo-
referenced sample plots as well.

Forest stand map
A forest stand map was obtained from the forest man-
agement inventory carried out in the area in 2018. Each 
stand had the following attributes: site index ( SI ), stand 
age ( AGE ), and species proportions by volume recorded, 
which determined the dominant species ( SP ). The stand 
attributes (Fig. 2) were obtained using a combination of 
projections of the old stand map and updates using pho-
tointerpretation of aerial imagery.

Satellite imagery
Landsat satellite imagery were used to detect large dis-
turbances, which were assumed to be the result of har-
vest or thinning. We used the temporal segmentation 
algorithm LandTrendr [50], implemented with Google 
Earth Engine [51]. LandTrendr has been widely used and 
shows good performance in similar environments [52]. A 

disturbance map was created based on the ALS tessella-
tion and recording the year of disturbance.

Tree allometry dataset
Marklund’s [47] allometric models have been extensively 
employed in Norway and Sweden for many decades. 
They are used to predict biomass for individual tree com-
ponents. The original publication reported the estimated 
model parameters but did not include any materials on 
the errors associated with the parameters. Using the orig-
inal set of observations, we refitted the models and esti-
mated the covariance matrices for the parameters, which 
are needed for the statistical inference.

The dataset consisted of 1281 individual trees (546 
spruce, 494 pine, and 241 birch) with measured heights 
and diameters. The response variables were biomass of 
stem wood ( SW  ), branches ( BR ), dead branches ( DB ), 
bark ( SB ), stump ( SU  ), foliage ( FL ), fine roots ( RF  ), and 
coarse roots ( RC ). The number of observations for each 
biomass component varies as shown in Table 1.

Climate data
The climate data for this study have been acquired using 
the Frost API of the Norwegian Meteorological Institute 
[53]. The data are licensed under Norwegian license for 
public data (NLOD) and Creative Commons 4.0 BY. His-
torical weather data were retrieved by identifying the 
nearest weather station and retrieving timeseries of daily 
precipitation and temperature data. For each year from 
2001 to 2016 the following climate variables were calcu-
lated: annual precipitations (mm), mean annual temper-
ature (°C) and the mean difference between maximum 

Fig. 2 Forest stand attributes
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and minimum monthly temperatures (°C). Another set of 
climate variables was calculated with data starting from 
1957, the earliest recorded year to 2000. For these older 
observations, the three variables were averaged across 
the 43 years.

Methods
Overview
We start with a brief overview of the proposed method-
ology. First, we introduce the five variables of interest to 
be estimated at the stand level: �CAGB , �CBGB , �Clitter , 
�Cdeadwood , and �CSOC . They represent the change in 
carbon mass expressed in Mg  ha−1   yr−1 within the fol-
lowing pools: above-ground biomass (AGB), below-
ground biomass (BGB), litter, deadwood, and soil organic 
(SO) carbon.

We use an indirect method to estimate change 
[31], by taking the difference between estimates of 
C stocks at the start and end of the time period (i.e., 
�CAGB =

CAGB|2016−CAGB|2001

2016−2001
 ). Moreover, in lack of ground 

observations we rely on a model-based approach where 
the inference is based on the properties of the models 
involved in the estimation [54, 55].

The carbon stocks in the living biomass pools ( CAGB 
and CBGB ) were estimated for both points in time using 
area-based ALS models. The carbon stocks in the dead 
biomass pools ( Cdeadwood and Clitter ) and CSO pools, how-
ever, are accumulations sourced from the biomass pools 
that go through a decomposition process. To estimate 
their levels, we need to: (1) approximate the litter and 
deadwood production, and (2) simulate the decomposi-
tion process. For the first part, we calculated the litter 
production based on the living biomass stocks and active 
silvicultural treatments. We considered three mecha-
nisms that generate litter: annual litter turnover, annual 
mortality, and excess litter resulting from harvest. The 
decomposition process was simulated using the Yasso15 
soil model [56].

The estimation processes involve several models (see 
“Methods/Models” section) that are linked together in 
a chain of predictions (see Methods/Estimation process 
section), the outcome being carbon stocks in the five 
pools at cell level. For the soil-related pools ( Cdeadwood , 
Clitter , and CSO ) the carbon stocks are calculated year 
by year starting from 2001, through 2016, each time 

carrying through the accumulated carbon from the pre-
vious year and integrating new yearly litter.

The stand level estimates of carbon change in each 
pool are obtained by averaging predictions over the cells 
within each stand. To estimate the uncertainty, we used a 
Monte Carlo approach, by sampling repeatedly from the 
models’ parameters distributions using their estimated 
means and covariance matrices and assuming joint nor-
mal distributions (see “Methods/Estimation process/
Model based estimation and uncertainty” section).

Models
Yasso15 model
The Yasso15 model [56] partitions soil in five chemical 
compartments. Four of these compartments belong to 
the decomposing litter: celluloses ( A ), sugars ( W  ), wax-
like compounds ( E ), and lignin-like compounds ( N  ). The 
fifth compartment is humus ( H ) as the end of the decom-
position process. The carbon accumulated in humus 
makes up the soil organic (SO) carbon pool. The Yasso15 
model is formulated in terms of decomposition rates 
(Fig.  3). Each litter compartment decomposes to either: 
another litter compartment, humus, or is emitted as  CO2. 
The carbon in the humus compartment is only emitted as 
 CO2. The decomposition rates depend on three climate 
variables: annual precipitations (mm), mean annual tem-
perature (°C) and the mean difference between maximum 
and minimum monthly temperatures (°C).

Table 1 Number of observations for each biomass component by species. (Data from Marklund’s 1988 allometric models [47])

SW BR DB SB SU FL RF RC

Spruce 521 540 525 521 323 540 324 333

Pine 471 486 472 471 305 485 305 314

Birch 218 235 221 218 0 0 0 0

Fig. 3 Carbon flux diagram of the Yasso15 soil model. The 
abbreviations are: soil organic carbon ( SOC ), celluloses ( A ), sugars ( W ), 
wax-like compounds ( E ), lignin-like compounds ( N ), and humus ( H)
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Since the flow rates of the Yasso15 model depend only 
on the climate variables, it allows to separate carbon from 
different sources and trace their decomposition indepen-
dently. We used this property to separate the decom-
position of the initial carbon stocks (e.g., stocks at the 
beginning of the timeframe) from the new carbon being 
stored from the litter produced during the timeframe of 
interest. Also, we treated separately carbon that origi-
nates from normal turnover and harvest ( Clitter ) from 
carbon sourced in mortality ( Cdeadwood).

Allometric models
The allometric models for tree component biomass are 
based on Marklund [47]. The models were refitted using 
the original set of field observations and the parameter 
covariance matrix was estimated together with the mean 
values. The models are of three forms:

where comp is one of: SW  , BR , DB , SB , SU  , FL , RF  , RC.
Table  2 shows which model form was used for each 

component and species.

Area based models
The area-based models were fitted using the 116 field 
plots for which both field-calculated biophysical variables 
and ALS metrics were available. All area-based models 
were selected using the Bayesian information criterion, 
restricting the maximum number of parameters to five 
and the maximum variance inflation factor to five. The 
models were time-invariant [30], fitted on observations 
from both points in time, and using a dummy variable: 
T = 0  for 2001, and T = 1 for 2016. The models had the 
following form:

(1)ln(comp) = β0 + β1
D

D + k

(2)ln(comp) = β0 + β1
D

D + k
+ β2ln(H)

(3)ln(comp) = β0 + β1
D

D + k
+ β2H + β3ln(H)

Mean diameter model: 
ln(D) = β0 + β1DALS_4 + β2HALS_mean + β3T

Dominant height model:
Hdom = β0 + β1DALS_2 + β2DALS_8 + β3HALS_80 + β4T

Biomass model: 
ln(BMS) = β0 + β1DALS_2 + β2HALS_80 + β3T

Based on the same dataset a simple model was fitted to 
predict mean tree height ( H ) using Hdom:

Mean height model:H = β0 + β1Hdom + β2T

We needed to predict both mean and dominant height 
since the growth models work with dominant heights and 
the biomass component models are for individual trees, 
thus using the mean height.

Models with unaccounted uncertainty
There are several external models for which the authors 
published only the mean parameter estimates, and thus 
we could not account for the uncertainty in the estimated 
parameters.

The diameter growth models published by Blingsmo 
[57] were fitted on plot data from the Norwegian national 
forest inventory (NFI). The growth period was on average 
five years, and the number of observed periods for each 
species was: 1385 for spruce, 1292 for pine, and 662 for 
birch. The diameter growth models were fitted separately 
for each species with the following dependent variables: 
diameter ( D ), site index ( SI ), number of trees per hectare 
( N  ), dominant height ( Hdom ), and age ( AGE).

The dominant height growth models were published by 
Sharma et al. [58] for spruce and pine and Eriksson et al. 
[59] for birch. The dependent variables were SI and AGE.

The litter turnover rates and the AWEN partition of 
tree biomass components were used as fixed values, with 
unaccounted uncertainty. The carbon content of biomass 
was also a constant, i.e., 50%.

Estimation process
Computing the estimated change in soil and biomass car-
bon involved combining several models including ALS 
area-based models, allometric models, growth models 
and the Yasso15 soil model which were described in the 
previous section. For a better overview, we grouped the 

Table 2 Summary of the allometric models for biomass components

The k values are used in Eq. 1, 2, 3

SW BR(+FL) DB SB SU FL RF RC

Spruce Equation 3, 
k = 14

Equation 3, 
k = 13

Equation 3, 
k = 18

Equation 3, 
k = 15

Equation 1, 
k = 17

Equation 2, 
k = 12

Equation 1, 
k = 12

Equation 1, k = 8

Pine Equation 3, 
k = 14

Equation 2, 
k = 10

Equation 3, 
k = 10

Equation 2, 
k = 16

Equation 1, 
k = 15

Equation 3, 
k = 7

Equation 1, 
k = 10

Equation 1, k = 9

Birch Equation 2, 
k = 11

Equation 1, 
k = 10

Equation 3, 
k = 30

Equation 2, 
k = 14

Use pine 0.011

0.52
× SW

0.042

0.52
× SW

0.042

0.52
× SW
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models in several functional blocks (Fig. 4). The core pro-
cess is illustrated in Figs. 5 and 6 shows how the final pre-
dictions for each of the five pools are calculated.

The mean tree in each cell is characterized by its diam-
eter ( D ) and height ( H ), and it was predicted using ALS 
area-based models (Fig.  4A). H was predicted in two 
steps, with the dominant height model as intermediary. 
The growth models are illustrated in Fig. 4B. Again, H is 
obtained via Hdom.

Finally, Fig.  4C illustrates the litter calculation. Start-
ing with the mean tree, the biomass components are 
predicted using the Marklund models. Next, depending 
on the litter source and tree species, a certain fraction of 
each component is retained as litter. We consider three 
litter sources: normal turnover, mortality, and harvest. 
The biomass fractions for the normal turnover are shown 
in Appendix A. For mortality, the fractions are 100% of 
all components, and in case of harvest, 95% of the stem 
wood is extracted (i.e., 5% left as litter), while the rest 
of biomass components are left in the forest and turn 
to litter entirely (100%). The yearly mortality rate was 

determined by the difference in the estimated number of 
stems (see Fig. 6E) at the two points in time, and in the 
case of non-decreasing stem number a constant rate of 
0.4% was assumed yearly [60].

Finally, the litter originated from each biomass compo-
nent was partitioned into four compartments according 
to the chemical composition: A , W  , E , N  (see Appendix 
B).

The core prediction process is illustrated in Fig.  5. It 
consists in estimating the mean tree at key points in time, 
calculating the litter associated with that, obtaining the 
yearly litter production by interpolating the litter quanti-
ties for the years in between, and finally use the Yasso15 
model in a chain of predictions.

Since evolution of the growing stocks depends on 
whether the forest grew undisturbed or there was a dis-
turbance event, we considered two scenarios: undis-
turbed forest growth, and disturbance detected. The 
forest was assumed to be disturbed if the estimated bio-
mass from the ALS survey ( BMS—area based) decreased 
between 2001 and 2016. In this case, the disturbance 

Fig. 4 Models overview. A mean tree prediction, B growth models, C litter calculation. Bolded boxes are models with estimated parameter 
uncertainties. The symbols are: D mean diameter, H mean diameter, Hdom dominant height, Nha number of trees per hectare, SW , BR , …, RC are 
biomass of individual tree components (see “Methods/Models/Allometric models” section); A , W , E and N are carbon in chemical compartments (see 
“Methods/Models/Yasso15 model” section)
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map would provide the approximate year of the distur-
bance event. If no year was recorded, then the event was 
assumed to have happened in the middle of the time 
interval. In the simpler case of undisturbed growth, 
the yearly litter was calculated by interpolating linearly 
between the litter quantities associated with the mean 
tree at the start and the end of the time interval. If dis-
turbance was detected, two additional mean trees were 
predicted: the mean tree right before the event, and the 
mean tree right after the event. The “before” tree was 
predicted using the growth models with the tree in 2001, 

and the “after” tree was predicted using inverse growth 
models with the tree in 2016. As the growth models are 
difficult to invert analytically, an approximation search 
algorithm was used, where the search interval was recur-
sively halved. The tolerance for both height and diameter 
predictions were set to be less than  10–3 m. In this sce-
nario we have four points in time with determined grow-
ing stocks size, and corresponding litter production. We 
interpolate linearly for the years in between 2001 and the 
year of the event, and from the following year to the end 
in 2016. For the year of the disturbance event, we assume 

Fig. 5 Models overview. Soil Carbon change computation within the 15-year timeframe. Bolded boxes are models with estimated parameter 
uncertainties. E Links to the process in Fig. 6
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an active silvicultural treatment (thinning or harvest), 
and the normal litter production is supplemented by the 
vegetal residuals typically left on site (i.e., all but 95% of 
the stem wood).

The initial soil carbon quantities (at the start of the 
timeframe; 2001) denoted here as “old” soil carbon were 
approximated using simulations in two stages. First, 
the long-term soil carbon was calculated by running 

the model iteratively with a fixed litter input until the 
carbon quantities in the chemical compartments reach 
an equilibrium. The litter input was determined using 
average values of the growing stocks in 2001 for the 
entire study area separately for each tree species and 
site index (Table  3). In absence of empirical soil car-
bon observations or knowledge of the old history of the 

Fig. 6 Models overview. E Predicting stocks of above-ground biomass carbon ( CAGB ), below-ground biomass carbon ( CBGB ) and number of trees per 
hectare ( N ). F Predicting litter Carbon ( Clitter ), deadwood Carbon ( Cdeadwood ) and soil organic carbon ( CSO ). Bolded boxes are models with estimated 
parameter uncertainties

Table 3 Long-term soil carbon values (Mg  ha−1) by species ( SP ) and site index ( SI)

SP SI A W E N H

Spruce 6 6.97 0.73 0.68 17.74 35.09

8 5.45 0.57 0.53 13.88 27.43

11 7.10 0.75 0.69 18.07 35.77

14 7.16 0.76 0.70 18.23 36.06

17 7.94 0.84 0.78 20.21 39.99

20 8.17 0.86 0.80 20.78 41.12

23 8.36 0.88 0.82 21.29 42.11

Pine 6 4.56 0.48 0.51 11.33 23.02

8 5.64 0.60 0.63 13.98 28.43

11 7.35 0.78 0.81 18.21 37.04

14 8.35 0.88 0.92 20.68 42.05

17 9.98 1.05 1.09 24.73 50.28

20 11.81 1.25 1.29 29.25 59.45

Birch 8 5.15 0.56 0.62 13.54 26.42

11 7.34 0.79 0.90 19.33 37.66

14 7.50 0.81 0.91 19.74 38.49

17 8.67 0.94 1.06 22.84 44.49

20 9.41 1.02 1.15 24.80 48.31

23 14.06 1.52 1.74 37.16 72.27



Page 10 of 20Strîmbu et al. Carbon Balance and Management           (2023) 18:10 

stand, this ensured that all stands with similar produc-
tivity have a common soil carbon baseline.

In the second stage, the evolution of soil C was cal-
culated for the current silvicultural cycle which was 
assumed to have started with a clear cut and the soil car-
bon values in Table 3. The stand AGE in 2001 determined 
how many years have passed in the current silvicultural 
cycle. The soil carbon model was applied for each year in 
the current cycle until 2001, with the values for the yearly 
litter input being linearly interpolated between 0 and the 
ones calculated for the year 2001.

We expect the soil carbon initialization to be a coarse 
approximation of the soil carbons stocks in the year 2001, 
so we kept this value separated from the predicted accu-
mulation during the timeframe that is based on several 
good quality data sources and models. This means that: 
(1) we traced the old soil carbon separately through the 
15-year timeframe, with no yearly litter input, and (2) 
the soil carbon starts with 0 initial values for the within 
timeframe process (Fig. 5). Finally, the old carbon stocks 
in the year 2016 may be added to the new carbon accu-
mulated in the timeframe, the result being identical to 
having the timeframe processing initialized with the old 
carbon in 2001.

The final steps to obtain carbon stocks in the five pools 
are shown in Fig. 6 (E—for AGB, and BGB; F—for litter, 
deadwood, and SO). The CAGB and CBGB stocks are cal-
culated using the related mean tree biomass components 
(i.e., RF  and RC belong to BGB and the rest to AGB), and 
then scaling up to per hectare values using the total BMS 
predicted with the area-based model. The number of 
trees per hectare is calculated by dividing BMS to the bio-
mass of the mean tree. Clitter and Cdeadwood are calculated 
separately using the process in Fig. 5. Clitter accounts for 
the normal litter turnover plus the harvest residues, and 
Cdeadwood accumulates carbon sourced in mortality. Clitter 
and Cdeadwood are calculated by summing up the carbon 
in the litter chemical compartments: A+W + E + N  . 
Finally, CSO consists of the humus ( H ) compartments of 
both Clitter and Cdeadwood . Table 4 shows the connection 
between the Yasso15 chemical compartments, and the 
soil carbon pools.

Model based estimation and uncertainty
As shown in the previous sections, predicting the soil 
carbon change in a cell involved the iterative use of the 
Yasso15 soil model and a series of interconnected mod-
els to calculate the yearly litter. The resulting soil car-
bon change predictions were then aggregated at the 
stand level. Since tracing the errors analytically would 
be extremely tedious, we used parametric bootstrap-
ping [61]. This is a Monte Carlo-style method where the 
parameter values of each model were iteratively sampled 

from their estimated distributions, each time recalculat-
ing the whole chain of predictions to a new outcome. For 
the five models that we fitted ourselves (i.e., area-based 
biomass, dominant height, mean height, diameter, and 
biomass components—Marklund) we sampled from the 
joint parameter distributions defined by estimated means 
and variance–covariance matrices [62]. For Yasso15, the 
Finish Meteorological Institute provided us with a read-
ily generated sample of 10,000 pairs of parameter val-
ues. For each parameter sample the entire sequence of 
predictions was recalculated to a different outcome (i.e., 
carbon change in the five pools). The errors were thus 
approximated by the sampling distribution of the change 
estimators.

The significance of the change estimates was assessed 
by calculating 95% confidence intervals based on the 
range of two standard errors. We report the number of 
stands for which the confidence interval did not include 
0.

To assess the contribution of an individual model to 
the total error, we ran separate Monte Carlo simula-
tions for each of the six models, where parametric boot-
strapping was applied to the parameters of one model at 
a time, keeping the parameter of the rest of the models 
fixed at their estimated mean. This type of analysis does 
not account for the interaction between the models, the 
separate error components do not add up to the errors 
calculated for all models at once, so we report their rela-
tive size as percentage of the total error.

Results and discussion
Stand‑level estimates
To illustrate the carbon dynamics in a forest stand 
we plotted (Fig.  7) the estimated carbon stocks yearly 
between 2001 and 2016 for selected stands. The first 
stand (Fig.  7 left) was undisturbed while for the other 
(Fig.  7 right) a disturbance (likely a thinning) was 
detected in 2010. The old, accumulated litter carbon 
( Clitter(old) ) and SO carbon ( CSO ) are shown stacked in 

Table 4 Summary of the Yasso15 chemical compartments, 
carbon input origin, and the soil carbon pools

The abbreviations are turnover (To.), harvest (Hv.), and mortality (Mort.)

Timeframe Historical

To. + Hv. Mort. To. Mort.

A Clitter Cdeadwood Clitter(old)

W

E

N

H CSO CSO(old)
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gray bands. Note how there is a sudden transfer from the 
biomass pools ( CAGB and CBGB ) to the litter pool in the 
disturbed stand. Then, in the years following the thin-
ning, the biomass pools resume carbon accumulation 
while the litter pool Clitter decrease as the new yearly pro-
duction is at a lower level.

The stand-level estimates of carbon change are 
shown on the map in Fig.  8 ( �CAGB and �CBGB ) and 
Fig. 9 ( �Clitter , �Cdeadwood , and �CSO ). �CAGB ranged 
from − 6.196 Mg  ha−1  yr−1 to 3.674 Mg  ha−1  yr−1, with 
a mean change at 0.313 Mg  ha−1   yr−1. �CBGB followed 
a similar pattern, with stand-level estimates rang-
ing from −  1.175 to 0.608  Mg   ha−1   yr−1. On average 
�CBGB was 0.056  Mg   ha−1   yr−1. The observed skewed 
distribution of change is expected under typical forest 
management, where silvicultural treatments are con-
tinuously performed over the years. In this case study, 
within the 15-year timeframe, disturbance was detected 
on approximately 15.74% of the study area. Figure  10 
shows the prevalence of disturbance by year.

The litter carbon accumulation ( Clitter ) was esti-
mated between 0.244 and 5.689  Mg   ha−1   yr−1, with 
an average of 1.004  Mg   ha−1   yr−1. The deadwood car-
bon accumulation ( Cdeadwood ) was between 0.014 
and 1.105  Mg   ha−1   yr−1, and 0.145  Mg   ha−1   yr−1 on 
average. CSO accumulation ranged from 0.008 to 
0.104  Mg   ha−1   yr−1. On average CSO accumulated 
0.036 Mg  ha−1  yr−1 during the 15-year period.

Figure  11 shows �Clitter and �CSO when consider-
ing the decay of approximated old stocks in 2001. Here 
the deadwood pool was merged into the litter pool. 
When old, accumulated litter was accounted for via 
approximated stocks in 2001, the total �Clitter ranged 
from − 1.762 to 4.253 Mg  ha−1  yr−1. On average it was 
0.349 Mg  ha−1  yr−1. This means that while an average of 
1.149 Mg  ha−1  yr−1 new Clitter + Cdeadwood has accumu-
lated in the 15-year timeframe, 0.8 Mg  ha−1  yr−1 of the 
old accumulation was emitted into the atmosphere or 
has transferred to CSO . The old CSO emitted on average 
0.046  Mg   ha−1   yr−1; thus, the balance ( �CSO ) was on 
average -0.01 Mg  ha−1  yr−1. Unlike the litter and dead-
wood, the rate of CSO accumulation within the 15-year 
timeframe was on average lower than the emissions of 
old, accumulated CSO . The total carbon balance, includ-
ing emissions of the old soil carbon, is highly sensitive 
to the estimated old carbon stocks. While the rate of 
carbon flow within the chemical pools is assumed equal 
for the old and new soil carbon, the emissions in abso-
lute terms are proportional to the stocks available each 
year. Here we used simulations to establish initial soil 
carbon stocks. Without empirical observations how-
ever it is difficult to assess how accurate this approxi-
mation is. If reliable estimates of the total carbon 
balance are needed, then the initial soil carbon stocks 
must be established using more robust estimators, pref-
erably empirically validated [56].

Fig. 7 Yearly carbon stocks dynamics for two example forest stands: undisturbed (left), and disturbed (right). The year of disturbance (2010) is 
marked with a dashed line
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Finally, the overall carbon change at the stand level 
ranged between −  8.435 and 4.696  Mg   ha−1   yr−1, with 
an average of 0.708 Mg  ha−1  yr−1. The change in the liv-
ing biomass pools (AGB and BGB) ranged between 
−  7.371 and 4.071  Mg   ha−1   yr−1 with an average of 
0.369  Mg   ha−1   yr−1, in the dead biomass pools (litter 
and deadwood) between − 1.762 and 4.253 Mg  ha−1  yr−1 
with an average of 0.349  Mg   ha−1   yr−1, and in the SO 
between −  0.071 and 0.083  Mg   ha−1   yr−1 with an aver-
age of − 0.01 Mg   ha−1   yr−1. Aggregating the stand level 
estimated across the entire area results in a total carbon 
balance of 0.741 Mg   ha−1   yr−1. The change in the living 
biomass pools was estimated at 0.405  Mg   ha−1   yr−1, in 
the dead biomass pools 0.346  Mg   ha−1   yr−1, and in the 
SO pool −  0.01 Mg   ha−1   yr−1. Note that the aggregated 
estimates differ slightly from the means across stands 
since the forest stands are of different sizes.

The effects of different forest stand properties on the 
estimated carbon change are shown in Fig. 12. The car-
bon accumulation as well as its variability in magnitude 
increased with forest productivity (site index). This was 
expected, because on the one hand, productive stands 
grow faster, but also loose (and transfer) higher levels 
of carbon when harvested. The stand age seemed to 
cause a trend in the soil related pools with increased 
accumulation up to around 50  years of age followed 
by a stabilization or even decline for older stands. The 
apparent decline is consistent with the fact that older 
stands are also the least productive ones (i.e., site index 
of 6 or 8, often pine—see Fig. 2). The dominant species 
did not have visible effects on the carbon change. The 
year of disturbance which is associated with a peak in 
litter input (see Fig. 7) shows clear trends for the litter 
and SO pools. The more recent the harvest/thinning, 

Fig. 8 Estimated stand-level carbon change of the AGB and BGB pools
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the more litter will be present on site at the end of 
the timeframe. For the SO carbon, one would expect 
an inverse trend, with earlier peak litter inputs having 
more time to decompose to SO. Disturbance however 
brings an additional effect of the sudden reduced or 
stopped stream of yearly litter. The trend that resulted 

from combining these effects suggested that the SO 
accumulation peaked 5–6 years after the disturbance.

Errors
The standard errors (SEs), expressed as percentage of the 
estimated carbon change for each of the carbon pools are 
shown in Fig.  13. Extreme values, namely the 99th per-
centile, were filtered out. These values occur when the 
change estimate is near 0, and therefore the SE can be 
quite large if expressed as percentage of the change esti-
mate. In Fig.  13, the x-axis extends to 50% which coin-
cides with the limit when the 95% confidence intervals 
touch 0. The changes in the living biomass pools were 
significant for more than 90% of the stands. The car-
bon accumulation in the soil related pools (litter, dead-
wood, and SO) was significant for all stands. When the 
old carbon stocks were considered for the soil pools, the 
changes in the litter and deadwood pools were significant 
for more than 97% of the stands and the changes in SO 
for 80% of the stands. All carbon change estimates in all 
pools were significantly different than 0 at the level of the 
entire area.

The estimated SEs of �CAGB and �CBGB had a simi-
lar pattern and were on average 25.08% and 26.2%, 

Fig. 9 Estimated stand-level carbon change of the litter, deadwood, and SO pools

Fig. 10 Disturbance year prevalence of the total study area. In total, 
15.74% of the area was disturbed
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respectively. For the stands with significant change the 
SEs were on average 15.56% and 16.63%, respectively. The 
skewed distributions are due to the nature of the point 
estimates, which are estimates of change, with a fraction 
of them being close to 0, and errors that are not neces-
sary proportional to the estimates. The SE of the �Clitter 
was on average 5.56% and with a maximum of 8.78%. The 
SE of the �Cdeadwood was on average 11.39% with a maxi-
mum of 25.18%. Finally, the SE of the �CSO was on aver-
age 10.86% with a maximum of 13.07%. When the old 
soil carbon stocks were included, the SE of the litter and 
deadwood pools was on average 14.09% and for the SO 
42.8%.

The distribution of relative error contributions by 
each model are shown in Fig.  14. For AGB and BGB, 
the area-based biomass model was responsible for a 
substantial fraction of the error (91.6% for AGB and 

68.1% for BGB). This was expected as this model acts 
as a scale factor, where AGB and BGB must sum up 
to the predicted total BMS, with their relative pro-
portions being determined by the Marklund models. 
For BGB, 13.7% of the error was due to the Marklund 
models which were fitted on fewer number of obser-
vations for the root system biomass as compared to 
other biomass components. For the litter and dead-
wood pools, the area-based biomass model was still 
the largest error source with over 50%. Finally, for the 
SO pool, the Yasso15 model contributed 49.2% of the 
error, and area-based biomass model 29.1%. It is inter-
esting to note that the second highest contributor was 
different between the litter and deadwood pools. For 
deadwood, the diameter model was responsible for 
29.5% of the error, and for the litter pool, the Marklund 
model for 17.6%. This makes sense, as the litter input 

Fig. 11 Estimated stand-level carbon change of the litter, and SO pools adding the change in the old stocks
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Fig. 12 Effects of different forest stand attributes on the carbon change estimates
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is differentiated among the tree components, while for 
the deadwood, the size of the tree is more important.

The stand level SE of the overall carbon change esti-
mates (in all pools) was on average 18.33%. To the total 
SE, the living biomass pools (AGB + BGB) contributed 
on average 79.13%, the dead (or decomposing) biomass 
pools (litter + deadwood) 18.87%, and the SO pool 2%. 
This ranking was largely a result of the relative size of the 
changes in the different pools. When split by the con-
tribution of each model the mean shares were: 80.27% 
biomass model, 7.34% diameter model, 3.62% dominant 
height model, 1.16% mean height model, 3.51% Marklund 
models, and 4.11% Yasso15 model. Comparing the indi-
vidual model contribution is indicative of the improve-
ment potential. The results suggest that improving the 
ALS based biomass model would bring the most benefit 
in reducing the uncertainty. This translates to increasing 
the field sample size which should be balanced against 
the cost of doing so.

Finally, the SE at the entire area level were in absolute 
terms: 0.14  Mg   ha−1   yr−1 overall, 0.13  Mg   ha−1   yr−1 for 
the biomass pool, 0.027 Mg  ha−1  yr−1 for litter and dead-
wood, and 0.003 Mg  ha−1  yr−1 for SO.

In this study, the error arithmetic did not include 
the residual errors of the models. We expect however 
that for the smaller stands the residual variances would 
have a considerable contribution. Moreover, given 
the homogeneity of the typical boreal forest stand we 
expect the residuals to be correlated for cells within the 
same stand, thus increasing their contribution to the SE 
in the form of their spatial covariances. It is however 
difficult to assess this type of effect without spatially 

intensive field observations. Nevertheless, because the 
study area as a whole is of substantial size (50  km2), it 
is reasonable to assume that the residual error com-
ponents should have negligible effect on the overall SE 
estimate for the entire study and even for sub-regions 
within the study area, such as individual forest hold-
ings [63]. More generally, in the lack of local validation 
data for the soil related pools, it is difficult to assess 
the chained models’ predictions, and the stand level 
estimates that are based on them. It is thus expected 
that the errors are underestimated under the effect of 
several different factors such as the models with unac-
counted uncertainty, or the possible bias introduced 
by external models. Moreover, at local spatial scales 
such as area plots or individual forest stands, ground 
observations on soil carbon levels may not be sufficient 
in determining a spatially strict carbon balance (i.e., 
within a plot or stand boundary). In addition to the 
“vertical” fluxes that are addressed by the models of the 
present study, topography and rainwater create “hori-
zontal” fluxes in soil carbon, transporting it away from 
the site. In this sense, our modeling approach is verti-
cally consistent at the forest stand level, meaning that 
all soil carbon produced within the stand boundaries is 
traced through decomposition flows irrespective of any 
potential spatial flows. Nonetheless, a landscape-level 
sample of soil carbon observations would be valuable as 
it would enable to calibrate the stand level soil carbon 
estimates of change [64]. Alternatively, a similar cali-
bration could possibly be performed using a network of 
atmospheric carbon flux sensors [44].

Fig. 13 Across stands distributions of standard errors as percentage of change estimates. The x-axis is limited to values for which the change was 
assesed (with a 95% confidence level) to be different than 0. In parenthesis, the percentage of stands with carbon changes significantly different 
than 0. The black dashed line marks the mean of SEs(%) for stands with significant changes, and the gray dashed line the mean of SEs(%) for all 
stands. Lt. litter, Dw. deadwood
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Conclusion
We have developed an integrated methodology to esti-
mate the changes in five important forest carbon pools 
taking advantage of repeated ALS surveys, a well-
established methodology for forest management inven-
tory, and existing models for allometry and soil carbon 
dynamics. Our results show that ALS data can be used 

indirectly through a chain of models to estimate soil car-
bon changes in addition to changes in biomass at the 
primary level of forest management, namely the forest 
stands. Having control of the errors contributed by each 
model, reliable inference can be made under a model-
based inferential approach.

Fig. 14 Distributions of the relative error contributed by each model to the change estimates in each pool. The dashed line marks the mean which 
is also printed in the center of each panel
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Appendix A
Yearly litter turnover

See Table 5.

Appendix B
Chemical composition of litter

The chemical composition of individual tree com-
ponents is shown for each tree species in Table  6 
(spruce), Table  7 (pine), and Table  8 (birch). The 
chemical compartments are celluloses ( A ), sugars ( W  ), 
wax-like compounds ( E ), and lignin-like compounds 
( N  ). The tree components are stem wood ( SW  ), fine 
roots ( RF  ), foliage ( FL ), branches ( BR ), dead branches 
( DB ), coarse roots ( RC ), stump ( SU  ), and stem bark 
( SB ). The values are averages from Appendix 1 in the 
yasso07 manual [67].

See Tables 6, 7, 8
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Table 5  Turnover rates for individual biomass components

SWstem wood, RF fine roots, FL foliage, BR branches, DB dead branches, RC coarse roots, SU stump, and SB stem bark; the rates are expressed as an yearly proportion 
and are a result of estimated lifetime (e.g. lifetime of pine needles is approx. 3 years, thus the yearly turnover rate of 0.33). The values were compiled in Peltoniemi, 
Mäkipää [65] and de Wit, Palosuo [66]

SW RF FL BR DB RC SU SB

Spruce 0 0.6 0.143 0.0125 0.0125 0.0125 0 0

Pine 0 0.6 0.33 0.027 0.027 0.027 0 0

Birch 0 0.6 1 0.025 0.025 0.025 0 0

Table 6 Chemical partition of biomass components for spruce

A W E N

SW 0.666667 0.017949 0.002564 0.312821

RF 0.5508 0.1331 0.0665 0.2496

FL 0.4826 0.1317 0.0658 0.3199

BR 0.666667 0.017949 0.002564 0.312821

DB 0.666667 0.017949 0.002564 0.312821

RC 0.666667 0.017949 0.002564 0.312821

SU 0.666667 0.017949 0.002564 0.312821

SB 0.5508 0.1331 0.0665 0.2496

Table 7 Chemical partition of biomass components for pine

A W E N

SW 0.680203 0.022843 0.007614 0.28934

RF 0.5791 0.1286 0.0643 0.228

FL 0.518 0.1773 0.0887 0.216

BR 0.462586 0.019888 0.084075 0.433451

DB 0.462586 0.019888 0.084075 0.433451

RC 0.462586 0.019888 0.084075 0.433451

SU 0.680203 0.022843 0.007614 0.28934

SB 0.5791 0.1286 0.0643 0.228

Table 8 Chemical partition of biomass components for birch

A W E N

SW 0.715 0.015 0 0.27

RF 0.43395 0.19545 0.0977 0.2729

FL 0.43395 0.19545 0.0977 0.2729

BR 0.715 0.015 0 0.27

DB 0.715 0.015 0 0.27

RC 0.715 0.015 0 0.27

SU 0.715 0.015 0 0.27

SB 0.43395 0.19545 0.0977 0.2729
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