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Abstract: The synthesis of high-performance carbon-based materials from biomass residues for
electrodes has been considered a challenge to achieve in supercapacitor-based production. In this
work, activated biochar has been prepared as the active electrode material for supercapacitors
(SCs), and an effective method has been explored to boost its capacitive performance by employing
polypyrrole (PPy) as a biochar dopant. The results for physicochemical characterization data have
demonstrated that PPy doping affects the biochar morphology, specific surface area, pore structure,
and incorporation of surface functionalities on modified biochar. Biochar-PPy exhibited a surface
area of 87 m2 g−1, while pristine biochar exhibited 1052 m2 g−1. The SCs were assembled employing
two electrodes sandwiched with PVA solid-state film electrolyte as a separator. The device was
characterized by standard electrochemical assays that indicated an improvement of 34% in areal
capacitance. The wood electrodes delivered high areal capacitances of 282 and 370 mF cm−2 at
5 mA cm−2, for pure biochar and biochar doped with PPy, respectively, with typical retention in the
capacitive response of 72% at the end of 1000 cycles of operation of the supercapacitor at high current
density, indicating that biochar-PPy-based electrode devices exhibited a higher energy density when
compared to pure biochar devices.

Keywords: wood waste; wood electrodes; wood-based supercapacitors; polypyrrole; pseudocapacitance

1. Introduction

The growing global population, the depletion of natural resources, and the negative
impact of industrial manufacturing processes are driving factors for the increasing demand
for more sustainable manufacturing processes and products for the energy storage indus-
try. As a consequence, scientists have explored solutions for sustainable materials and
products for greener storage devices through a tenfold increase in scientific publications in
2010–2020 [1–5].

Due to the diversity of the required small and large energy systems, the development
of electrochemical energy storage devices, such as supercapacitors (SCs) and batteries,
has been extensively reported in the literature; batteries have higher energy densities at
the cost of low power densities, while SCs are characterized by high power densities and
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low energy densities, with the advantages of having a high power capacity and being
endowed with fast charging/discharging cycles [6], light weight [5], and both economic
and environmental advantages such as the use of aqueous electrolytes [2]. SCs have a huge
relevance for applications such as electrical automobiles [7] and telecommunications [8] by
integrating strategies based on the incorporation of solar electricity or the harvesting of
mechanical movement converted into electricity [5,9,10].

The optimal configuration of supercapacitors has been explored with the combination
of porous electrodes and electrolytes to improve the charge separation at the Helmholtz
double layer and the electrode–electrolyte interface [4]. Supercapacitors are composed
of electrodes that depend on features such as high specific surface area, surface chem-
istry, and electrical conductivity [11]. To date, several materials (e.g., graphite [12], metal
oxides/hydroxides [13], and conducting polymers [14]) have been employed as high-
performance electrodes for SCs. On the other hand, two-dimensional nanostructures
(graphene, MXene, metal dichalcogenides) present outstanding properties such as high
package density, high surface area, transparency, and chemical/mechanical stability that
enable their use in supercapacitors [15]. Despite these advantages, the typical stack-
ing/aggregation of 2D structures reduces the electrochemical performance of the devices.
To circumvent these drawbacks, different strategies have focused on the exfoliation of black
phosphorous [16] and on the surface modification of structures with nitrogen, sulfur, and
phosphorous-based groups (heteroatom doping strategies) that reinforce the pseudocapaci-
tance of the resulting material [17]. The incorporation of materials with characteristic redox
reactions is another important strategy that is conducted given the fast electrochemical
kinetics in systems such as vanadium redox flow batteries [18] and with the incorporation
of carbonaceous materials to avoid corrosive and degradative processes in Zn anodes [19].

However, these electrode materials have the drawbacks of high production costs
and/or non-eco-friendly fabrication methods. Thus, it is crucial to develop electrode
materials with the properties of sustainability, eco-friendly behavior, low cost, and efficient
response. In this direction, carbon electrodes from biomass precursors have attracted huge
attention due to their worldwide availability and abundance, non-toxicity, and high surface
area with hierarchical porous structure materials [20,21] to improve the mechanisms of
efficient charge separation.

Pyrolysis is a standard method to convert biomass into porous materials whose
properties are highly dependent on the pyrolysis conditions and the chemicals used for the
activation or doping processes [22–24]. For instance, nitrogen doping methods in carbon
preparation for SCs have been shown to boost its conductivities and hydrophilicity, which
improve its surface wettability, resulting in an increased pseudocapacitance effect, thus
delivering improved energy/power densities.

One of the ways to improve the electrochemical conductivity of carbon-based elec-
trodes is coating with conducting polymers [25–27], such as polypyrrole (PPy), which is one
of the most promising support materials due to its excellent electrical conductivity, environ-
mental and thermal stability, and easy procedure of preparation [28–32]. Thus, it enables a
promising possibility for the development of low-cost and commercially viable SCs.

The general mechanisms that are combined in the improvement of the electrochemical
efficiency of the electrodes are based on two important processes: the electrical double
layer capacitance (EDLC) acquired from the adsorption of electrolyte ions on conductive
electrodes [33] and pseudocapacitive effects that allow good performance in energy storage
through reversible redox on electrodes [34]. The adequate combination of EDLC and the
pseudocapacitive effect in SCs improves the overall energy density of the devices by the
combination of available sites for charge accumulation of EDLC and the rapid ionic trans-
port of pseudocapacitive prototypes provided by the PPy-based biochar doping [35–37].

Herein, we aimed to explore the use of birch wood to produce porous biochar to be
used as carbon electrodes for high-performance supercapacitors. Moreover, the prepared
porous biochar was subjected to a polypyrrole, and its effect on both physicochemical
and electrochemical properties was fully investigated. The obtained results suggest an
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improved efficiency of the polypyrrole-doped biochar due to the pseudo-capacitive effect
and the feasibility of the proposed approach for the fabrication of sustainable SCs based on
biomass wastes.

2. Materials and Methods
2.1. Materials

Polyvinylidene fluoride (PVDF), cetyl trimethyl ammonium bromide (CTAB), dimethyl-
formamide (DMF), and pyrrole (PPy) were obtained from Sigma Aldrich (St. Louis, MO,
USA). Ammonium persulfate (APS) was obtained from Química Moderna (Barueri, SP,
Brazil). Carbon black was purchased from Micromeritics (Norcross, GA, USA). All materials
were used as received, except for the pyrrole, which was distilled before use.

2.2. Biochar Preparation

The biochar was prepared using birch wood wastes as a precursor. First, 20.0 g of
the dried biomass was mixed with H3PO4 (50%) at a ratio of 1:4 (weight) and mixed until
forming a homogeneous paste [38,39]. Then, the paste was kept at room temperature for
2 h and dried at 105 ◦C overnight. The dried paste was pyrolyzed at 700 ◦C for 2 h under
an N2 atmosphere, with an initial heating rate of 10 ◦C per min. The pyrolyzed material
was ground and washed several times with boiling water until the pH value of the filtrate
water was similar to the ultra-pure water.

2.3. Preparation of Birch-PPy Powder

The birch-PPy powder was prepared according to the procedure described as follows:
birch powder was dispersed into 5 mL of Milli-Q water by sonication. Meanwhile, another
solution containing polypyrrole and CTAB was prepared as follows: 35 uL of pyrrole
was added into 5 mL of Milli-Q water and also incorporated with 9.6 mg of CTAB. This
solution was stirred until the complete dispersion of the CTAB and mixed into the solution
containing birch biochar to prepare solution A. After this, solution B was prepared by
adding 114.6 mg of APS into 5 mL of milli-Q water. Then, solution A was stirred in an
ice bath and received solution B (dropwise) in a process that initiated the polymerization.
After 2 h of reaction, the dark solution was centrifuged at 5000× g for 5 min to obtain
the precipitated particles. The black powder was filtered and washed several times with
Milli-Q water to remove any residue from the polymerization process and was dried in an
oven at 40 ◦C for 1 h. Finally, the birch-PPy at ambient temperature was stored for use. The
loaded mass of polypyrrole in the composite was 11 mg.

2.4. Fabrication of the Biochar SCs Electrodes

Graphite paper (1 × 1 cm) was used as a support for the coating with the biochar-
based material slurries, prepared with a mass ratio of 8:1:1 (biochar:PVDF:carbon black)
as follows: 10 mg of PVDF was added to 500 µL of DMF and then heated to 60 ◦C and
stirred until the PVDF was completely dispersed. After this step, 80 mg of birch biochar
and 10 mg of carbon black were added to the mixture, which was kept under continuous
stirring at 60 ◦C to provide a homogeneous dispersion of the carbonaceous derivative. The
preparation of the electrode, after this step, was conducted as follows: First, 20 µL of the
as-prepared slurry was dropped and spread on the substrate. Then, the coated graphite
paper was heated at 50 ◦C to eliminate the residues of the solvent. The biochar-PPy-based
electrodes were prepared using the same method, although instead of using the pure birch
biochar, the composite biochar-PPy was used for the preparation of the slurry.

2.5. Electrolyte Preparation and Supercapacitor Assembly

Polyvinyl alcohol (PVA) was explored as a solid-state film for the preparation of the
electrolyte. The standard procedure for preparation was conducted as follows: First, 1 g
of PVA was added into 10 mL of Milli-Q water and heated to 70 ◦C under stirring for
1 h. After this, the temperature was raised to 100 ◦C, and the solution was stirred for an
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additional 1 h. Then, a transparent aspect of the solution was observed, and the solution
was cooled to room temperature. As a following step, the solution was stirred for 15 min
and received 1 mL of H3PO4. To avoid bubbles, the solution was sonicated for 2 min. Then,
the solution was placed in a mold, and a thin film of PVA was obtained after 48 h. The PVA
film was cut into pieces with 1 cm2 of area and used as a solid-state electrolyte. The SCs
were assembled in a sandwich configuration in which two electrodes were placed parallel
to each other, separated by the PVA solid electrolyte film.

2.6. Characterization

The morphology evaluation of the biochars was carried out using a scanning electron
microscope Vega 3XM (Tescan) with an electron acceleration of 10 kV, with the collected
images collected with magnifications of 500 x, 1 kx, 3 kx, and 5 kx. The chemical composition
of the materials was evaluated from Fourier transform infrared spectrum (FTIR) using the
KBr method in an IR Prestige-21 Fourier transform infrared spectrometer (Shimadzu).

The specific surface area and pore volume of the biochar materials were measured
through N2 adsorption-desorption via the BET (Brunauer, Emmett and Teller) and BJH
(Barrett-JoynerHalenda) method, respectively, on a Surface Area Analyzer (ASAP 2020,
Micromeritics).

Electrochemical characterization of the supercapacitors explored the two-electrode
configuration with measurements provided by a potentiostat Autolab PGSTAT 302 N
(Methrom) for the acquisition of voltammetry curves at different scan rates (10 mV s−1

to 200 mV s−1), with a potential window range of 0 to 0.8 V. Galvanometric curves was
performed with a current density ranging from 1 mA to 5 mA, and the impedance spectrum
was evaluated in a frequency range of 1 Hz to 1 MHz with data fitted by modified Randles
circuit using the software Zview 2 version 3.4.

The areal capacitance was calculated from galvanostatic curves, as follows:

Ca =
2Adischarge × I

V2 × Aelectrode
(1)

where Adischarge is the area of the discharge curve, I is the current applied, V is the potential
relative to the beginning of the discharge curve (below the IR drop), and Aelectrode is the area
of the electrode.

To obtain the Ragone data, the calculus of the energy and power density was provided
by Equations (2) and (3):

Ed =
Ca × V2

2 × 3600
(2)

Pd =
3600 × Ed

∆t
(3)

where Ed is the energy density (W h cm−2), Pd is the power density (W cm−2), Ca is the
areal capacitance obtained from Equation (1), and ∆t is the discharge time.

3. Results and Discussion
3.1. Characterization of the Biochar and Biochar-PPy Electrode Materials

The surface morphology of the biochar and biochar doped with PPy was evaluated
from SEM analyses. The SEM images at different magnifications are shown in Figure 1.
The pristine biochar (Figure 1a) is characterized by a dense distribution of particles with
a low concentration of small grains on its surface, while biochar doped with polypyrrole
(see Figure 1b) shows an evident change in morphology due to the coating of biochar by
aggregates of grains of polypyrrole (a typical disposition of PPy grains), showing that the
doping process provoked important changes in the biochar morphology. Such difference
is evidence of the adherence of polypyrrole on biochar’s surface, which could create both
defects in biochar structure and nitrogen functionalities (from PPy) that can boost its
electrochemical performances [40]. Overlaid EDS images in Figure 1c,d for biochar and
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biochar-PPy, respectively, confirm the higher density of nitrogen-based groups by coating
with polypyrrole (green dots are attributed to carbon and red dots to nitrogen), confirming
the adequate modification with PPy.
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Figure 1. SEM images for birch biochar (a) and biochar doped with PPy (b), and overlaid EDS images
(red dots for nitrogen element and green dots for carbon element) for biochar (c) and biochar doped
with PPy (d).

Images for as-prepared electrodes of biochar (Figure 2a) and biochar doped with
PPy (Figure 2b) correspond to the images reported for composites (Figure 1) in which a
dense distribution of grains is observed for the coated material (incorporation of PPyon
biochar). After 1000 cycles of use, the electrodes were re-evaluated (images shown in
Figure 2c (biochar) and Figure 2d (biochar +PPy)), indicating a more compact structure
with a reduction in the size of grains of biochar and compressed grains of polypyrrole, as a
result of the compressive forces during measurement and the smoothness of polypyrrole.
No cracks of microstructural changes were observed as a result of the electrochemical
characterization.
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doped with PPy (b), and after 1000 cycles of operation—birch biochar (c) and biochar doped with
PPy (d).

The pore structure and the change in the porosity degree before and after PPy dop-
ing were evaluated following the N2 adsorption/desorption as shown in Figure 3. The
N2 adsorption-desorption isotherms of biochar (Figure 3a) and biochar-PPy (Figure 3b)
show that the PPy doping provoked a high impact on their shapes and the amount of
adsorbed N2. According to the IUPAC classification [41], the non-doped biochar shows
an isotherm that seems to be a mix of types I and IV; type I is related to the presence of
micropores due to the high N2 adsorption at low partial pressure, and type IV since it
shows hysteresis from partial relative pressure of 0.4, which is a strong indication of the
presence of mesoporosity [23,42]. The biochar doped with PPy shows a clear isotherm type
IV [41]. Moreover, the deposition of PPy on biochar structure seems to reduce the porosity
of the biochar-PPy due to reduced adsorbed N2 volume: 458.0 cm3 g−1 and 57.0 cm3 g−1

for biochar and biochar-PPy, respectively.
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The SSA and porosity values of the biochar electrodes are shown in Table 1. Biochar-
PPy had a surface area of 87 m2 g−1, which is much lower than that of pristine biochar
(1052 m2 g−1) (see Table 1). The decrease in the SSA and pore volume was due to the
deposition of PPy on the carbon structure that covered the highly porous surface of the
biochar sample.

Table 1. Textural properties of the biochar samples.

Samples SSA (m2 g−1) AMicro (m2 g−1) AMeso (m2 g−1)
Pore Volume

(cm3 g−1)

Biochar 1052 240 812 0.46

Biochar-PPy 87 21 66 0.072
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The reduction of SSA can be beneficial for SC performance since the pseudocapacitance
of polypyrrole prevails on the EDLC performance of carbon derivatives, which is surface
area dependent. As expected, the insertion of PPy and N-functionalities can boost the
pseudocapacitance of the biochar-PPy through redox reactions.

FTIR spectra were evaluated to examine the presence of surface functionalities on
biochar surfaces, as well as the impact of PPy doping on the resulting material. FTIR
spectra of biochar and biochar modified with PPy are shown in Figure 4. It is observed
that the PPy doping caused an impact on biochar’s surface functionalities. The absorption
bands at 3441 cm−1 may be attributed to the O−H stretching vibration and are broader in
biochar-PPy. The small peak at 2925 cm−1 is related to symmetric vibrations of the CH2
units [43]. The peak at 1640 cm−1 is due to the stretching vibrations of the C=O and C=C
units [44]. The spectrum of the biochar-PPy exhibited characteristic peaks at 1550, 900, and
668 cm−1, which are indexed to the C=C stretching, C–N stretching, and C–N in-plane
deformation, respectively, indicating the presence of a doped PPy state [45]. The above
outcomes suggest that the biochar-PPy material was successfully prepared.

3.2. Electrochemical Assays

The electrochemical performance of supercapacitors can be successfully evaluated by
cyclic voltammogram (CV) and galvanostatic charge/discharge (GCD) analyses. CV pro-
files of the biochar and biochar doped with PPy were evaluated using the electrochemical
cell in which supercapacitor prototypes are sandwiched in parallel, plated, and charac-
terized at scan rates ranging from 10 to 200 mV s−1 (see Figure 5a,b). Both curves show
that square-shaped aspects are more pronounced at a lower scan rate. At increasing scan
rates, the oblate aspect of the curves can be assigned to the pseudocapacitive behavior of
additives. In terms of the maximum value of the current at a corresponding value of the
scan rate, it is possible to observe that values for polypyrrole-based supercapacitors are
higher than those observed for non-modified devices (biochar-based supercapacitors). As a
consequence, the enclosed area in curves (applied as a parameter for the calculus of the
areal capacitance) indicates that the incorporation of polypyrrole introduces changes in
the electrochemical performance of the modified electrodes. These cone-shaped curves,
observed at a high scan rate (200 mVs−1), are attributed to the abundance of functional
groups that are known to be present on biochars, especially biochars doped with PPy [44].
As expected, the incorporation of PPy in the structure contributes to reversible redox re-
actions that favor an increase in the overall capacitance and consequently in the energy
density due to the facilitated transference of ions under the doping process in cycles of
swelling/contraction of the conducting polymer chain.

The electrochemical performance of electrodes was further evaluated by using GCD
curves (see Figure 5c,d). Both biochar and biochar-PPy showed slight deviations from the
linear branch. For PPy-doped electrodes, a slight curvature is observed, indicating the
reversible accumulation of charge and a pseudocapacitance effect due to the redox reaction
provoked by the nitrogen functionalities on biochar-PPy. As expected, a complete charge-
discharge takes longer characteristic times for supercapacitors under a lower current density
regimen. The supercapacitor based on biochar-PPy displayed a total charge-discharge
period in the order of 680 s, while pure biochar is in the order of 510 s (at a corresponding
current of 1 mA), highlighting the importance of the polypyrrole doping on the overall SCs’
performance. These results following CV analysis indicated a superior electrochemical
performance for biochar doped with PPy.

The areal capacitances obtained from the GCD curves and calculated using Equation (1)
(and shown in Figure 6a) confirm that for all of the current density ranges, the performance
for PPy-modified biochar-based electrodes is better than that observed for pristine ones.
The best performance in the overall range of current densities is the result of the combined
good pseudocapacitive contribution and the high conductivity of the polymeric film. An
interesting aspect to be considered from these results is that a slight reduction in the
performance of biochar-based supercapacitors at increasing current density is circumvented
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by a slight increase in the performance of PPy-modified biochars, which is clear evidence
that operation at higher current density regimen is favored by the incorporation of a
conducting polymer on devices. The corresponding variation for areal capacitance as a
function of the scan rate is shown in Figure 6b. As can be seen, an overall reduction in the
performance is observed in both experimental systems at increasing scan rate [37], with a
general best performance for biochar-PPy samples, confirming the previous results from
GCD data.
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The performance of modified supercapacitors introduces advantages in comparison
with corresponding systems reported in the literature, such as polyaniline-doped graphene
fiber [46] and NiCo2O4 thin film [47]. These materials presented complex synthesis routes
and still presented poorer electrochemical properties in comparison with the experimental
system reported in this work. A more complete comparison with different electrode
materials is given in Table 2, which provides a comparison of the CA values of several
types of electrode materials. As can be seen, a good performance for non-doped and
PPy-doped biochar electrodes is observed by direct comparison with supercapacitors
prepared with different electrodes. These highlights indicate that birch wastes can be a
low-cost, sustainable, and efficient precursor to fabricate high-performance electrodes for
SCs application.

Table 2. The areal capacitance of different electrode materials in comparison with that of the
present work.

Electrode Material Areal
Capacitance

Capacitance
Retention/Cycle Electrolyte

Current Density
(A g−1) or Scan
Rate (mV s−1)

Ref.

Graphene fiber 3.3 mF cm−2 -/5000 PVA/H3PO4 0.1 mA cm−2 [46]

Polyaniline-doped graphene
fiber 66.6 mF cm−2 -/5000 PVA/H3PO4 0.1 mA cm−2 [46]

NiCo2O4 thin film 40.6 mF cm−2 96.5%/10,000 2 M KOH 0.133 mA cm−2 [47]

MnO2 /MoS2 224 mF cm−2 90%/3000 1.0 M Na2SO4 0.1 mA cm−2 [48]

TiO2 23.24 mF cm−2 -/10,000 0.5 M Na2SO4 2 mV s−1 [49]

Sheet-like ZnCo2O4 16.13 -/1000 1 M KOH 0.01 mA cm−2 [50]

Carbon dots/graphene
microfibers 607 mF cm−2 -/2000 EMIBF4/PVDF-

HFP 20 mA cm−2 [51]

MnO2-modified hierarchical
graphene fiber 9.6 mF cm−2 -/1000 H2SO4–PVA 10 mV s−1 [52]

Graphene modified with
polyaniline 87.8 mF cm−2 93%/10,000 EMITFSI/PVDF-

HFP 0.22 mA cm−2 [53]

MnO2@Au nanofiber 8.26 mF cm−2 -/10,000 LiCl-PVA 5 mV s−1 [54]

Carbon cloth-carbon
fiber-TiO2

270 mF cm−2 - 1 M H2SO4 10 mA g−1 [55]

2D-LiCoO2 310 mF cm−2 80.2%/2000 LiCl-PVA 5 mV s−1 [56]

Carbon-doped titanium
nitride 45.8 mF cm−2 96%/5000 6 M KOH 10 mV s−1 [57]

Nanoneedles-anchored
CuCo-layered double

hydroxide
7.02 mF cm−2 96%/10,000 3 M KOH 30 mA cm−2 [58]

Biochar 282 mF cm−2 92%/1000 PVA solid-state
film 5 mA cm−2 This work

Biochar-PPy 370 mF cm−2 72%/1000 PVA solid-state
film 5 mA cm−2 This work

The energy density and power density of the two SCs were obtained from Equations
(2) and (3) and are shown in the Ragone plot (see Figure 7). As expected, the biochar-PPy-
based electrode device showed the highest energy density. The PPy doping seemed to have
increased its surface’s polarity due to the presence of N-heteroatom functionalities, which
boost electrostatic interactions between the electrode’s active surface and the electrolyte
ions, diminishing its equivalent resistance [59]. As expected, the improvement in the faradic
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redox reactions contributes to pseudocapacitance and enhances the supercapacitor’s energy
density due to the polypyrrole incorporation. The comparison with reported values in the
literature is shown in the Ragone plot.
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Another important characterization to be evaluated in supercapacitors is the measure-
ment of the retention in the electrochemical properties of the materials under successive
charge-discharge cycles. With this aim, successive charge-discharge cycles were imposed
under two different currents (4 mA and 5 mA) in supercapacitors prepared with biochar
(pristine) and doped by polypyrrole. After 1000 complete cycles of charge-discharge at
a constant current density, Figure 8 summarizes the variation in the capacitance reten-
tion of the supercapacitors as a function of aging. In agreement with what was observed
for carbonaceous materials, a slight linear decrease in the performance of the device is
observed for a biochar-based supercapacitor with a value in the order of 93% retention
in the electrochemical properties after 1000 cycles of use for both current densities. As
expected, and as observed as a typical response for pseudocapacitive materials, reported for
polypyrrole [68] and N-doping materials [17], a more pronounced decrease in the retention
is observed for modified devices, which reach values in the order of 72% after 1000 cycles
of use at 5 mA and 76.5% after 1000 cycles at 4 mA. Relative to the variation observed
for these systems, it is worth observing that poor cycling performance is reported in the
literature for polypyrrole-based supercapacitors [69], as a consequence of periodic contrac-
tion/expansion of polypyrrole chains under repeated anodic and cathodic polarization
(under successive extraction/insertion of ions). These processes result in the formation of
cracks that negatively affects the capacitance performance of the PPy-based devices. The
incorporation of carbon-based materials minimizes the degradation rate since additives act
as buffer space for polypyrrole volume variation.
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parameters for bulk resistance, charge transfer resistance, CPE, and parameter α are presented in
the inset.



C 2023, 9, 59 13 of 16

In addition, to further understand the intrinsic properties that influence the overall
performance of the PPy-modified electrodes, electrical impedance spectroscopy (EIS) assays
were conducted, in a frequency range from 0.01 Hz to 1 MHz, to further evaluate the
behavior of biochar electrodes for supercapacitors (see Figure 9) before and after 1000 cycles
of operation under conditions of high current (5 mA) and high degradation rate. The
Nyquist plots of electrodes exhibit a semicircle and a straight line in the high and low-
frequency regions, respectively, highlighting its capacitive behavior and ion diffusion [50].
The corresponding response for samples tested after 1000 cycles of charge/discharge shows
a general shift to higher values of impedance in the diagram, confirming the degradation
of the samples.

It is known that a longer diameter in the semicircle is attributed to a higher charge
transfer resistance [40], and the biochar-PPy-based supercapacitor had a much smaller
semi-circle, which reflected higher conductivity and low charge transfer resistance on
the electrode structure, respectively; this leads to a faster ion transfer, which boosts the
capacitance [70]. To quantitatively evaluate all of these aspects in the impedance spectrum,
the overall spectrum was fitted by an equivalent circuit (shown in the inset of Figure 9) [71],
known as the modified Randles circuit, that reproduces the straight line in the low frequency
by the incorporation of a Warburg component in the circuit, and the depressed semicircle
by a constant phase element (CPE), while resistors R1 and R2 reproduce the bulk resistance
(R1) and the charge transfer resistance (R2–R1).

The low values for R1 (see inset of Figure 9) confirm that both experimental systems
(before and after continuous use) preserve low bulk resistance with prevailing resistance
attributed to the biochar, which is minimally affected by the poor cycling performance
of the conducting polymers. A general variation in the charge transfer resistance (R2) is
observed for both experimental systems after successive uses, while an overall decrease in
CPE value is observed with a stronger reduction in the response of the PPy-based device
due to the characteristic lower cyclability attributed to pseudocapacitance-based materials

4. Conclusions

In this work, sustainable biomass electrode materials were prepared and employed
in supercapacitors. A biomass-modified electrode with PPy was fully evaluated in terms
of physicochemical and electrochemical features. The physicochemical characterization
revealed that the PPy modification affected biochar morphology, specific surface area,
pore structure, and the insertion of surface functionalities on the biochar’s surface. The
PPy loading reduced the electrode’s specific surface area from 1052 m2 g−1 to 87 m2 g−1.
Pseudocapacitive behavior prevails, with an improvement of 34% for areal capacitance.
The wood-based electrodes delivered high areal capacitances of 282 and 370 mF cm−2

at 5 mA cm−2, for pure biochar and biochar doped with PPy, respectively. At the end
of 1000 cycles, the biochar doped with PPy had slightly reduced capacitance retention
(72%) compared to pure biochar (92%). The improvement in the energy density and the
areal capacitance for devices modified with polypyrrole confirm the relevant contribution
of the conducting polymer on the overall pseudocapacitance behavior of the resulting
supercapacitor.
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