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A B S T R A C T   

The spotted wing Drosophila, Drosophila suzukii, has emerged within the past decade as an invasive species on a 
global scale, and is one of the most economically important pests in fruit and berry production in Europe and 
North America. Insect ecology, to a strong degree, depends on the chemosensory modalities of smell and taste. 
Extensive research on the sensory receptors of the olfactory and gustatory systems in Drosophila melanogaster 
provide an excellent frame of reference to better understand the fundamentals of the chemosensory systems of 
D. suzukii. This knowledge may enhance the development of semiochemicals for sustainable management of 
D. suzukii, which is urgently needed. Here, using a transcriptomic approach we report the chemosensory receptor 
expression profiles in D. suzukii female and male antennae, and for the first time, in larval heads including the 
dorsal organ that houses larval olfactory sensory neurons. In D. suzukii adults, we generally observed a lack of 
sexually dimorphic expression levels in male and female antennae. While there was generally conservation of 
antennal expression of odorant and ionotropic receptor orthologues for D. melanogaster and D. suzukii, gustatory 
receptors showed more distinct species-specific profiles. In larval head tissues, for all three receptor gene fam-
ilies, there was also a greater degree of species-specific gene expression patterns. Analysis of chemosensory re-
ceptor repertoires in the pest species, D. suzukii relative to those of the genetic model D. melanogaster enables 
comparative studies of the chemosensory, physiology, and ecology of D. suzukii.   

1. Introduction 

Olfactory and gustatory chemosensory systems play a significant role 
in mediating a broad suite of insect behaviours. Food and host selection, 
mate finding and acceptance, as well as avoidance of natural enemies 
are all processes largely influenced by the detection and interpretation 
of chemosensory cues and signals. This central role of insect chemo-
sensory systems demands a great degree of sensitivity to ecological and 
evolutionary pressures relevant to niche adaptation and speciation 
(Hansson and Stensmyr, 2011; Conchou et al., 2019). Chemosensory 
receptor proteins are typically expressed in the dendrites of 

chemosensory neurons and are specifically responsible for interaction 
with chemical signals (Leal, 2013; Fleischer et al., 2018; Robertson, 
2019). Odorant receptors (ORs), gustatory receptors (GRs) and iono-
tropic receptors (IRs) comprise the primary multi-gene families 
responsible for chemosensory detection in insects. 

The molecular basis for olfactory and gustatory function is well 
characterized in D. melanogaster, in both adults and larvae, with respect 
to chemosensory receptor expression and functional activation (Hallem 
et al., 2004; Kreher et al., 2008; Benton et al., 2009; Kwon et al., 2011; 
Menuz et al., 2014; Croset et al., 2016; Sanchez-Alcaniz et al., 2018). 
Conversely, functional capabilities of drosophilid chemosensory 
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receptors, across other drosophilid species, including expression pat-
terns and functional assay of receptors have been more limited (de 
Bruyne et al., 2001; Hallem et al., 2004; Hallem and Carlson, 2006; de 
Bruyne et al., 2010; Crowley-Gall et al., 2016; Shaw et al., 2019; Auer 
et al., 2020). 

The spotted wing drosophila, Drosophila suzukii has emerged during 
the last decade as a globally relevant, invasive species with significant 
economic impact on the cultivation of soft-fruits and berries (Walsh 
et al., 2011; Cini et al., 2014; Asplen et al., 2015). Owing largely to the 
evolution of a serrated ovipositor organ, D. suzukii is able to exploit fresh 
fruit as a larval host, whereas other closely related Drosophila species lay 
their eggs in soft over-ripe and fermenting fruit. The divergence of 
D. suzukii, with regards to this aspect of niche utilization provides an 
opportunity to explore the evolutionary consequences of ecological 
adaptation in comparison with the genetic model system, Drosophila 
melanogaster. For example, differences exist between D. melanogaster and 
D. suzukii in sensitivity to and in preference for odors emitted by ripe or 
decaying strawberries (Karageorgi et al., 2017). Furthermore, shifts in 
the olfactory tuning of some olfactory sensory neurons housed in 
antennal sensilla subtypes of D. suzukii, relative to D. melanogaster, have 
been characterized (Keesey et al., 2015; Keesey et al., 2022). A funda-
mental question concerns how these differences are manifested, with 
reference to the chemosensory receptors that directly mediate the ol-
factory response. 

Complete chemosensory receptor repertoires present in the D. suzukii 
genome have been characterized (Crava et al., 2016; Hickner et al., 
2016; Ramasamy et al., 2016). These reports confirm gene duplications 
of subsets of ORs, GRs and IRs relative to D. melanogaster. A recent report 
on a D. suzukii female antennal transcriptome examined the effect of 
mating on chemosensory gene expression and olfactory system function 
(Crava et al., 2019). Antennal expression of olfactory receptors in 
D. suzukii largely mirrored that of D. melanogaster. For example, only 
three OR orthologues present in D. melanogaster antennae were not 
found to be expressed in D. suzukii female antennae. Consistent with 
these findings, a recent report on the neuroethology of D. suzukii 
revealed functional conservation of olfactory responses in 86 % of ol-
factory sensory neuron (OSN) types between D. suzukii and 
D. melanogaster (Keesey et al., 2022), suggesting a high degree of con-
servation of receptor function for most of the orthologues that are 
expressed in the antennae of both species. However, differences are 
apparent elsewhere, as D. suzukii shows a lower expression in several 
bitter-compound GRs in the labellum, which correlates with a reduced 
bitter deterrence during oviposition as compared to D. melanogaster 
(Dweck et al., 2021). 

Similarities in chemosensory receptor genes and function facilitate 
both basic and applied research directions. At the basic level, explora-
tion of chemosensory receptors may identify stage- or sex-specific dif-
ferences that could influence physiological or ecological events. In 
addition, niche adaption may be driven by chemosensory receptors and 
further reflected throughout the olfactory system of adults and larvae 
(Chakraborty et al., 2022; Keesey et al., 2022). At the applied level, 
exploration of chemosensory receptors may contribute to the use of 
semiochemicals for management of D. suzukii (Caballero-Vidal et al., 
2021; Liu et al., 2022). Current semiochemical-based efforts are aimed 
at exploiting attraction to fermenting yeasts and fruit for population 
control and species-specific monitoring (Hamby and Becher, 2016; 
Schetelig et al., 2018; Wallingford et al., 2018; Noble et al., 2019; 
Rehermann et al., 2022). Attempts have been made to translate yeast 
attraction into synthetic attractants (Feng et al., 2018), where possible 
differences between larvae (Lewis and Hamby, 2019; Roubos et al., 
2019) and adult flies (Clymans et al., 2019; Kleman et al., 2022), as well 
as the sexes (Mori et al., 2017; Piñero et al., 2019) are consequential. 

To better understand the role of the D. suzukii olfactory system in 
niche exploitation and for developing semiochemical-based manage-
ment strategies, we analyzed adult male and female antennal tissue and 
larval heads, as proxy for larval chemosensory systems. Using 

transcriptomics, qualitative assessments were made concerning genes 
expressed in the different tissues, and larval head expression data was 
supported with reverse transcriptase end-point polymerase chain reac-
tion (RT-PCR) profiling. Quantitative assessments of chemosensory re-
ceptor expression levels were also made, with transcript abundance 
estimates generated for preliminary comparisons within and across 
samples. Utilizing the vast knowledge of D. melanogaster chemosensory 
receptor expression and function, we analyzed expression profiles across 
these two species, comparing and contrasting differences between adult 
and larval chemosensory capabilities. 

2. Materials and methods 

2.1. Insect specimen and RNA-sequencing (RNA-Seq) sample preparation 

The D. suzukii colony originated from Trento, Italy (courtesy of 
Gianfranco Anfora, C3A Center Agriculture Food Environment of Uni-
versity of Trento). The colony was derived from the same colony used for 
previous transcriptomic studies (Crava et al., 2019). Flies were reared on 
a standard cornmeal-based (‘Bloomington Drosophila Stock Center’ 
(BDSC) https://bdsc.indiana.edu/information/recipes/bloomfood.htm 
l) artificial diet at 22–24 ◦C, 35–60 % RH, and 12:12 h L:D photope-
riod. Two- to five-day old male and female adults from a mixed popu-
lation were used for antennal collections. Antennae were harvested from 
500 males and 500 females separately into RNAlater (Sigma-Aldrich, St. 
Louis, MO, USA) and stored at 4 ◦C until shipment for RNA-Seq. The 
RNAlater samples were sent to LGC Genomics GmbH (Berlin, Germany) 
for further processing. 

Third instar (six to seven days old) larvae were obtained by placing 
adult males and females from the colony in a vial containing standard 
BDSC cornmeal diet. After 24 h, the adults were removed, and the vials 
incubated for seven days. After seven days, larvae were removed from 
the vials, rinsed in sterile mQ-H2O, and dissected under a stereomicro-
scope. The three anterior (head) segments were removed and placed 
immediately into a 1.5 mL microcentrifuge tube containing TRIzol® 
reagent (Life Technologies, Carlsbad, CA, USA) on ice. Approximately 
350 larvae were dissected and heads collected in a single tube of TRIzol. 
Total RNA was extracted and purified with a combined approach of 
TRIzol-based extraction followed by RNeasy® Mini spin column puri-
fication (Qiagen, Venlo, Netherlands), as previously described (Walker 
et al., 2016). RNA was eluted with supplied RNase-Free water and 
immediately assayed for quality and concentration with a Nanodrop 
1000 spectrophotometer (Thermo Fisher Scientific, Waltham, MA, 
USA). Purified RNA was sent to the Beijing Genomics Institute (BGI) 
facility in Hong Kong (BGI Hong Kong Co.) for sequencing. 

2.2. RNA sequencing 

Pure total RNA, from one sample each for both male and female 
antennae, was extracted by LGC Genomics and separate cDNA libraries 
were prepared using standard in-house protocols. Through Illumina 
MiSeq V3 and NextSeq 500 V2 sequencing, paired-end reads, 300 bp and 
150 bp, respectively, were generated and saved in FASTQ format (Cock 
et al., 2010). Pre-processing of sequenced reads were carried out by LGC 
Genomics as follows: libraries were demultiplexed for each sequencing 
lane using the Illumina bcl2fastq 2.17.1.14 software; one or two mis-
matches or Ns were allowed in the barcode read when the barcode 
distances between all libraries on the lane allowed for it; sequencing 
adapter remnants were clipped from all raw reads; reads containing 
more than one N were discarded; removal of bases or complete reads 
with sequencing errors, via trimming of reads at 3′-end to get a mini-
mum average Phred quality score of 10 over a window of ten bases; 
reads with final length < 20 bases were discarded; rRNA sequence reads 
were filtered out using RiboPicker 0.4.3. 

For the single larval head sample, at BGI total RNA was converted to 
a cDNA library as previously described (Walker et al., 2019). With 
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Illumina HiSeq™ 2000 sequencing, paired-end reads (90 bp PE) were 
generated and saved in FASTQ format (Cock et al., 2010). Low quality 
reads that did not meet any of the following criteria were removed with 
proprietary BGI software: reads with sequenced adaptors, reads with >5 
% unknown nucleotides and reads that have >50 % of nucleotide bases 
with PHRED quality scores <10 (Ewing et al., 1998; Ewing and Green, 
1998). 

2.3. Bioinformatic pipelines for transcriptome analyses 

2.3.1. Adult antennal transcriptome 
A single transcriptome comprised of sequenced libraries from both 

male and female antennal samples was assembled using Trinity v.2.2.0 
(Grabherr et al., 2011); digitally normalized read pairs were used, all 
scaffolds larger than 200 bp were kept, low confidence contigs were 
filtered out using RSEM v.1.2.14 (Li and Dewey, 2011). To facilitate 
unambiguous read mapping of individual sample reads back to unique 
locations on the assembled transcriptome sequences for downstream 
quantitative analyses, the software CD-HIT-EST (v. 4.5.4-2011-03-07) 
was used to identify and remove redundant sequences that share 98 % 
or greater identity with other sequences (Li and Godzik, 2006). The 
transcriptome Trinity.fasta file was used as input, program parameters -c 
0.98 -n 8 were specified. In cases where sequences shared >98 % 
identity but were of different sizes, the largest of the sequences were 
retained in the fasta file. 

To assess the completeness of both the adult antennae and larval 
head transcriptomes, an Arthropoda BUSCO database, consisting of 
1066 core genes that are highly conserved single-copy orthologues 
(Seppey et al., 2019; Waterhouse et al., 2019), was used to query the 
transcriptomes. For this process, the gVolante web server (https:// 
gvolante.riken.jp/) was utilized with the following parameters: min_-
length_of_seq_stats: 1, assembly_type: trans, Program: BUSCO_v2/v3, 
selected reference_gene_set: Arthropoda (Nishimura et al., 2017). 

For identification and characterization of chemosensory receptors, 
text files were compiled in fasta format with protein sequences obtained 
from the supplementary materials of the genomic analyses of ORs, GRs 
and IRs (Crava et al., 2016; Ramasamy et al., 2016). BLAST nucleotide 
databases were created from the Trinity.fasta file and were queried by 
the protein sequence fasta files for each of the chemosensory gene 
families. For this procedure, BLAST v.2.9.0+ was used to perform a 
tblastn query and a minimum e-score threshold of 1e-05 was required 
for hits; additional parameters included -num_descriptions 50; and 
output format six (Camacho et al., 2009). For each of the previously 
annotated chemosensory genes, the top BLAST hit transcript cluster was 
manually extracted from the Trinity.fasta file. Nucleotide sequences 
were translated into protein sequence with the ExPASy web Translate 
tool (https://web.expasy.org/translate/; (Artimo et al., 2012)), and the 
protein sequences were aligned to reference annotations with the 
ClustalOMEGA web tool (http://www.ebi.ac.uk/Tools/msa/clustalo/; 
(Sievers et al., 2011)). 

Read mapping of individual sample reads to the de novo tran-
scriptome and subsequent expression level abundance estimations were 
carried out, as described (Haas et al., 2013) with the Trinity Perl script 
“align_and_estimate_abundance.pl“ in the release version of Trinity 
2.8.4, using RSEM v.1.2.12 (Li and Dewey, 2011), Bowtie v.0.12.6 
(Langmead et al., 2009) and samtools v.0.1.19 (Li et al., 2009). The CD- 
HIT-EST-modified Trinity.fasta file was used as reference transcripts 
input and the trimmed fastq adult antennal reads described above were 
used as mapping input. A gene_trans_map file was generated with an 
RSEM perl script, and used as input to assess relative expression levels 
for all transcripts within each relevant Trinity cluster. Estimated map-
ped reads for each gene were normalized to the total mapped reads in 
each sample, divided by one million to calculate reads per million reads 
mapped (RPM). To maintain consistency with relevant comparative 
studies on Drosophila antennal transcriptomes, genes were defined as 
antennal expressed if they were detected at RPM > 1 in both male and 

female samples (Menuz et al., 2014; Crava et al., 2019). Expression was 
further normalized by gene length to calculate FPKM values (Li and 
Dewey, 2011) to facilitate estimation of relative gene expression abun-
dance levels for genes within and across each sample. 

2.3.2. Larval head transcriptome 
For larval head sequenced reads, raw sequencing files were down-

loaded from the BGI server. The sequences were checked for quality with 
FastQC v.0.11.5 (Andrews, 2010). To remove low quality reads and 
adaptor contamination, Trimmomatic v.0.36 (Bolger et al., 2014) was 
used (Parameters: ILLUMINACLIP:TruSeq3-PE-2.fa:2:30:10 TRAIL-
ING:20 MINLEN:36). The trimmed, paired reads were aligned to the 
D. suzukii genome v.1.0 (bioSample: SAMN02953868; Assembly: 
GCA_000472105.1; (Chiu et al., 2013)) using Bowtie2 v.2.3.4.1 (pa-
rameters as specified within RSEM) run with RSEM v.1.3.1 (Li and 
Dewey, 2011). Briefly, the genome and annotation file (NCBI Drosophila 
suzukii Annotation Release 101) were used by rsem-prepare-reference to 
create transcriptome files, necessary internal RSEM files, and Bowtie2 
index files. This was followed by rsem-calculate-expression, which then 
mapped the reads to the transcriptome and calculated expression levels. 

Chemosensory receptor genes were identified based on genome an-
notations and, in addition, by tblastn searches of all the amino acid se-
quences of previously identified D. suzukii receptors (Crava et al., 2016; 
Hickner et al., 2016; Ramasamy et al., 2016). When more than one re-
ceptor was identified with a significant BLAST hit, the results were 
compared manually (based on query coverage, % identity, and e-value) 
to retain the best BLAST hit, and hence, chemosensory gene annotation. 
The gene annotations were then used to query the results of the RSEM 
file at the isoform level and gene expression levels (FPKM) were 
obtained. 

2.4. cDNA synthesis and PCR assay of larval chemosensory receptor 
expression 

2.4.1. cDNA synthesis 
To create cDNA, the SuperScript III Reverse Transcriptase (Invi-

trogen) kit was used with the same purified RNA sample used for the 
RNA sequencing reaction. Ten micrograms of RNA were used in the 
reaction following the manufacturers protocol. 

2.4.2. PCR primer design 
To confirm the expression of ORs, GRs and IRs in larval heads, 

primers were designed (Eurofins Genomics, Ebersberg, Germany) based 
off genomic sequences (Crava et al., 2016; Ramasamy et al., 2016). To 
ensure full-length transcripts were expressed, most primer pairs were 
designed to amplify the entire coding sequence of each transcript 
(Supplementary Table S1). 

2.4.3. RT-PCR confirmation of ORs, GRs and IRs 
Each PCR was carried out in a 12.5 μL volume containing: 5.25 μL 

H2O, 5.75 Green master mix (Dreamtaq green PCR mastermix 2×, 
Thermo Fisher Scientific) 0.25 μL forward primer (10.0 μM), 0.25 μL 
reverse primer (10.0 μM) and 1.0 μL of the diluted cDNA sample. 
Temperature program with an initial 5-min step at 95 ◦C, and then 45 
cycles of 95 ◦C for 1 min, primer melting temperature for 1 min, 72 ◦C 
for 1 min, and a final 7-min step at 72 ◦C was used. 

Each PCR reaction was repeated twice, and no-template controls 
were used. PCRs were performed in parallel on genomic DNA (gDNA) 
templates extracted from adult insects (male and female), pupae and 
larvae (DNeasy Blood & Tissue, Qiagen). Amplification was performed 
using primers for the coding sequence of Orco. No amplification or 
amplifications products with different sizes were observed, indicating 
that no significant gDNA contamination occurred in our cDNA prepa-
rations (Supplementary Data S2). Amplifications of PCR products were 
analyzed by electrophoresis on a 1.5 % agarose gel, with the 1 kb 
GeneRuler ladder (Thermo Fisher Scientific), stained with GelRed 
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Nucleic Acid Stain (Biotium, Fremont, CA), and visualized using Gene-
Flash (Syngene Bio Imaging, https://www.syngene.com/). 

2.5. Heatmap presentation of transcript expression 

Heatmap plots were generated for the binary logarithm of raw 
FPKM-plus-1 values. These plots were made using the conditional 
formatting function in Microsoft Excel, with a three-color scale. For each 
plot, the minimum value was set to number type, with a value of one, 
and displayed as white; midpoint was set to percentile type, with a value 
of 75, and displayed as dark color; maximum was set to highest value 
type and displayed as bright color. For all gene families, the range was 
specified for each tissue type independently, such that the color gradient 
was set based upon the highest FPKM values within each tissue, not 
across all tissues. 

2.6. Phylogenetic analysis of chemosensory receptors 

Amino acid sequences for chemosensory receptors of each gene 
family for D. suzukii were obtained from previous reports on genomic 
characterizations of chemosensory receptors (Crava et al., 2016; Ram-
asamy et al., 2016); for D. melanogaster, protein sequences were obtained 
from NCBI-GenBank. Protein sequences were aligned using MAFFT on-
line v.7.220 (http://mafft.cbrc.jp/alignment/server/phylogeny.html) 
through the FFT-NS-i iterative refinement method, with JTT200 scoring 
matrix, “leave gappy regions” set, and other default parameters (Katoh 
et al., 2019). Aligned sequences were used to build the phylogenies with 
MEGA7 software in command line (Kumar et al., 2012), with the 
following parameters: Maximum Likelihood Tree Method with the JTT- 
F′ model, uniform rates, use all sites, nearest neighbor interchange 
heuristic method, very strong branch swap filter and default automatic 
NJ/BioNJ initial tree. The bootstrap consensus of each phylogenetic tree 
was inferred from 600 replicates. Consensus Newick format trees were 
compiled with MEGA6.06 software (Tamura et al., 2013) and edited 
with Adobe Illustrator. 

3. Results 

3.1. Transcriptome overview 

Transcriptomes for D. suzukii adult antennae and larval heads were 
generated and analyzed separately. Male and female adult antennae 
sequenced samples were combined for a total of 99.1 million quality 
trimmed and filtered read pairs, digitally normalized to 1.1 million read 
pairs, and assembled de novo by Trinity Assembler (v. 2.2.0). After 
redundancy removal, a total of 260,000 transcript sequences remained, 
with a mean sequence length of 431 bp and an N50 sequence length of 
451 bp. BUSCO analysis of the adult antennal transcriptome with the 
Arthropoda database of single-copy orthologues, resulted in hits for 
99.4 % of queried sequences, with 85.27 % identified as complete. 

For the larval heads, 61 million clean trimmed reads were utilized to 
create a genome-guided transcriptome. After redundancy removal, a 
total of 238,000 transcript sequences remained, with mean sequence 
length of 2410 bp and an N50 sequence length of 3470 bp. BUSCO 
analysis of the third-instar larval head transcriptome with the Arthro-
poda database of single-copy orthologues, resulted in hits for 98.78 % of 
queried sequences, with 97.56 % identified as complete. 

3.2. Odorant receptors 

In adult antennae, transcripts encoding 58 unique OR gene products 
across 52 genomic loci were identified, including one of two predicted 
OR46a splice variants and all five predicted OR69a splice variants 
(Ramasamy et al., 2016). Detectable expression levels were attributed to 
40 OR genes encoding 44 gene products (Fig. 1). Sexually dimorphic 
expression patterns for ORs in adult antennae were generally not 

observed (Pearson Correlation Coefficient = 0.996). The odorant re-
ceptor co-receptor (Orco) was the most highly expressed gene (male - 
975.5 FPKM; female = 1166.4 FPKM). In both male and female 
antennae, DsuzOR92a and DsuzOR42b were the most highly expressed 
tuning ORs, with FPKM values at least two- to three-fold higher than all 
other individual ORs (Supplementary Data S3). 

In larval heads, genome guided read-mapping revealed expression of 
34 ORs, including Orco (1.78 FPKM), with FPKM values greater than 
zero (Fig. 1). These results were validated by RT-PCR for 27 ORs 
including Orco (Supplementary Fig. S4). Orco along with OR2a (3.81 
FPKM), OR10a (1.14 FPKM) and OR43b (1.37 FPKM) were the most 
highly expressed OR family members in larval head tissue, all with 
FPKM values greater than one (Supplementary Data S3). Notably, 12 of 
the 27 ORs confirmed in D. suzukii larval heads are not expressed in adult 
antennae, while 15 ORs were detected in both larvae and adults (Fig. 1; 
Fig. 2). 

For each of the three analyzed gene families, phylogenetic trees were 
generated for all genes present in the genomes of D. melanogaster and 
D. suzukii to facilitate comparisons of chemosensory receptor expression 
profiles in adult antennae and larval head tissues. As previously reported 
in adult antennae (Menuz et al., 2014; Crava et al., 2019), there is a 
broad conservation of expression of OR homologues in D. melanogaster 
and D. suzukii (Fig. 2). Orthologous pairs of 29 ORs are expressed in both 
species, while ORs found in complex clusters of five other lineages are 
also expressed in both species, including OR19a, OR23a, OR65b/OR65c, 
OR67a, and OR69a. These lineages often contain multiple paralogues in 
D. suzukii, where only one orthologue is present in D. melanogaster. Only 
OR85a, OR33a and OR33c are found expressed in the antennae of 
D. melanogaster but not in D. suzukii. Conversely, in the larval head, a 
different picture emerges. In D. melanogaster larval heads, 25 ORs are 
expressed (Fishilevich et al., 2005; Kreher et al., 2008) and the homo-
logues of seven of these are not found expressed in D. suzukii larval 
heads, while for the 26 tuning ORs confirmed expressed in D. suzukii 
larval head, nine of the corresponding homologues are not expressed in 
D. melanogaster larval heads (Fig. 2; Supplementary Table S5). 

3.3. Gustatory receptors 

Transcripts encoding 36 GR proteins were identified in the antennal 
transcriptome, though only 10 GRs had expression levels >1 RPM. Eight 
of the GRs that were identified in our transcriptome, albeit with RPM 
values less than one in both male and female antennae (GR10a, GR28bD, 
GR58c, GR61a, GR64b, GR64c, GR77a and GR85a1) were previously 
reported as expressed (Crava et al., 2019). Among all expressed GRs, 
sexually dimorphic expression patterns were not observed (Fig. 3). The 
most highly expressed GRs include putative carbon dioxide (CO2) re-
ceptors, GR21a and GR63a (Jones et al., 2007; Kwon et al., 2007), as 
well as single putative sugar and bitter compound receptors, GR64f and 
GR66a, respectively (Moon et al., 2006; Jiao et al., 2008). Expression of 
these four receptors ranged from 22.9 to 290.0 FPKM. In both male and 
female antennae, GR66a was the most highly expressed GR, with FPKM 
values at 290.0 and 287.7 in male and female antennae, respectively. All 
other GR transcripts displayed low expression, with FPKM values below 
five (Supplementary Data S3). 

In third instar larval heads, 24 GRs were identified as expressed with 
FPKM values greater than zero. Expression of 23 of these receptors was 
confirmed via RT-PCR (Supplementary Fig. S4). Putative bitter- 
compound receptors GR66a (Weiss et al., 2011), and GR58c were the 
most highly expressed GRs in the larval head sample, both with FPKM 
values greater than one (Supplementary Data S3). Five GRs were 
commonly expressed across adult antennae and larval head, including 
one of the two broadly conserved CO2 receptors (GR63a), as well as the 
conserved candidate fructose receptor GR43a. More candidate bitter- 
compound receptor (Weiss et al., 2011) transcripts were detected in 
larval head (N = 10; GR8a/GR22e/GR28a/GR32a/GR33a/GR59b/ 
GR66a/GR92a/GR93a/GR93b) than in adult antennae (N = 4; GR32a/ 
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GR39b/GR66a/GR98b) (Fig. 3; Fig. 4). 
In both male and female adult antennae, as well as larval heads, 

notable differences in GR expression profiles exist when comparing 
D. suzukii with D. melanogaster. Using a transcriptomic approach sup-
ported with quantitative RT-PCR, 14 GRs were reported to display 
antennal expression in D. melanogaster (Menuz et al., 2014). This is 
similar to findings in support of expression of up to 18 GRs in the 
antennae of D. suzukii (results from this report and Crava et al., 2019). Of 
the 18 GRs, 10 homologues display expression in D. melanogaster 
antennae (Fig. 4). Four GRs in D. melanogaster, and up to nine GRs in 
D. suzukii were thus identified without corresponding orthologue 
expression in the adult antennae of the opposite species. In 
D. melanogaster, three of these are found within the sugar clade (GR64a/ 
GR64d/GR64e), conversely, in D. suzukii, four of these GRs (GR28b.D/ 
GR32a/GR39aB/GR98b) are orthologous to D. melanogaster GRs impli-
cated in detecting bitter compounds (Weiss et al., 2011). In 
D. melanogaster larval head sensory organs, utilizing transgenic GR 
promoter-Gal4/GFP reporter detection systems, 39 GRs were identified 
as expressed (Kwon et al., 2011). In D. suzukii larval heads, of the 23 GRs 
confirmed expressed in this report, orthologues of 15 of these were 
identified in D. melanogaster larval head sensory systems, while the 
remaining eight, including three putative sugar receptors (GR61a/ 
GR64a/GR64c), were not expressed in D. melanogaster (Fig. 4). 

3.4. Ionotropic receptors 

Gene transcripts encoding 38 IRs were identified in the antennal 
transcriptome, with 14 having expression levels >1 RPM in both male 
and female. Notably, among these 14, all are phylogenetically grouped 
with either the IR co-receptors (IR8a/IR25a/IR76a) or the antennal IRs, 
(Croset et al., 2010), except for IR62a, which is part of the divergent IR 
subfamily. Four additional IRs that were identified here, albeit with 
expression values below 1 RPM in both male and female antennae 
(IR40a, IR51a, IR52c2 and IR100a) were previously reported as 
expressed (Crava et al., 2019). As with the ORs and GRs, sexually 
dimorphic expression patterns were generally not observed (Fig. 5), 
though exceptions to this are noted for IR21a (male-bias) and IR76a 
(female-bias). All putative IR co-receptors were the most highly 
expressed members of this family. Among the remaining, IR75d and 
IR64a were the most highly expressed in both male and female antennae 
samples (Supplementary Data S3). 

In larval heads, 29 IRs were identified with FPKM values greater than 
zero; expression was confirmed for 20 of these by RT-PCR (Supple-
mentary Fig. S4), including the co-receptors IR25a and IR76b. The 
divergent IR, IR62a displayed the highest expression value, as the only 
IR with an FPKM value above one (Supplementary Data S3). In contrast 
to IRs found expressed in adult antennal samples, which are predomi-
nantly of the antennal IR subfamily, most IRs expressed in larval head 
are members of the divergent IR subfamily. 

As with the odorant receptors, the IR expression profile in D. suzukii 
male and female antennae largely reflected that of D. melanogaster. In 
D. melanogaster expression of 16–20 IRs was confirmed via RNA-Seq 
(Menuz et al., 2014) and Gal4/GFP promoter-reporter detection (San-
chez-Alcaniz et al., 2018). Likewise, in D. suzukii, 16–20 IRs show 
antennal expression (here and Crava et al., 2019). Orthologues of all co- 
receptors and antennal IRs are expressed in both species, apart from 
IR68a, for which expression evidence exists in D. melanogaster (Sanchez- 
Alcaniz et al., 2018), but not D. suzukii. One divergent IR, IR62a, was 
observed to be expressed in the antennae of both species as well. In 
D. melanogaster larval-head sensory organs, utilizing transgenic IR 
promoter-Gal4/GFP reporter detection systems, 33 IRs were identified 
as expressed (Sanchez-Alcaniz et al., 2018). Of the 20 IRs confirmed 
expressed in D. suzukii larval heads, the orthologues of 12 of these were 
identified in D. melanogaster larval head sensory systems, while the 
remaining eight (IRs 64a/75d/76a/7c/10a/56b/62a/85a/) were 
unique to D. suzukii larval heads, including three antennal IRs (Fig. 6). 
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Fig. 1. Heat-plot of relative expression values for D. suzukii odorant receptors 
(ORs). Estimation of abundance values determined by read mapping. White 
indicates no expression or transcripts not identified in transcriptome; for adult 
antennal samples specifically, expression values have been suppressed for 
transcripts with RPM values less than one in both samples. Lighter colors 
indicate relatively lower expression, brighter colors indicate relatively higher 
expression. Color plots represent binary log of FPKM plus one for each gene 
(See Supplementary Data S3 for raw data). For larval head data, asterisk “*” 
indicates expression has been validated by RT-PCR assay. Color scales for each 
tissue type are independent of other tissue types. Range of values for Male 
Antenna: 0.26–9.93; Female Antennae: 1.02–10.18; Larval Heads: 0.042–2.26. 
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4. Discussion 

4.1. Summary of findings 

Expression profiles of ORs, GRs and IRs have been characterized in 
D. suzukii male and female antennae and third instar larval heads. 
Expression of 40 ORs, 10 GRs, and 14 IRs has been identified in our adult 
antennal transcriptome. In our larval head transcriptome, 28 ORs, 23 
GRs, and 20 IRs have been identified as expressed and confirmed with 
RT-PCR. In consideration of the fact that sequencing of our samples was 
not replicated, we clarify that our results are supported by multiple lines 
of evidence. BUSCO analysis suggests a high degree of completeness of 
both transcriptomes. In consideration of low abundance estimates for 
chemosensory receptors in larval heads, expression was validated by 
PCR assay for most transcripts detected in the transcriptome. Expression 
in adult antennae is verified in two independent antennal RNA-Seq 
samples reported here (male and female), and in comparison, with a 
replicated RNA-Seq study on chemosensory receptors expressed in fe-
male antennae of the same strain of D. suzukii as reported herein (Crava 
et al., 2019). Using the same threshold of expression indicated by RPM 
values greater than one, Crava et al. (2019) found a similar number of 
chemosensory receptor genes expressed in adult female antennae: 43 
ORs, 19 GRs, 20 IRs. Differences here may be attributed to parameters 
such as sequencing depth or abundance estimation methodology. 
Indeed, some receptors previously reported to be expressed, but not here 
in this study, all had low expression values ca. FPKM of one or less 
((Crava et al., 2019), Fig. 3). 

4.2. Odorant receptors 

Expression patterns of ORs in D. suzukii male and female antennae 
are consistent with previous observations in female antennae (Crava 
et al., 2019). All previously reported antennal expressed ORs were 
observed expressed in our antennal transcriptome except for OR23a1 
and OR83a, though it was noted that these two ORs displayed low 
expression estimates <1 FPKM (Crava et al., 2019). 

No pattern of sex-biased expression was observed for odorant re-
ceptors in adult antennae in this report. This contrasts with a recent 
transcriptomic study on D. suzukii antennae, which reported female- 
biased expression for ten ORs (Ahn et al., 2020). Variables across 
these studies, such as geographical population, insect age, mating status 
or other factors may account for differences in observed results. Lending 
support to this, it must be noted that a mating-effect on expression was 
reported (Crava et al., 2019) for a majority of the ORs reported to 
display female-bias (Ahn et al., 2020). While Ahn et al. (2020) sampled 
only non-mated insects, insects of mixed mating-status were utilized for 
this report. 

While ORs in D. melanogaster have been thoroughly functionally 
characterized in both adult (Hallem et al., 2004; Hallem and Carlson, 
2006; Galizia et al., 2010; Stensmyr et al., 2012; Dweck et al., 2013; 
Dweck et al., 2015a; Dweck et al., 2015b; Ebrahim et al., 2015; Münch 
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Fig. 2. Summary of OR expression profiles across D. suzukii and D. melanogaster 
antennae and larval heads. ORs ordered in phylogenetic tree, with bold highlight 
indicative of antennal expression and underline indicative of larval head 
expression. For D. suzukii, antennae expression is indicated based upon data 
from this report and that of Crava et al. (2019), with confirmed expression based 
upon RPM values greater than one. ◦ symbol indicates gene was determined to 
be expressed in Crava et al. (2019), but not in this report. # is indicative of 
expression of multiple genes within subfamily, * is indicative of expression of 
multiple isoforms. “symbol is indicative of expression of putative pseudogene 
DsuzOR22a, which is not shown in phylogenetic tree due to poor alignment with 
full length ORs. Larval expression is indicated if RNA-Seq data was validated by 
RT-PCR Assay. For D. melanogaster, antennae expression is reported based upon 
Menuz et al. (2014), larval head expression profile is derived from Kreher et al. 
(2008) and Mathew et al. (2013). 
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and Galizia, 2016; Lebreton et al., 2017; Auer et al., 2020;) and larvae 
(Kreher et al., 2005; Kreher et al., 2008; Mathew et al., 2013; Dweck 
et al., 2015a), few D. suzukii tuning ORs have been functionally char-
acterized to date (Cattaneo et al., 2022). The development of D. suzukii 
transgenic, as well as CRISPR, lines targeting Orco (Karageorgi et al., 
2017) highlight the potential for direct study of D. suzukii olfactory re-
ceptors in vivo. A recent report, however, has thoroughly characterized 
olfactory response profiles of D. suzukii antennal and maxillary palp 
OSNs relative to D. melanogaster using the same odorant test panel for 
both species (Keesey et al., 2022). 

Consistent with findings on antennal OR expression profiles reported 
here and previously (Crava et al., 2019), functional conservation of ol-
factory response was observed in 86 % of OSN types, with differences in 
D. suzukii reported for only five analogous OSN types (ab2B, ab3A, ab9B, 
ab10A, ai3a, (Keesey et al., 2022)). If conservation of OR expression 
underlies the conservation of olfactory response in the OSN types, those 
with differences may likely be attributed to gene duplications or de-
letions in D. suzukii. (Hickner et al., 2016; Ramasamy et al., 2016; 
Keesey et al., 2022). 

A similar number of tuning ORs were confirmed to be expressed in 
D. suzukii larval heads (26) as has been reported for D. melanogaster (25). 
In D. melanogaster larval heads, olfactory function, and indeed OR 
expression, is restricted to the dorsal organ (Fishilevich et al., 2005). In 
the dorsal organ of D. melanogaster, 21 OSNs are present (Python and 
Stocker, 2002), each typically expressing Orco and one tuning OR, 
though two instances of turning OR co-expression have been observed 
(Fishilevich et al., 2005). The morphology and physiology of the 
D. suzukii larval olfactory system has yet to be investigated. 

In D. melanogaster, 16 of the 25 ORs expressed in the dorsal organ 
displayed larval specificity, in that they are not expressed in the adult 
olfactory system (Fishilevich et al., 2005; Menuz et al., 2014). Similarly, 
we observe here that 12 of the 27 ORs expressed in D. suzukii larval 
heads are not expressed in adult antennae, though three of these larval 
expressed ORs are orthologues to D. melanogaster palp expressed genes 
(OR42a, OR85d and OR85e). In D. melanogaster, it was reported that 90 
% of larval dorsal organ-expressed ORs, but only 53 % of adult antennal- 
expressed ORs responded to fruit odorants, underlying behavioral dif-
ferences in response to these odorants during the different life stages 
(Dweck et al., 2018). Given the partially divergent expression patterns 
between larval head and adult antennae, similar dynamics may be 
apparent in D. suzukii. 

Notably, as with D. melanogaster, none of the adult OR-family pher-
omone receptor homologues (OR47b, OR65a, OR67d, OR69a, OR88a) 
display larval expression (Kurtovic et al., 2007; van der Goes van Naters 
and Carlson, 2007; Dweck et al., 2015b; Lebreton et al., 2017). Larval 
pheromones have been described in D. melanogaster (Farine et al., 2014; 
Mast et al., 2014), though the receptors for some of these have been 
identified, not as ORs but rather members of the pickpocket family (Mast 
et al., 2014). Knowledge on larval pheromones in D. suzukii is currently 
lacking. 

While antennal expression profiles of orthologous ORs are largely 
conserved between D. melanogaster and D. suzukii, a greater degree of 
divergence is observed for larval heads. Specifically, nine ORs are 
observed expressed in D. suzukii larval head for which no homologues 
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Fig. 3. Heat-plot of relative expression values for D. suzukii gustatory receptors 
(GRs). Estimation of abundance values determined by read mapping. White 
indicates no expression or transcripts not identified in transcriptome for adult 
antennal samples specifically, expression values have been suppressed for 
transcripts with RPM values less than one in both samples. Lighter colors 
indicate relatively lower expression, brighter colors indicate relatively higher 
expression. Color plots represent binary log of FPKM plus one for each gene 
(See Supplementary Data S3 for raw data). For larval head data, asterisk “*” 
indicates expression has been validated by RT-PCR assay. Color scales for each 
tissue type are independent of other tissue types. Range of values for Male 
Antenna: 0.98–8.18; Female Antennae: 1.21–8.17; Larval Heads: 0.042–1.64. 

W.B. Walker III et al.                                                                                                                                                                                                                          



Comparative Biochemistry and Physiology - Part D: Genomics and Proteomics 45 (2023) 101049

8

are expressed in D. melanogaster larval head. Comparative investigations 
on the functionality of these ORs in D. suzukii would shed light on the 
potential of these molecular gatekeepers of the olfactory system to in-
fluence ecological interactions at the larval stage. 

The chemical ecology of D. melanogaster has been synthesized 
(Mansourian and Stensmyr, 2015), reviewing functional significance of 
numerous odorant compounds that specifically activate different che-
mosensory receptors that are expressed in fly chemosensory systems. 
Taking into consideration the nine ORs that are expressed in larval heads 
of D. suzukii but not D. melanogaster, insights can be made on the evo-
lution of olfactory capabilities to meet the ecological demands in each 
species. Notably, three ORs (OR9a, OR67c and OR92a) found in larval 
heads of D. suzukii but not D. melanogaster are reported to primarily 
respond, in adult D. melanogaster, to odorants that represent alcoholic 
fermentation scents (Mansourian and Stensmyr, 2015). Evidence is 
provided for functional conservation of these receptors across 
D. melanogaster and D. suzukii (Keesey et al., 2022, see Fig. 1). An 
enrichment of ORs in D. suzukii putatively responsive to scents from 
alcohol fermentations may possibly underlie an increased sensitivity to 
ethanol in D. suzukii relative to D. melanogaster. This may be especially 
important when it is considered that D. suzukii displays much reduced 
tolerance for surviving higher doses of ethanol compared to 
D. melanogaster (Gao et al., 2018; Kim et al., 2018; Chakraborty et al., 
2022). Additionally, the increased sensitivity to ethanol may be reflec-
tive of known associations to yeasts, such as Hanseniaspora uvarum, in 
which alcoholic fermentation is reduced (Mestre Furlani et al., 2017; 
Spitaler et al., 2020). 

Of the 70 D. suzukii OR genes reported by Ramasamy et al. (2016), 55 
were expressed in either adult antennae or the third instar larval head in 
this report or previously (Crava et al., 2019). Of the remaining 15 ORs, 
three of these (OR74a, OR85a, OR98b) are pseudogenes in D. suzukii 
(Hickner et al., 2016; Ramasamy et al., 2016). Four (OR71a, OR33c, 
OR59c1, OR59c2) are homologues of D. melanogaster ORs expressed in 
the maxillary palp. Taking into consideration the conservation of 
maxillary palp OSN olfactory response profiles in D. melanogaster and 
D. suzukii (Keesey et al., 2022), one would expect the D. suzukii OR 
homologues to also be expressed in the palps. Four (OR33a, OR45a, 
OR59a1, OR59c1) were identified in our larval transcriptome but were 
not validated by RT-PCR, while three (OR30a, OR59a2 and OR94b) are 
orthologues of ORs expressed in D. melanogaster larval heads, but not 
found likewise in D. suzukii larval heads. Finally, five of the ORs not 
observed expressed in either the adult antennae or larval heads 
(OR23a4, OR49a1, OR59a2, OR59c2, OR67a5) are all representative of 
loci in D. suzukii that have experienced expansion or contraction 
consistent with the birth and death model of multi-gene family evolution 
(Nei et al., 1997). 

4.3. Gustatory receptors 

Beyond the carbon dioxide receptors, GR21a and GR63a, the 
ecological role of GRs expressed in Drosophila antennae remain un-
known. Relative to D. melanogaster, an abundance of putative bitter GRs 
has been observed to be expressed in the antennae of D. suzukii. In this 
report and elsewhere (Crava et al., 2019), a renowned bitter-compound 
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Fig. 4. Summary of GR expression profiles across D. suzukii and D. melanogaster 
antennae and larval heads. GRs ordered in phylogenetic tree, with bold high-
light indicative of antennal expression and underline indicative of larval head 
expression. For D. suzukii, antennae expression is indicated based upon data 
from this report and that of Crava et al. (2019), with confirmed expression 
based upon RPM values greater than one. ◦ symbol indicates gene was deter-
mined to be expressed in Crava et al. (2019), but not in this report. Larval 
expression is indicated if RNA-Seq data was validated by RT-PCR Assay. For 
D. melanogaster, antennae expression is reported based upon Menuz et al. 
(2014), larval head expression profile is derived from Kwon et al. (2011). 
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receptor, GR66a, is among the most highly expressed antennal GRs, 
whereas in D. melanogaster GR66a was only faintly detected (Menuz 
et al., 2014). In D. melanogaster, the carbon dioxide receptors are func-
tionally expressed in ab1C OSNs (Jones et al., 2007; Kurtovic et al., 
2007), while a bitter-compound receptor, GR10a, (Rimal and Lee, 2019) 
has been mapped to ab1D OSNs (Fishilevich and Vosshall, 2005). No 
other GRs have been mapped to antennal chemosensory neurons in 
Drosophila, neither via GAL4-based promoter-reporter assays nor in situ 
hybridization (Scott et al., 2001; Couto et al., 2005). The localization 
and function of additional antennal expressed GRs largely remain 
unknown. 

A comprehensive study on gustatory receptor expression patterns in 
D. melanogaster, utilizing gustatory receptor promoter GFP lines, iden-
tified 39 GRs expressed in various larval head sensory organs (Kwon 
et al., 2011). In contrast, only 23 GRs have been confirmed to be 
expressed in D. suzukii, here. This difference may indeed be biological, 
reflective of differences in ecology between the two species. This idea is 
supported further by our antennal expression data, in which more 
distinct species-specific patterns were observed for GRs than for ORs and 
IRs, and also a recent study that reported reduced expression of bitter- 
compound GR genes in the labellum of D. suzukii relative to 
D. melanogaster (Dweck et al., 2021). Differences in methods may also 
account for the observed difference in number of larval head GRs. 
Promoter-Gal4 mediated expression of GFP may result in unfaithful 
reporting of GR expression profiles. Alternatively, the transcriptomic 
approach utilized here may result in an under-representation of GR 
genes expressed. Lack of sufficient sequencing depth, and also 
sequencing of whole larval head RNA, as opposed to olfactory tissue 
specific profiling may hinder the detection of low-expressed transcripts. 

Unlike with D. melanogaster (Kwon et al., 2011; Mishra et al., 2013), 
we observed expression of putative sugar receptors (beyond Gr43a) in 
D. suzukii larval head, namely GR61a, GR64a and GR64c. It may be 
hypothesized that D. suzukii larvae require greater sensitivity towards 
the detection and discrimination of sugars given the proclivity of female 
adults to lay eggs in fresh and ripening fruits, as compared to 
D. melanogaster, with its preference for overripe and fermenting fruits. 
Expression of a broader array of sugar receptors in D. suzukii larval heads 
would facilitate this. In D. melanogaster expression mapping profiles 
have been generated using Gal4 driver lines (Kwon et al., 2011), 
providing precise cellular localization in each of the sensory organs in 
third instar larval heads. Such maps are lacking for D. suzukii and would 
be required to facilitate greater understanding of the functional signif-
icance of each of the specific GRs expressed in the larval head. 

Based upon their role in bitter sensing neurons in D. melanogaster 
adult chemosensory systems (Weiss et al., 2011; Delventhal and Carlson, 
2016), many larval-expressed GRs are presumed to have a similar 
function in mediating larval sensitivity to bitter compounds. In D. suzukii 
larval heads, expression was observed for no less than nine GRs that are 
homologous to D. melanogaster GRs identified in adult bitter-sensitive 
sensilla (Weiss et al., 2011). Among these, in D. suzukii, are homo-
logues of the broadly expressed GR32a, GR33a and GR66a, which have 
been identified in all classes of bitter-sensitive sensilla in adult 
D. melanogaster. Indeed, in the gustatory terminal organ of 
D. melanogaster larval heads, GR33a and GR66a were observed to be co- 
expressed in six of eight chemosensory neurons, supporting a hypo-
thetical role of these GRs as bitter-compound GR co-receptors (Weiss 
et al., 2011). At the same time, most of the GRs reported in 
D. melanogaster larval head (Kwon et al., 2011) that we did not detect in 
D. suzukii larval head were previously characterized by their presence in 
bitter sensitive neurons (Weiss et al., 2011). 

4.4. Ionotropic receptors 

Detection of antennal-expressed IRs in this report is consistent with 
previous antennal transcriptomic studies on both D. suzukii (Crava et al., 
2019) and D. melanogaster (Menuz et al., 2014). All categorized antennal 
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Fig. 5. Heat-plot of relative expression values for D. suzukii ionotropic re-
ceptors (IRs). Estimation of abundance values determined by read mapping. 
White indicates no expression or transcripts not identified in transcriptome; for 
adult antennal samples specifically, expression values have been suppressed for 
transcripts with RPM values less than one in both samples. Lighter colors 
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(See Supplementary Data S3 for raw data). For larval head data, asterisk “*” 
indicates expression has been validated by RT-PCR assay. Color scales for each 
tissue type are independent of other tissue types. Range of values for Male 
Antenna: 1.58–6.94; Female Antennae: 1.95–7.61; Larval Heads: 0.028–1.44. 
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IRs have been detected by RNA-Seq as expressed in the antennae of 
D. suzukii and D. melanogaster, except for IR68a. This receptor, which has 
been characterized in D. melanogaster to mediate moist-air sensing 
(Frank et al., 2017; Knecht et al., 2017) has been clearly shown to 
function, together with IR93a and IR25a, in a small population of neu-
rons in the sacculus of the antenna. Low-level expression in a restricted 
number of cells seems to be below the threshold of detection via the 
transcriptomic RNA-Seq approach (Menuz et al., 2014). Similarly, 
IR40a, implicated in dry- and cold-air sensing in a likewise small subset 
of sacculus neurons (Enjin et al., 2016; Knecht et al., 2016), was iden-
tified in the antennal transcriptome of this report though at expression 
levels below our threshold definition of expression. 

It was recently reported in a replicated antennal transcriptomic study 
that DsuzIR21a displays male-biased expression while DsuzIR76a dis-
plays female-biased expression, though sex-biased differences were not 
confirmed through qRT-PCR assay (Ahn et al., 2020). Interestingly, in 
our study, similar patterns of bias were observed (Supplementary Data 
S3). In D. melanogaster, IR21a has been demonstrated to have a role in 
thermosensation (Knecht et al., 2016; Ni et al., 2016), while IR76a 
functions as an olfactory receptor that detects polyamines (Abuin et al., 
2011; Silbering et al., 2011). Further research is required to investigate 
roles for these and perhaps other IRs in mediating sex-specific physi-
ology or behavior in D. suzukii. 

While the antennal-expressed IRs are largely of the antennal IR 
subfamily, most IRs expressed in the larval head cluster within the 
divergent IR subfamily, including multiple genes from the IR7 and IR20a 
sub-families, which both have been implicated in taste function (Croset 
et al., 2010; Koh et al., 2014; Stewart et al., 2015). Given that larval 
Drosophila heads include olfactory and taste organs, it is not surprising to 
identify an abundance of candidate taste IRs in D. suzukii larval heads 
relative to adult antennae. A recent comparative study has thoroughly 
examined chemosensory receptor expression in the D. melanogaster and 
D. suzukii adult gustatory organ, the labellum, which would be a more 
suitable comparison of adult and larval gustatory capabilities (Dweck 
et al., 2021). 

A single divergent IR, IR62a was determined to be expressed in the 
antennae of D. suzukii, here and previously (Crava et al., 2019), and also 
in D. melanogaster (Menuz et al., 2014). IR62a was also identified as the 
most highly expressed IR in our larval head transcriptome (FPKM =
1.73). IR62a, together with IR76b and IR25a, has recently been impli-
cated for its role in calcium ion (Ca2+) detection in gustatory neurons of 
the labellum and elsewhere, and mediating avoidance of high calcium 
levels, which can have adverse effects on survival (Lee et al., 2018). 
However, it has been noted that IR62a resides in the intron of a gene that 
is highly expressed in the antennae of D. melanogaster (Menuz et al., 
2014), and that its presence in antennal transcriptomes may be an 
artifact, reflective of the transcriptomic detection of a low proportion of 
unspliced transcripts. In fact, a similar genomic arrangement is present 
for IR62a in D. suzukii, identified within an intron of the gene “increased 
minichromosome loss 1 (iml1)”. Notably, RSEM analysis of iml1 
expression levels indicates higher expression of this gene, relative to 
IR62a, in both the antenna as well as larval head transcriptomes (Sup-
plementary Data S3). It is undetermined whether the observed IR62a 
expression values are thus only reflective of RNA sequencing capture of 
unspliced iml1 transcripts, or whether IR62a expression has biological 
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Fig. 6. Summary of IR expression profiles across D. suzukii and D. melanogaster 
antennae and larval heads. IRs ordered in phylogenetic tree, with bold highlight 
indicative of antennal expression and underline indicative of larval head 
expression. For D. suzukii, antennae expression is indicated based upon data 
from this report and that of Crava et al. (2019), with confirmed expression 
based upon RPM values greater than one. ◦ symbol indicates gene was deter-
mined to be expressed in Crava et al. (2019), but not in this report. Larval 
expression is indicated if RNA-Seq data was validated by RT-PCR Assay. For 
D. melanogaster, antennae expression is reported based upon Menuz et al., 2014, 
larval head expression profile is derived from Sanchez-Alcaniz et al. (2018). 
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relevance in the chemosensory tissues described herein. Consistent with 
the former, it should be noted that in D. melanogaster, promoter-reporter 
analysis of IR62a expression patterns did not find evidence for antennal, 
nor larval-head, presence of this gene (Sanchez-Alcaniz et al., 2018). 

Similar to the larval-head expressed GRs in D. melanogaster (Kwon 
et al., 2011), expression of IRs in larval heads have been assessed by 
promoter-reporter assays (Sanchez-Alcaniz et al., 2018). As with the 
GRs, clear differences in the number of larval-head expressed IRs were 
observed between D. melanogaster and D. suzukii, with 33 identified in 
D. melanogaster, and 20 confirmed in this report for D. suzukii. IR co- 
receptors IR25a and IR76b were detected in the larval head tran-
scriptome, which was confirmed by RT-PCR assay. Conversely the co- 
receptor, IR8a, was not detected by RT-PCR despite sequenced reads 
that map to IR8a in the larval head transcriptome. This pattern mirrors 
that of D. melanogaster, in which IR25a and IR76b, but not IR8a, were 
detected in larval head sensory organs (Sanchez-Alcaniz et al., 2018). 

In D. melanogaster, antennal IRs expressed in larval head are known 
to mediate cool temperature sensing (IR25a + IR21a + IR93a; (Knecht 
et al., 2016; Ni et al., 2016)), moist air sensing (IR25a + IR68a + IR93a; 
(Frank et al., 2017; Knecht et al., 2017)), and olfactory detection of 
ammonia (IR25a + IR76b + IR92a; (Benton et al., 2009; Min et al., 
2013)). Except for IR92a, conserved orthologues of all of these antennal 
IRs were observed to be expressed in D. suzukii larval heads. Notably, 
expression of IR75a, which is reported as an acetic acid receptor in 
D. melanogaster (Prieto-Godino et al., 2016), was detected in adults only 
in both species. Conversely, other antennal IRs known to mediate acid 
(IR64a) and amine sensing (IR75d/IR76a) respectively (Ai et al., 2010; 
Silbering et al., 2011; Ai et al., 2013), have been identified in larval 
heads of D. suzukii, but not D. melanogaster (Sanchez-Alcaniz et al., 
2018), possibly suggesting increased sensitivity towards detection of 
specific acid and amine compounds in the former. 

Interestingly IR64a is one of the IRs with which IR8a forms cation 
channels (Ai et al., 2013). Given the lack of confirmation of IR8a 
expression by RT-PCR in this report, and indeed the general lack of IR8a 
expression beyond the adult antennae in D. melanogaster (Sanchez- 
Alcaniz et al., 2018), it may be speculated that for IR64a, more complex 
heteromerization with other co-receptors may occur, expanding on 
findings showing broad overlap of co-receptor subunits of various che-
mosensory receptor subfamilies (Task et al., 2022). 

5. Conclusions 

Transcriptomic profiling of adult and larval expressed chemosensory 
receptors of D. suzukii provides a solid foundation towards a better un-
derstanding of the olfactory physiology and chemosensory ecology of 
this organism. Leveraging the vast amount of information on the mo-
lecular underpinnings of olfaction and gustation in D. melanogaster 
yields an appreciation for ecological similarities and differences with 
D. suzukii including their differences in preference for unripe and 
overripe fruit, respectively (Keesey et al., 2022). Moreover, direct 
comparisons of expression patterns and profiles of chemosensory re-
ceptors within D. suzukii and D. melanogaster facilitates future studies 
aimed at better understandings of genetic phenomena relevant to mul-
tigene families such as alternative splicing, birth and death evolution, 
receptor co-expression and receptor choice by sensory neurons. 
Conversely, as it relates to applied perspectives, some of the components 
of attractive semiochemical blends (Cha et al., 2013, 2014; Kleman 
et al., 2022) match candidate ligands of male and female antennal 
expressed D. suzukii receptors, based on response profiles of 
D. melanogaster receptor orthologues (Galizia et al., 2010; Münch and 
Galizia, 2016). In consideration of the general conservation of olfactory 
detection capabilities of the antennae of D. melanogaster and D. suzukii 
(Keesey et al., 2022), further functional research on D. suzukii chemo-
sensory receptors where differences do exist may contribute to future 
improvements in semiochemical-based control of the spotted wing 
drosophila. 

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.cbd.2022.101049. 
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