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Reactive nitrogen restructures and weakens
microbial controls of soil N2O emissions
Christopher M. Jones1,2, Martina Putz1,2, Maren Tiemann1 & Sara Hallin 1✉

The global surplus of reactive nitrogen (Nr) in agricultural soils is accelerating nitrous oxide

(N2O) emission rates, and may also strongly influence the microbial controls of this green-

house gas resulting in positive feedbacks that further exacerbate N2O emissions. Yet, the link

between legacy effects of Nr on microbial communities and altered regulation of N2O

emissions is unclear. By examining soils with legacies of Nr-addition from 14 field experiments

with different edaphic backgrounds, we show that increased potential N2O production is

associated with specific phylogenetic shifts in communities of frequently occurring soil

microbes. Inputs of Nr increased the complexity of microbial co-association networks, and

altered the relative importance of biotic and abiotic predictors of potential N2O emissions.

Our results provide a link between the microbial legacy of Nr addition and increased N2O

emissions by demonstrating that biological controls of N2O emissions were more important

in unfertilized soils and that these controls are weakened by increasing resource levels in soil.
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Surplus nitrogen (N) is one of the major threats to ecosystem
integrity1. Agriculture is the main source of global N
pollution2 as well as increased atmospheric concentrations

of the greenhouse gas nitrous oxide (N2O), mainly through
application of N fertilizers3. Yearly increases in global N2O
emission rates are accelerating, which is consistent with the
growing surplus of reactive nitrogen (Nr) in agricultural soils4.
Legacy effects of elevated levels of Nr include profound shifts in
the structure of soil microbial communities5,6, which are the
primary drivers of N2O emissions through transformations of
inorganic nitrogen species7. However, whether the effect of Nr

legacy on N2O emissions is mainly driven by abiotic factors
associated with shifts in soil properties, or by changes in biotic
factors, i.e. microbial community members and functional groups
that directly or indirectly exert microbial controls of N2O emis-
sions, remains uncertain.

Microbial communities that perform denitrification are the
predominant source of N2O in arable soils8–10. Denitrifying
communities remove up to 56% of newly fixed Nr annually at the
global scale and ~8% of the total denitrification flux results in
N2O8. Denitrification is the stepwise reduction of NO3

− to N2 and
is best described as a modular pathway, with different micro-
organisms being capable of performing all or only a subset of the
reductive steps in the pathway11. Comparison of genomes and
isolates reveal that only a minority of denitrifiers completely
reduce NO3

− to N2, and therefore produce N2O as a terminal
product12–14. At the same time, the only known sink of N2O on
Earth is its reduction to N2 by denitrifying or non-denitrifying
microorganisms that possess the gene nosZ, encoding the N2O
reductase15. Changes in the proportion of producers and con-
sumers of N2O play a causal role in determining N2O
emissions16,17, and the capacity for a microorganism to act as a
producer or consumer of N2O is not randomly distributed across
taxonomic groups12. Thus, shifts in the composition of microbial
communities or co-occurrences of organisms from different
taxonomic groups may predict whether the soil is more likely to
act as a source or a sink of N2O in response to chronically elevated
levels of Nr. Previous work has shown that long-term N addition
increases the abundance of different bacterial phyla or classes, and
it is hypothesized that organisms within these taxonomic groups
share specific life-history traits that are favoured when N avail-
ability is high18,19. However, work using a phylogeny-based
approach demonstrated that the response to elevated Nr is not
consistent within broadly defined taxonomic groups, and is likely
conserved only to the genus level5. This suggests that changes in
the abundances of taxonomic groups alone are not accurate pre-
dictors of N2O emission potential. Nitrogen addition can also
indirectly modify the microbial community since Nr promotes
primary production and increases resource levels in soils, which
alter microbial co-associations20,21. Resource-driven shifts in co-
association may arise from a combination of ecological mechan-
isms, such as changes in antagonistic and mutualistic interactions
amongst organisms, or altered environmental constraints that
define shared niche preferences across species. Shifts in co-
association are best assessed by analysis of microbial networks,
which allow us to observe how changes in co-associations may
affect emergent properties of the community. Changes in network
structure, such as the number of connections between community
members, number of defined communities within a network, or
restructuring of co-associations may be linked to changes in
ecosystem functioning22. In the case of N2O-related functioning in
soils, changes in co-associations between organisms with incom-
plete denitrification pathways may be of particular importance.
However, the degree to which Nr addition alters microbial co-
association networks, and whether such shifts also fundamentally
restructure microbial controls of N2O emissions, is unknown.

We address these uncertainties by examining the impact of
long-term mineral N inputs on microbial communities in arable
soils in 14 different long-term (15–57 years), replicated fertiliza-
tion field trials in which nitrate-based mineral N fertilizers have
been added yearly to arable soils at rates of 80 to 150 kg ha−1

(Supplementary Table 1). Using multiple experiments across
different soil types allowed us to identify broadly conserved
effects of long-term Nr addition in arable soils. Management was
similar across the experiments regarding the addition of mineral
fertilizers, mouldboard ploughing and annual crop rotations,
which altogether minimize context-dependent effects that com-
plicate efforts to identify general microbial responses to elevated
Nr. We first verified the expected fertilization effects on deni-
trification and N2O production rates, then focused on shifts in the
phylogenetic structure and patterns of co-association in overall
microbial communities, as well as the abundance of genes that
indicate the capacity for production and consumption of N2O in
arable soils by denitrifiers or non-denitrifying N2O reducing
organisms. We hypothesize that (i) there is a generic response,
irrespective of site and soil physico–chemcial properties, to long-
term addition of Nr showing phylogenetically conserved shifts in
community structure that are linked to differences in N2O
emission potential and (ii) long-term Nr addition restructures
microbial co-associations due to increased resource availability,
thereby altering the relative importance of biotic and abiotic
factors in predicting whether a soil acts as a source or sink for
N2O. Our results show that long-term addition of Nr changes
community phylogenetic composition and increases the com-
plexity of microbial networks, which in turn alters how microbial
communities regulate the production of N2O. Abiotic predictors
of potential N2O production in relation to total denitrification
rates were more important in fertilized soils than unfertilized
soils. Thus, fertilization reduces the relative importance of biotic
controls of N2O emissions, suggesting that biotic controls are
weakened by elevated N levels.

Results and discussion
Addition of Nr increases denitrification product ratio, adds
resources and changes genetic controls of N2O emissions. As
expected, potential denitrification and N2O production rates were
significantly higher in fertilized soils across all sites (Fig. 1a;
Supplementary Table 2). Although this could be a direct effect of
Nr input, the increased denitrification end-product ratio (N2O/
[N2+N2O]) in the fertilized soils indicates a change in the
controls of N2O emissions (Fig. 1a). Over time, application of
certain N fertilizers can decrease soil pH23, which is known to be
a strong abiotic determinant of denitrification end-product
ratios24. However, soil pH was not significantly altered in the
fertilized soils across the sites (Supplementary Table 3), and
analysis of covariance (ANCOVA) indicated that the effect of pH
was not different between unfertilized and fertilized soils
(F1,104= 2.79; P= 0.097; standardized regression coefficients
β=−0.66 and β=−0.7 for unfertilized and fertilized soils,
respectively). Thus, pH does not explain the general increase in
end-product ratio observed in the fertilized soils. Long-term
addition of Nr increased soil organic C and N content as well as
ammonium and nitrate levels and decreased the C/N ratio
(Supplementary Table 3) which could support increased N2O
production25,26. We observed no relationship between end-
product ratios and soil C/N or nitrate levels, whereas potential
activities and end-product ratios were weakly correlated with soil
organic C, total N and NH4

+ content (Spearman’s ρ= 0.25, 0.29
and 0.24, respectively; P < 0.05). The increased end-product
ratio may also be driven by a functional shift in the microbial
communities controlling net N2O production, as suggested by
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changes in the genetic controls of N2O emissions via deni-
trification. The abundance of the gene nirK, encoding the copper
nitrite reductase in denitrifiers, increased in fertilized soils
whereas no increase was observed for the nirS gene encoding the
heme-based nitrite reductase (Fig. 1b; Supplementary Table 4).
This corresponds to site-specific studies that have shown nirK-
but not nirS-containing denitrifiers drive N2O production27–29,
and the previously discussed niche differentiation between deni-
trifiers with nirS vs. nirK30,31. Genome comparisons have further
shown that the majority of nirK-type denitrifying species would
produce N2O as a terminal product12, which may in part explain
the observed increase in both N2O production and ultimately
end-product ratios. The increase in total abundances of only nosZ
clade I, coding for the clade I-type N2O reductase, in fertilized
plots also suggests a structural shift in functional microbial
communities regulating N2O emissions, as well as niche differ-
entiation between the major N2O reducing communities (Fig. 1b;
Supplementary Table 4). Overall, the differences between ferti-
lized and unfertilized soils show that both abiotic and biotic
controls of denitrification end-product ratios were modified by
the addition of Nr, and simple correlations cannot tease apart
these effects. Furthermore, measurement of direct genetic con-
trols may not capture the full scope of biotic controls of potential
N2O emission, as changes in community composition can
indirectly regulate denitrification activity.

N-induced shifts in phylogenetic composition link to deni-
trification end-product ratios. We then examined the effect of
long-term addition of Nr on microbial community composition
using a phylogeny-aware compositional approach32, which
allowed us to identify clades driving Nr-induced compositional
shifts, as well as accounting for the compositional nature of
microbial community data. We focused our analysis on fre-
quently occurring OTUs, as defined by species abundance
distributions33, across all soils to reduce the influence of site-
specific differences in community composition. As suggested by
the functional gene abundances, community composition differed
between unfertilized and fertilized soils (site-constrained per-
MANOVA R2= 0.013, P < 0.001) despite strong site-specific
effects (unconstrained R2= 0.694; P < 0.001; Supplementary

Fig. 1). Fertilization did not affect species richness or phylogenetic
diversity, whereas Shannon diversity was only slightly higher
(0.5%) in the fertilized soils (Supplementary Table 5). These
results reflect studies showing that long-term Nr addition modi-
fies the structure of soil microbial communities, whereas effects
on alpha-diversity may depend more on local conditions19, e.g.
availability of other macronutrients34. Closer inspection of phy-
logenetic changes showed a shift towards decreased abundances
of Cyanobacteria, Gemmatimonadetes, Nitrospirae and Plancto-
mycetes in response to long-term inputs of Nr (Fig. 2). These
changes were largely consistent across lineages within each clade,
suggesting a degree of ecological coherence amongst members
within each phylum in relation to soil N levels. Thereby, these
shifts correspond to previous observations of taxonomic shifts in
arable soils and managed grasslands18,19,35. By contrast, our
results show that the increased abundances of Proteobacteria,
Firmicutes, Actinobacteria and Bacteroidetes observed in ferti-
lized soils varied amongst lineages within each phylum. For
example, the expected overall increase in Actinobacteria18,19,35

was driven by the increase of a few abundant lineages, whereas
the majority actually decreased in the fertilized soils. Similarly,
the overall decrease of Acidobacteria in fertilized soils, in agree-
ment with other studies5,18,19, was not consistent within this
phylum as several lineages, including Thermoanaerobaculia, the
Solibacter sub-lineage of the Solibacterales, and Acidobacterial
Subgroups 6, 17 and 25 increased in response to long-term fer-
tilization. These shifts are in line with reports showing these
subgroups to be more abundant in soils with higher C and N
availability36,37. We also noted that a single and frequently
occurring OTU of an ammonia-oxidizing bacteria (Nitrosospira)
increased with fertilization. Since they can produce N2O, this
could potentially add to elevated in situ emissions from fertilized
soils, and recent work suggests that ammonia oxidation likely
contributes 0.1–10% of possible maximum N2O emission rates10.
Overall, the observed shifts underscore that traits that determine
how the microbial community responds to elevated Nr inputs
occur at different phylogenetic scales amongst community
members, and are not necessarily inferred from taxonomic
affiliation. This is particularly relevant for denitrification, in
which various evolutionary processes have played more or
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Fig. 1 Percentage change in mean functional and genetic potentials for denitrification and N2O reduction in soils under long-term N fertilization
compared to unfertilized soils across 14 different long-term experiments. a Percent change in potential denitrification activity, potential net N2O
emissions and the ratio of denitrification end products in fertilized plots compared to unfertilized control plots. b Percent change in functional gene relative
abundances (copies per 16S rRNA gene copies) in fertilized plots compared to unfertilized control plots. Asterisks indicate significance of deviation from
zero (Wilcoxon signed-rank test [N= 14], (.) p < 0.1, *p < 0.05, **p < 0.01, ***p < 0.001). Box limits represent the inter-quartile range (IQR) with median
values represented by the centreline. Whiskers represent values ≤1.5 times the upper and lower quartiles, while points indicate values outside this range.
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less important roles in the evolution of different steps in the
pathway38.

Comparison of denitrification end-product ratios with
fertilization-induced shifts in phylogenetic community composi-
tion revealed links between increased N2O emission potential and
altered microbial community structure (Fig. 2). The increase in
Actinobacteria relative to other bacterial lineages was significantly
associated with increased N2O/(N2+N2O), which is notable as
genome-sequenced Actinobacteria with dentrification genes have
been shown to have a truncated pathway in which the nosZ gene
is lacking12. However, these associations with increased end-
product ratios were specific to relative proportions of certain
Actinobacterial lineages, particularly the increased abundance of
lineages within the class Actinobacteria relative to the Acidomi-
crobia in fertilized soils. In contrast, fertilization increased the
orders Bacteroidetes, Sphingobacterales, Cytophagales and Fla-
vobaceriales within the Bacteroidetes, and this shift was
significantly associated with decreasing end-product ratio. This
relationship may be explained by the fact that organisms within

each group, except Cytophagales, are more likely to be non-
denitrifying N2O reducers that possess a clade II nosZ, which
have been shown to be capable of N2O consumption in pure
culture studies as well as in soil microcosms12,13,17. Our results
show that fertilization effects are complex and N addition can
impact both putative N2O producers and consumers positively,
but that the net effect of the altered phylogenetic community
shifts is increased N2O emission potential.

Addition of Nr increases resource availability and complexity
of soil microbial networks. Like other N-transformation pro-
cesses in soils, organisms that perform denitrification often do
not have the full repertoire of genes required for the entire
pathway, i.e reduction of soluble NO3

− completely to N2 in
denitrification, and thus the different steps of the denitrification
pathway can be performed by a complex network of microbial
species39. Thus, the increase in both C and N related resources
caused by long-term addition of Nr may indirectly affect the
microbial controls of N2O emissions by altering microbial

Fig. 2 Shifts in the phylogenetic composition of communities in response to long-term N fertilization across field experiments, and their relationship
with denitrification end-product ratios (N2O/N2O+N2). Significant shifts (false discovery rate corrected Pr(F) < 0.01; N= 105 independent samples) in
the balances of neighbouring clades as a result of fertilization are indicated by circles at respective nodes in the phylogeny. Branch colour denotes clades in
each balance that have either increased (blue) or decreased (red) in response to fertilization. Node symbol size and branch colour hue reflect the strength
of the fertilization effect, based on F-ratios obtained from linear mixed-effects models. Node symbol colour indicates whether changes in the balances are
significantly associated (Spearman’s ρ, P < 0.05; N= 105 independent samples) with increased N2O/N2O+N2 ratios (blue) or decreased ratios (red), or
were not significantly associated (black).
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co-associations. This is particularly relevant given that many
denitrifiers produce N2O as a terminal product, whereas others
perform only N2O reduction. However, the directional effect of
increased resource availability on the complexity of microbial co-
associations in soil habitats is unclear, as studies have shown both
increased20,40 and decreased41 complexity in response to elevated
availabilities of C and N. We therefore compared separate net-
works of frequently occurring OTUs in unfertilized and fertilized
soils with edaphic factors as well as biotic controls of N2O.

Both networks consisted of similar numbers of OTUs and were
dominated by positive associations (Fig. 3a). However, the
fertilized network was more complex, with three and four times
the number of unique positive and negative edges (respectively)
compared to the unfertilized network. The majority of edges
unique to the fertilized network linked Actinobacterial and
Proteobacterial OTUs with those of Proteobacteria, Acidobac-
teria, and several other phyla, corresponding to reports showing
increased co-associations of these groups in soils with elevated C
or N availability20,40. A large proportion of co-associations of
Acidobacteria in the fertilized network were, however, con-
strained amongst OTUs within this phylum, which likely reflects
shared niche preference amongst lineages of this group in the
fertilized soils. By contrast, the unfertilized soils showed few
dominant edges, i.e. a more even distribution of edges across the
taxonomic groups. Comparison of networks of positive associa-
tions further showed that long-term addition of Nr resulted in
closer connections between microorganisms (Table 1). Clustering
coefficient and average connectivity of the fertilized network were
higher than that of the unfertilized network, whereas network
diameter and average path length were higher in the unfertilized
network (Table 1), with all values significantly greater than those
generated from random networks (P < 0.001). These results
suggest that the addition of Nr results in more complex networks
in which organisms are more connected, forming fewer disparate
communities as indicated by the lower modularity in the fertilized
network. Furthermore, increases in both node connectance and
Jaccard similarity in the fertilized network indicate a higher
degree of ecological overlap amongst OTUs in fertilized soils.
Increased complexity and ecological overlap can arise from
multiple intersecting mechanisms, including increased cross-
feeding or other facilitating interactions, as well as increases in
spatial or niche overlap accommodating a wider range of
organisms. Theory predicts that higher levels of niche overlap
amongst species results in more aggregated patterns of species co-
associations42, suggesting that Nr-induced increases in network
complexity are largely due to increased realised niches of
organisms when resource availability is higher. At the same time,
the decreased path length also supports a potential increase in
mutualistic interactions, such as cross-feeding of C or N
substrates, as the inverse of this metric indicates a higher overall
efficiency in the system43. Furthermore, higher resource levels in
the fertilized soils should also activate fast-growing microorgan-
isms favoured by easily available resources and thereby increase
competition, which is supported by the higher number of
negative associations in the fertilized than the unfertilized soil
(Fig. 3a). Although network analyses cannot define the mechan-
isms, our results suggest that increased resources increases the
degree of complexity in microbial networks, similar to what was
shown in soil subjected to experimental warming44.

We compared the topologies of the two networks using the
DyNet network tool, which identifies the nodes and linkages that
are shared between two or more networks, as well as those that
are unique to each network. This analysis showed substantial
restructuring of communities due to fertilization, and distinct
modules (minimum five OTUs) were identified in each network
(Fig. 3b). These modules can be regarded as sub-communities

that are associated by shared niche space and putative biotic
interactions45 and will hereafter be referred to as communities.
The four largest communities in both unfertilized and fertilized
networks shared similar subsets of OTUs, but either gained or lost
OTUs that were not members of other detected communities
depending on fertilization (Fig. 3b). Communities A and B
consisted of a diverse range of bacterial phyla, although there was
no pattern amongst taxa that were common or unique between
unfertilized and fertilized networks (Supplementary Fig. 2). Both
communities increased in complexity in the fertilized network,
with the addition of new OTUs as well as rewiring of nodes
common to both networks. By contrast, communities C and D
were more complex in the unfertilized soils, and had reduced
numbers of OTUs and co-associations in fertilized soils.
Communities that were unique to each network also included
OTUs that varied in community membership between unferti-
lized and fertilized soils. For example, uA and uC were unique to
the unfertilized network and included OTUs that were present in
both networks, but restructured such that they did not form
identifiable communities in fertilized soils.

Restructured networks differed in niche space and affected
denitrification functionality. Comparison of the abundances of
communities identified in the networks to edaphic factors was
performed by calculating community module eigenvectors, which
collectively represents overall abundances of OTUs within each
community40. We found that changes in niche space were
affected by increased Nr across communities common to each
network (Fig. 3c). For example, the abundance of community A
was unaffected by soil pH in unfertilized soils, yet increased in
abundance with decreasing soil pH and increasing C/N ratio in
the fertilized soils. By contrast, abundances of C and D were
correlated with similar edaphic factors, although differences in
variables affected by N fertilization, such as NO3

−, P, and C/N,
were observed (Fig. 3c; Supplementary Table 3). The commu-
nities unique to fertilized soils had more significant and stronger
correlations with edaphic factors than those unique to the
unfertilized soils, indicating that the addition of Nr increased the
importance of environmental filtering of associations within
communities.

We then assessed the implications of Nr induced complexity
and rewiring of microbial networks on microbial controls of N2O
emissions. Comparison of gene abundances and activities with
community abundances support that rewiring by long-term Nr

addition reflects changes in denitrification functionality (Fig. 3c).
Abundances of four communities that were unique to the
unfertilized network were positively correlated with nosZ/nir gene
ratios, two of which were also negatively correlated to the
denitrification end-product ratio. Also, fertilization resulted in
community A being positively associated with the end-product
ratio, with corresponding decreases in nirS and nosZ clade I gene
abundances. Similarly, the abundance of community B was
associated with increased N2O production rate and end-product
ratio in both soils, however this relationship become stronger in
the fertilized soils and its abundance was negatively correlated
with nosZ clade I and nirK abundances. Abundances of both A
and B increased with pH regardless of fertilization, and
corresponded to the negative correlations with end-product ratio
Overall, this highlights that altered denitrification and
N2O-reducing functionality can be linked to Nr-induced
reorganization of distinct microbial communities that occupy
different niches in soil habitats. Future research on how resource
availability shapes the interactions between well-defined func-
tional groups may provide additional insight into the mechanisms
that link community composition and N2O functioning.
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Fig. 3 Co-association networks of OTUs in fertilized and unfertilized soils. a Taxonomic groups at the class level are represented by coloured segments
in the outer ring, and ribbons represent significant co-association (+) or exclusionary (−) relationships between the different taxonomic groups. The width
of the ribbons is proportional to the number of links between the OTUs within each segment, while colour indicates which segment of the two has a higher
number of total links. Note that the number of nodes in common and unique subgraphs may overlap; only the number of edges are non-overlapping.
b Comparison of fertilized and unfertilized co-occurrence network topologies by network alignment. Nodes are grouped into modules detected in both
fertilized and unfertilized networks, where node colour indicates module membership and edge colour corresponds to co-associations that are unique to
unfertilized (pink) or fertilized networks (blue), or common to both networks (grey). c Heatmaps show the correlation of module eigenvalues in each
network with potential activities and abundances of denitrifying and N2O reducing communities, as well as soil edaphic factors. Tile colour reflects the
strength and direction (blue= positive, red= negative) of correlations, and non-significant correlations (Spearman’s ρ, P > 0.05; N= 51 and N= 54
independent samples for unfertilized and fertilized soils, respectively) are left blank.
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Relative importance of biotic and abiotic controls of N2O
emissions. To determine the importance of controlling variables
that determine N2O emissions from soils, we generated separate
machine learning-based models for unfertilized and fertilized
soils and examined the relative importance of biotic and abiotic
factors in predicting denitrification end-product ratios. Changes
in community structure were included as abundances of com-
munity modules identified in each network. The most important
predictor variables (median relative influence > 5%) in unferti-
lized soils were all biotic variables, whereas long-term addition of
Nr increased the relative importance of abiotic variables (i.e. pH
and Ca content, Fig. 4). Similar to Samad et al. (2016)46, increased
community diversity based on Shannon’s H´ corresponded with a
decreased end-product ratio in the unfertilized soils, yet was not
an important predictor variable in fertilized soils. Overall abun-
dances of the communities A, uA and uC, as well as the abun-
dance and diversity of total microbial communities (abundance of
the 16S rRNA gene, Supplementary Table 4) were the most
important predictors of end-product ratios in unfertilized soils,
and increases in each of the important biotic variables, except
community A, corresponded to decreased end-product ratio
(Fig. 4a).

In fertilized soils, soil pH was the most important predictor of
end-product ratio and the second most important abiotic
predictor was Ca content. While fertilized and unfertilized soils
did not differ regarding pH, soil Ca concentration was ~14%
higher in the fertilized soil (Fig. 4b, Supplementary Table 1). Soil
acidity is a strong driver of N2O emissions24, and global soil N2O
emissions have been shown to be more sensitive to changes in pH
in fertilized soils although the underlying mechanism is unclear47.
Moreover, microbial community composition and diversity can
modulate the effect of soil pH on N2O emission potential48,49.
Among the biotic variables, communities B and C, common in
both unfertilized and fertilized soils, were important predictors of
end-product ratio in fertilized soils, with communities B and C
being associated with increasing and decreasing N2O production,
respectively. The model further indicates that increased abun-
dance of nosZ clade II is associated with decreased end-product
ratio in fertilized soils (Fig. 4b), although the abundance of nosZ
clade II only increased by 13% in the fertilized soils (P= 0.06;
Supplementary Table 4). This is similar to a recent report
showing that the abundance of nosZ clade II N2O reducers
increased after fertilization50 and agrees with previous work on
the importance of nosZ clade II for greater N2O sink capacity in
agricultural soils51. Among the other important functional
predictors of the end-product ratio, the ratio of nosZ to nir gene
abundance showed decreasing ratios with increasing nosZ to nir
gene-abundance ratios (ANCOVA F1,103= 22.33, P < 0.001;
standardized regression coefficient=−0.31). While this relation-
ship was not affected by fertilization (F1,103= 2.44, P= 0.12) and
the ratio of total nosZ to nir gene abundance did not differ
between unfertilized and fertilized soils (Supplementary Table 4),
the accumulated local effects curve, which shows the relationship
between nosZ/nir and end-product ratios in isolation from other
predictor variables in the model, in the fertilized soils indicates a

threshold in this relationship. This shows that increasing nosZ to
nir abundance ratios higher than the threshold level has no effect
on the end-product ratio. This threshold effect as well as the
overall differences in variable importance between fertilized and
unfertilized soils suggest that N2O production is less tightly
regulated by microbial communities in soils with elevated
resources and thereby abiotic controls, in particular the effect of
soil pH, become more important. Previous work has shown that
denitrification activity in soil is dependent on bacterial commu-
nity composition, whereas broadly defined microbial functions,
such as respiration, are driven primarily by resource availability
or other edaphic factors52,53. However, similar to Philippot
et al.52, our results suggest that the relationship between
denitrification functionality and microbial community structure
is modified by the addition of resources. In this case, long-term
addition of Nr resulted in significantly restructured communities,
yet weakened microbial controls on potential N2O emissions.
This is further supported by the stronger environmental filtering
of communities identified in the network in fertilized soils, yet
greater importance of soil pH and Ca in predicting the ratio of
denitrification end products.

In conclusion, by leveraging multiple field experiments from
sites with varying soil types and microbiomes, we show that long-
term addition of Nr has a generalized effect on the phylogenetic
structure of microbial communities that are linked to increased
N2O emission potential. Although the long-term field sites
surveyed in this study were all located within Sweden, they were
dispersed largely north to south over ~138,000 km2 that included
three defined climate zones also found in continental Europe,
eastern and midwestern North America and smaller regions in
eastern Asia and South America54. Furthermore, the greatest
increases in N fertilizer usage over the past 60 years has occurred
in regions within similar climate zones55. Nevertheless, it may be
difficult to extrapolate these findings to warmer tropical and arid
climates, or arctic and alpine regions. In addition to also altering
the direct genetic controls of net N2O production, Nr has a
homogenizing effect on microbial communities such that
organisms are more closely linked through a combination of
increased potential interactions and a higher degree of shared
niche space. Biological controls of N2O emissions were more
important in unfertilized soils, and we show that N addition
increases the relative importance of abiotic soil factors in
determining potential N2O emissions from arable soils. We
propose that this shift towards greater importance of abiotic
controls reflects an overall weakening of direct microbial
regulation of N2O emissions due to increasing resource levels in
soil (Fig. 5). This is a potential mechanism underlying increased
N2O emissions with increasing Nr levels, where N addition causes
positive feedback that creates a negative spiral with increasing
N2O emissions. Our findings have ramifications for predicting the
consequences of long-term addition of Nr on future N2O
emission rates from agricultural soils, as both the geochemical
legacy of long-term Nr addition56, as well as an inherent
‘microbial legacy’ that determines the response of N2O emissions
to differences in edaphic factors need to be considered.

Table 1 Topological properties of microbial co-association networks in unfertilized and fertilized soils.

Network rT1 Network Size Network
Diameter

Ave.
path length

Average
connectivity

Clustering
coefficient

Modularity Connectance Average
Jaccard
similarityNodes Edges

Unfertilized 0.85 546 3391 19 5.977 12.75 0.563 0.56 0.024 0.021
Fertilized 0.88 532 6298 11 3.603 23.07 0.672 0.36 0.042 0.035

1Threshold of Pearson’s correlation coefficient determined for each network using random matrix theory (RMT).
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Methods
Soil sampling and analyses of soil properties. Soil samples were taken in
October and November 2013 from 14 long-term field trials located in different
regions across Sweden (Supplementary Table 1). Each field trial included unferti-
lized and mineral fertilization treatments ranging from 80–150 kg N ha−1 year−1

that have been managed for a minimum of 15 up to 57 years under annual cereal
crop rotations. All trials consisted of 2–6 field replicates per treatment, and soil was
collected from each replicate plot for a total of 108 samples. For each sample, five
cores from the topsoil (0–20 cm) were taken from each field plot, then

homogenised by sieving through a 4 mm mesh. A subsample was used for a
physico–chemical analysis (Agrilab AB, Uppsala, Sweden; Supplementary Table 2),
and the rest stored at −20 °C for later processing.

Potential denitrification and N2O production. For each sample, two portions of
10 g fresh weight soil were each weighed into 125 mL Duran bottles and made into
slurries by adding 20 mL distilled water. The bottles were capped and the head-
space exchanged by flushing with N2. For each sample, potential denitrification was
measured in one bottle by injecting acetylene to reach a partial pressure of 0.1 atm,

Fig. 4 Relative importance of abiotic and biotic factors in predicting denitrification end-product ratios (N2O/[N2+N2O]) in fertilized and unfertilized
soils based on generalized boosted regression modelling. Model fit is indicated by the residual mean squared error (RMSE) in the figure. Predictor
variables with median relative permutation importance (n= 500 permutations) >5% were used to generate accumulated local effects (ALE) plots, which
show the relationship between the predictor variables (x-axis) and end-product ratios in the model (y-axis) while accounting for potential correlations
amongst predictor values. Note that the scale of the end-product response in the y-axis is normalized in ALE plots based on the conditional response within
a range of the predictor value. For boxplots, box limits represent the inter-quartile range (IQR) with median values represented by the centreline. Whiskers
represent values ≤1.5 times the upper and lower quartiles, while points indicate values outside this range.
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whereas potential N2O production was measured in the other bottle by not adding
acetylene. After 0.5 h of pre-incubation at 25 ̊C with agitation (175 rpm), 1 ml of
substrate was injected into each bottle to reach a final concentration of 3 mM
KNO3, 1.5 mM succinate, 1 mM glucose and 3 mM acetate. Gas samples were taken
every 0.5 h for a total duration of 2.5 h and N2O concentration was determined
using a gas chromatograph (Clarus 500, Elite-Q PLOT phase capillary column;
Perkin Elmer, Hägersten, Sweden). The rate of N2O accumulation in each bottle
was determined by non-linear regression, and the denitrification end-product ratio
of each soil was calculated as the ratio of potential N2O production rate (without
acetylene) to the potential denitrification rate (with acetylene).

Extraction of DNA and quantification of 16S rRNA and N-cycling functional
marker genes. DNA was extracted from 300 mg of each soil using the FastDNA
kit (MP biomedicals, Santa Ana, CA USA) following manufacturer’s instruction,
then quantified using a Qubit fluorimeter (Invitrogen, USA). Real-time quantitative
PCR of the 16S rRNA gene and denitrification genes was then performed to
estimate quantities of the microbial community as well as targeted functional
groups. Prior to quantification, inhibition tests were performed for all samples by
adding a known amount of pGEM-T plasmid to 10 ng of extracted soil DNA or
water, followed by real-time quantitative PCR using plasmid-specific primers T7
and SP6. No inhibition of the PCR reactions was detected based comparison of
cycle threshold (Ct) values between DNA extracts and water-only controls. Primer
combinations and thermal cycling conditions used to quantify 16S rRNA and
functional genes are described in Supplementary Table 6, and all reactions con-
tained iQ™ SYBR Green Supermix (Bio-Rad, Hercules CA, USA), 0.1% bovine
serum albumin (BSA; New England Biolabs, Ipswich MA, USA) and between
5–10 ng DNA. Final primer concentrations varied between 0.5 µM for 16S rRNA
and nosZII, to 1 µM for nosZI, nirK and nirS. Each gene was quantified in duplicate
15 µl reactions and the qPCR efficiencies ranged from 73 to 98%.

Sequencing and analyses of total bacterial and archaeal communities.
Amplicons of the V3-V4 region of the 16S rRNA gene were prepared following a
two-step procedure. The first step PCR reactions consisted of 1× Phusion PCR
Mastermix (Thermo-Fisher scientific, Stockholm, Sweden), 1 mg/ml BSA and
0.25 µM of primers Pro341 and Pro805r57. Duplicate 15 µl reactions were per-
formed for each sample using the following thermal cycling conditions: an initial
denaturing step of 3 min at 98 °C, followed by 25 cycles of 98 °C for 30 s, 55 °C for
30 s and 72 °C for 30 s, then a final extension step of 10 min at 72 °C. Resulting
PCR products were then pooled and purified using HighPrep PCR Clean-up beads
(MagBio Genomics, Gaithersburg, MD, USA) following the manufacturer’s pro-
tocol. Barcodes were then added in the second PCR step using 0.2 µM Nextera
barcoded primers (Illumina, San Diego CA, USA) and 15% of the purified PCR
product from step 1 PCR. Reactions were performed in duplicates of 30 µl and
thermal cycling conditions remained the same as the first step except 8 cycles were
performed and the extension step at 72 °C was prolonged to 45 s. Sequencing was

performed by Microsynth (Balgach, Switzerland) on a MiSeq Illumina sequencer
using V2 2 × 250 paired-end chemistry.

Obtained paired-end reads were trimmed using the FASTX-toolkit (http://hann
onlab.cshl.edu/fastx_toolkit), merged using PEAR58 (minimum overlap= 20 bp,
minimum quality score= 30, minimum and maximum merged read-lengths of 300
and 505, respectively) and quality filtered using VSEARCH59 such that merged reads
with the maximum expected error above one were discarded. Following paired-read
merging and quality filtering, 4,261,303 reads were retained for further processing.
Reads were then dereplicated and clustered into OTUs using VSEARCH with a
minimum sequence similarity of 0.98. Chimaeras were removed using de-novo
chimaera detection in combination with reference-based chimaera checking using 16S
rRNA sequences using the SILVA database (release 132) as the reference database.
Representative OTU sequences of the resulting 3643 clusters were aligned and
classified using the SINA algorithm60 with the SILVA database as a reference. The
alignment was manually inspected with the ARB software61 and OTUs identified as
chloroplasts or mitochondria were removed. All sequence data is available at the NCBI
Short Read Archive under BioProject accession PRJNA722868.

Analysis of community diversity and structure. Communities were partitioned
into ‘frequent’ and ‘rare’ OTUs by examining species abundance distributions for
each dataset (Supplementary Fig. 3). For all OTUs, the index of dispersion (I) was
calculated as the ratio of the variance in abundance across all samples to the mean
abundance, multiplied by site occupancy33. Frequent community OTUs were
identified as those for which I deviated significantly from a χ2 distribution
(Pr(I) < 0.05), resulting in species abundance distributions that follow a log-normal
distribution. All calculations were based on the mean abundances of OTUs
obtained from 100 instances of rarefied OTU tables.

The diversities of frequent total prokaryotic communities were then calculated
as Shannon’s index, species richness and Phylogenetic Diversity (PD) using the
‘vegan’, ‘phyloseq’ and ‘picante’ packages62–64. To assess the effect of long-term
fertilization on the structure of total prokaryotic communities, non-rarefied tables
of frequent OTUs were initially transformed using the phylogenetic isometric log-
ratio transformation (PhILR32). This method accounts for the compositional
nature of microbial community data and results in a matrix of samples and
‘balances’, where each balance is associated with a node in the OTU phylogeny.
Values for each sample are calculated as the log-ratio of the abundances of taxa
descending from either side of the node, where positive values indicate higher
abundances of taxa in the numerator relative to the denominator, while negative
values indicate the reverse. A pseudocount was added to all zero values using the
Bayesian zero-imputation method implemented in the ‘zCompositions’ package in
R65. Following PhILR transformation, community compositions were examined
using Euclidian distances followed by non-metric multidimensional scaling.
Significant shifts in community composition in response to fertilization were tested
for using permutational ANOVA (PermANOVA) implemented in the ‘adonis2’
function of the ‘vegan’ package in R, with permutations (n= 1000) restricted to
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Fig. 5 Conceptual model of the effect of long-term addition of reactive N on microbial controls of N2O emissions. a In unfertilized soils, changes in biotic
factors associated with microbial communities, such as their diversity, patterns of co-association and abundances of functional genes, exert stronger
control over potential N2O production compared to abiotic factors including soil pH and resource levels. b Long-term addition of reactive N through
fertilization restructures microbial communities over time, resulting in increased complexity of microbial co-association networks as well as altering
denitrification functionality through increased abundances of nirK and nosZ clade I genes associated with denitrification and N2O reduction. However,
abiotic soil factors, especially soil pH, become more important in determining potential N2O emission than changes in microbial communities.
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within sampling sites using the “strata” function. To examine the effect of
fertilization on phylogenetic balances, linear mixed-effects modelling was
performed for each balance such that sample location and fertilization were treated
as random and fixed factors, respectively. The significance of the fertilization term
was assessed by model comparison in which the fertilization term was excluded,
and tests of F-ratios were performed using the Kenward–Roger approximation of
degrees of freedom. Balances exhibiting a significant response to fertilization
(Pr(F) < 0.01 after correction for false discovery rate) were retained, and mean
values of the balances in fertilized and unfertilized plots were estimated based on
model results using the ‘lmerTest’ package in R66.

Co-association network analyses and module detection in unfertilized and
fertilized soils. Networks of frequently occurring OTUs were inferred separately
for fertilized and unfertilized plots using the ‘igraph’ package in R67. Non-rarefied
matrices of frequently occurring OTUs were initially transformed using the centred
log-ratio transformation to account for compositionality in the datasets, followed
by calculation of Pearson correlations between each pair of transformed OTU
abundances within unfertilized or fertilized plots across locations. Final networks
were then inferred by random matrix theory using the ‘RMThreshold’ package in
R68. This method identifies thresholds of correlation coefficients based on the
transition of the empirical nearest-neighbour eigenvalue spacing distribution
(NNSD) from Gaussian orthogonal ensemble to a Poisson (or exponential) dis-
tribution, indicating the point at which the inherent structure of the network is
separated from noise. Since each dataset may contain different levels of noise, the
selection of thresholds was based on Kolmogorov–Smirnov tests of the empirical
NNSD distributions to the theoretical exponential distribution (Supplementary
Fig. 4). We selected the first threshold value that was non-significant (P > 0.05) for
each network, indicating the NNSD had transitioned to an exponential distribution
and thus ‘noise’ linkages specific to each network were removed. Plots of the sum of
squared errors between the empirical NNSD and the exponential distribution over
the range of tested thresholds were also examined to confirm the goodness of fit,
and are shown in Supplementary Fig. 4. This resulted in threshold values of
Pearson’s r= 0.85 and r= 0.88 for unfertilized and fertilized networks, respec-
tively. All remaining correlations were highly significant (false discovery rate
corrected p < 0.001), and isolated nodes with degree= 0 were removed.

The structures of unfertilized and fertilized networks were then compared by
identifying edges between OTUs that were either common or unique to each
fertilization level, and subgraphs of each edge set were extracted and visualized in
CIRCOS plots using the ‘circlize’ package in R69. Differences in the topologies of
co-association (i.e positive edges only) networks were then detected using DyNet70,
which identifies changes in linkages amongst nodes between two or more networks.
We then used ‘igraph’ to calculate various metrics to describe network complexity,
such as average network connectedness (average node degree), network transitivity
(clustering coefficient), average path length and modularity. Furthermore, node
connectance and average Jaccard similarity per node were calculated to determine
the degree of ecological overlap amongst OTUs in each network. The significance
of graph metrics was determined by generating 1000 random networks with the
same number of nodes and edges as the fertilized and unfertilized networks using
the Erdos–Renyi model, and probability values were determined using two-tailed
tests of the observed metric values compared to the distribution of random values.
Finally, relationships between biotic or abiotic factors and the topologies of each
network were performed in the same manner as outlined in Jones and Hallin
(2019)71. Briefly, the ‘edge betweenness’ algorithm72 was used to identify distinct
modules of co-occurring core OTUs in either unfertilized or fertilized soils.
Modules consisting of more than five nodes were then used in eigengene analysis,
in which a single eigenvector reflects the overall change in abundance OTUs in
modules across samples73. Across all modules, the variance explained by each
eigenvector ranged from 52 to 91%. The resulting eigenvalues were then compared
to abiotic and biotic factors by Spearman correlations.

Generalized boosted regression modelling and variable importance. The
relative importance of different biotic and abiotic factors in predicting deni-
trification end-product ratios in unfertilized and fertilized soils was determined
using generalized boosted regression modelling. This method allows for modelling
of non-linear relationships between predictor and response variables, while also
dealing with issues of non-normality and collinearity amongst predictor
variables74,75. To avoid overfitting the model, algorithm tuning was performed via
a grid search approach using the ‘caret’ package76 to obtain the optimal number of
trees, shrinkage parameter, interaction depth and a minimum number of obser-
vations in tree nodes for each dataset. Model validation was performed by ten-fold
cross-validation, and relative variable importance was then determined by per-
mutation variable importance with 500 permutations using the ‘vip’ package77.
Accumulated local effects plots implemented in the ‘iml’ package78 were used with
a grid size of 10 to assess how the top predictor variables (relative importance > 5%)
are related to denitrification end-product ratios in each dataset.

Statistics and reproducibility. All statistical analyses were performed using R as
stated in the descriptions of each individual analysis. Replicates within each
combination of the field site and fertilization treatment are defined as individual

field plots, and the number of plots per treatment per site are given in Supple-
mental Table S1.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Sequence data is available from the Short Read Archive at the National Center for
Biotechnology Information (NCBI) under BioProject accession PRJNA722868, and all
relevant soil, gene abundance and filtered OTU data are provided in a separate excel file
as Supplemental Data.
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