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Abstract: Forages are the most important kind of crops at high latitudes and are the main feeding
source for ruminant-based dairy industries. Maximizing the economic and ecological performances
of farms and, to some extent, of the meat and dairy sectors require adequate and timely supportive
field-specific information such as available biomass. Sentinel-2 satellites provide open access imagery
that can monitor vegetation frequently. These spectral data were used to estimate the dry matter
yield (DMY) of harvested forage fields in northern Sweden. Field measurements were conducted
over two years at four sites with contrasting soil and climate conditions. Univariate regression and
multivariate regression, including partial least square, support vector machine and random forest,
were tested for their capability to accurately and robustly estimate in-season DMY using reflectance
values and vegetation indices obtained from Sentinel-2 spectral bands. Models were built using an
iterative (300 times) calibration and validation approach (75% and 25% for calibration and validation,
respectively), and their performances were formally evaluated using an independent dataset. Among
these algorithms, random forest regression (RFR) produced the most stable and robust results, with
Nash-Sutcliffe model efficiency (NSE) values (average + standard deviation) for the calibration,
validation and evaluation of 0.92 & 0.01, 0.55 £ 0.22 and 0.86 =+ 0.04, respectively. Although relatively

check for promising, these results call for larger and more comprehensive datasets as performances vary largely

updates

o . between calibration, validation and evaluation datasets. Moreover, RFR, as any machine learning
Citation: Peng, J.; Zeiner, N.; Parsons,

D.; Féret, ].-B.; Soderstrom, M.; Morel algorithm regression, requires a very large dataset to become stable in terms of performance.
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1. Introduction
Kang Yu

Leys are temporary forages (either harvested or grazed) which are part of a crop
rotation. In Nordic countries, forages are the main feeding source for livestock in dairy
and meat production systems. In Sweden, ley dominates the agricultural land use, and
comprised 44% of the total arable lands in 2022 [1]. Leys are typically harvested 2—4 times
per year in southern Sweden, and 2-3 times in northern Sweden. Determining the harvest

window, especially for first harvest, is important for farmers, since it directly affects the
forage yield and quality and, ultimately, the profitability [2]. Accurate estimations of forage
biomass is one of the factors for determining the harvest time and is also important for
fertilization strategies and herbicide spraying [3].
This article is an open access article Traditional approaches involving field sampling and laboratory measuring are de-
distributed under the terms and  Structive and time- and resource-consuming. As an alternative, several studies explored
conditions of the Creative Commons  the utilization of hand-held rising plate meters and field spectrometers (e.g., FieldSpec,
Attribution (CC BY) license (https://  Yara N-sensor) to make rapid and accurate biomass in situ estimations of forages [4-7].
creativecommons.org/licenses /by / Rising plate meters are easy-to-use and inexpensive tools that measure the height and den-
40/). sity of swards from which biomass can be derived based on species-dependent calibration
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curves. However, these tools have limited spatialization capabilities. Field spectrometers
provide high-resolution spectral information, but their use for practical applications is
limited by their costs and, more importantly, limited spatialization capabilities compared to
imaging sensors. Alternatively, open-access satellites (e.g., Landsat, MODIS and Sentinel-2)
supply multispectral images with a spatial resolution ranging between 10 and 250 m for
large-scale vegetation monitoring [8-10]. Satellite imaging systems offer several advan-
tages, such as technical maturity and stability, open access to data and a large field of
view [11].

The Sentinel-2 satellites constellation provides open access images with a relatively
high spatial resolution (10-60 m) and high frequency of revisit [12] of about 2 days in
northern Sweden. These time series of satellite images can be useful indicators to monitor
the biomass and growth of crops [13-15].

Traditional satellite-based biomass estimation models are usually developed by linking
spectral-derived vegetation index (hereafter referred to as VI, such as the normalized differ-
ence vegetation index, NDVI) and field measurements using basic univariate regression
(UR) models, such as linear, polynomial, exponential, power, etc. [10,16]. However, with
increasingly larger datasets, multivariate regressions (MR), e.g., partial least square regres-
sion (PLSR) and machine learning-based support vector machine (SVM) regression (SVR)
and random forest (RF) regression (RFR), have become increasingly used for the estimation
of crop traits, such as leaf area index (LAI [17,18]), plant nitrogen nutrition [19,20] and
biomass [3,5,21,22]. PLSR aims to extract latent factors that represent most of the variation
between predictor and response variables to reduce overfit [23,24]. Therefore, PLSR is
able to encompass more explanatory variables (e.g., individual bands and VIs) to build
regression models with greater robustness compared to traditional regression approaches.
SVM is a nonparametric statistical technique without data distribution assumptions. It was
originally proposed by Vapnik [25] for classification purposes by setting labels for datasets
and searching separation hyperplanes; it was later developed further for regressions [26].
Similar to SVM, RF requires no specific data distribution assumption, but the difference
is that it uses an ensemble-learning method, which utilizes multiple algorithms (trees)
over one model to make a more accurate prediction [27], and it was also developed for
regressions. RFR can deal with small size datasets [28] as well as high dimensional and
collinear data [29] at a high running speed.

Currently, to the authors’ best knowledge, few studies are reported to have tested the
use of Sentinel-2 to estimate forage biomass production (e.g., [9,16,30,31]) and there are
no relevant studies in Nordic countries where the revisit frequency of Sentinel-2 satellite
constellations is higher due to the higher latitude, but on the other hand, the availability of
the data is affected by the high occurrence of clouds [32,33]. Thus, the aim of this study
was to build and compare several regression models for forage biomass estimation using
Sentinel-2 multispectral data in northern Sweden. The objective was to build regression
models for dry matter yield (DMY) estimation using different approaches and compare
their performance.

2. Materials and Methods
2.1. Field Measurements

The overall workflow of this study is shown in Figure 1. The field samplings were
conducted from 2019 to 2020 in northern Sweden (63.0-65.5°N, Figure 2) at four locations:
As, Lannias, Ojebyn and Robacksdalen. The fields in different locations were mixes of
different species, including timothy (Phleum pratense), red clover (Trifolium pratense) and
weeds (e.g., Elymus repens).
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Figure 1. Overall workflow of this study.
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Figure 2. Locations of the study sites across northern Sweden. The green dots in the left figure show
the experimental sites and the blue dots in the right figures denote the field sampling sites. The scale
in the left figure is for whole Sweden, and the scale at the corner in the right figures is for the right
8 figures showing different fields.

One-way ANOVA tests based on daily climate parameters were conducted to check
the seasonal and spatial meteorological difference. The residual normality and variance ho-
mogeneity were checked, and if the conditions were not fulfilled, non-parametric Kruskal-
Wallis rank sum test was used alternatively. Based on the analyses, there were no significant
seasonal differences (p > 0.05) among the four locations in terms of the climate conditions
for the field season (approximately from 1 May to 30 September). For example, mean
temperature ranged from 11-13 °C in two years and four places (Table 1). The exception
was Ojebyn, where the precipitation in 2019 was significantly higher than 2020.
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Table 1. Meteorological conditions of the four study sites during the growing season (May-September)
in 2019 and 2020. The temperature shown is daily averaged for the whole growing season, whereas
precipitation and radiation are accumulated values. Data were obtained from Lantmet [34].

Year Locations Temperature (°C)  Precipitation (mm)  Solar Radiation (MJ m~—2)
As 11.3 216.4 2484
Lannés 12.6 156.8 2579
2009 Gebyn 12.1 355.1 2852
Robéacksdalen 11.9 2624 2144
As 115 217.4 2437
Lannés 12.8 204.6 2748
2020 Gjebyn 123 318.2 2667
Robéacksdalen 12.3 312.7 2203

The spatial variations in each season depended on climate parameters. In each sea-
son, the spatial variations of temperature among different locations were not significant
(p > 0.05); however, the spatial differences of precipitation and radiation among different
locations were significant (p < 0.05). For example, the average precipitation in Ojebyn was
355.1 in 2019, which was more than for other sites (Table 1). The exception occurred in
2020 for precipitation, in which there was a significant difference in precipitation among
different locations.

In each sampling site and year, a quadrat with 50 cm sides was used to take sam-
ples from May to September. Each sample consisted of three subsamples with a spacing
of 1-2 m between quadrats. GPS coordinates were recorded and samples were taken
8 cm above the ground to follow the typical farming practice (Table 2). Subsamples were
hand-separated into three groups (grass, clover and weeds) for botanical composition (BC)
measurement. Subsamples were stored at 4 °C before fresh weight was measured. Sub-
samples were then oven-dried at 60 °C for 48 h and weighed again for DMY determination
for different species [3]. Total DMY was calculated as the sum of DMY from each group.
BC was expressed as the proportion of DMY from each species relative to the total DMY.
Sample (i.e., related to one Sentinel-2 pixel) DMY was obtained by averaging the three
subsample values.

Table 2. Locations, coordinates, working years, management and number of sample points
(n, 3 subsamples were averaged as 1 observation, i.e., sample point) of the study sites. Organic
means no chemical fertilizer or herbicide was applied. Conventional indicates that the field was
managed using chemical fertilizers and possibly herbicides.

Locations Latitude Longitude Year Management Fields n
As 63°15'N 14°36'E 2019/2020 Organic 1 30
Lannés 63° 8'N 17°45'E 2019/2020 Organic 1 42
Ojebyn 65°21'N 21°24'E 2019 Conventional 1 21
Robécksdalen  63°47'N 20°14’E 2019/2020  Conventional 5 87

2.2. Remote Sensing Data

Sentinel-2 A and B level 2A images with 20 m spatial resolution obtained over the
sites of interest in 2019 and 2020 were downloaded during the growing season from the
European Space Agency (ESA) Copernicus website. The characteristics of the spectral
bands (wavelength and bandwidth) are described on the Copernicus web portal [35].
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The scene classification map (SCL) produced using the Sen2Cor algorithm from the
European Space Agency classifies Sentinel-2 images to twelve classes, including cloud,
shadow, vegetation, soil, water and snow [36], with Level 2A images at 20 m spatial reso-
lution. This was used to mask all of the pixels, which were recognized as non-vegetation,
before further processing and analysis.

2.3. Extraction of Reflectance Data

To avoid discrepancies between field measurements and radiometric information, a
threshold of 3 days of difference between imaging date and sampling date was applied,
which means that if the time difference between the available cloud-free satellite imagery
and field sampling was more than 3 days, then the observation would be discarded.
Reflectance information for each subsample from each band was extracted using the
“extract” function from package “raster” in R environment [37].

The extracted reflectance values and total DMY values of the three subsamples were
averaged for regression analysis. The spatial and temporal distribution of collected datasets
are listed in Table 3. There are less observations (1) compared to those listed in Table 2 due
to the exclusion of samples based on the difference between dates of available Sentinel-
2 data and field sampling data. Since the datasets were from different locations, years
and sampling days, there was no autocorrelation issue for all of the datasets, which was
determined by using the “acf” function from the package “forecast” in R environment [37].

Table 3. The number of samples available after data preprocessing for each site and year.

Locations 2019 (n) 2020 (n)
As 2 1
Lannés 5 6
Ojebyn 9 0
Robacksdalen 9 42

2.4. Regression Models

Several regression methods were tested to estimate DMY in this study: VI-based
univariate regressions and multivariate regressions, including machine learning algorithms.
Plant biomass-related VIs were identified through a literature search using the follow-
ing keywords: “dry matter”, “nitrogen”, “chlorophyll”, “biomass”, “index”, “Sentinel-2”,
“satellite” and “remote sensing”. The descriptions and calculation formulae are in Table 4.

All analyses were conducted using R environment [37].

2.4.1. Univariate Regression Models

The VIs were correlated with DMY by several UR models: linear, exponential, power,
polynomial and logarithmic. Models were built using the ‘Im” function in R environment [37].

2.4.2. Multivariate Regression Models

PLSR, SVR and RFR were used as multivariate regression models, with pixelwise
individual spectral bands and calculated VIs (Table 4) as the input variables. This approach
enables all of the spectral information to be utilized [38—40].

PLSR links the predictor and response variables by decomposing data matrices so that
only the most important linear combinations are utilized in the regression, optimizing the
covariance between predictor and response variables. The “pls” package [41] was used
to run PLSR. The proper number of components was determined by minimizing the root
mean square error (RMSE) for the K-fold cross-validated predictions, with K = 10.
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In the basic form, SVM is a binary classifier (linear or nonlinear) which identifies
the boundary between two different classes, assuming that the multidimensional data
are distinguishable. In practice, SVMs define an optimal separation hyperplane to divide
the datasets into several discrete predefined classes within the training data [42]. SVM
regression analysis is expected to produce a continuous prediction output [26]. The package
“e1071” was used to conduct SVR. A grid search was implemented with a radial kernel
to determine the hyperparameters ¢, C and y to an optimal manner as they measure and
define the model prediction errors so that they affect the accuracy and generality capabilities
of the SVR. The details of ¢, C and y were presented in Cristianini and Shawe-Taylor’s
paper [43].

RFR utilized two-thirds of the samples (in-bag samples) to train several regression
trees, and the remaining one-third (out-of-bag (OOB) samples) was used for internal cross-
validation [27]. Each tree split was defined using a random subsection of the predictor
variables at each node. The average of the results from all the trees is the final result [44].
The “RandomForest” package was used to build the models, which were tuned using the
“tuneRF” function, and a default #.e was set to 500. The detailed procedures of RFR
algorithms running can be found in Peng et al.’s work [19]. Two measures (%IncMSE and
IncNodePurity) were calculated to show the importance of predictor variables [45]. The
mean square error, %IncMSE, is measured as the mean decrease in accuracy of predictions
of the OOB samples when a given variable is not included in the model. The training
residual sum of squares, IncNodePurity, describes the total decrease in node impurity
derived from splits over that variable.

2.5. Model Evaluation

We used a calibration/validation/evaluation strategy to test the robustness of the
models. Data from Robacksdalen 2019 were used as the evaluation dataset. The remaining
dataset was randomly sampled for calibration (75%) and validation (25%).

Since the size of the analysis dataset was limited (Table 3), all of the univariate and
multivariate models were independently tested 300 times to evaluate the effect of the data
splitting on the performance of the models.

Performances of the models were assessed using Nash-Sutcliffe model efficiency (NSE)
and root mean square error (RMSE):

NSE = 1— Y-;(Obs; Mod,)2 1)

¥, (Obs; — Obs)

n o )2
RM%:Vil@%IMM) 2)

where Obs; and Mod; are observed and modeled values, respectively, O_bs and M_od are
mean observed and modeled values, and # is the total number of observations.
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Table 4. Vegetation indices (VIs) used in the study and heat map of Nash-Sutcliffe efficiency (NSE) for univariate regressions. B3, B4 and B8A are green, red and

near infrared; B11 and B12 are shortwave infrared bands 11 and 12, respectively; B5, B6 and B7 are vegetation red-edge bands 1, 2 and 3, respectively. The sequence

of VIs is sorted by the calibration NSE values with the order from largest to lowest values.

Vegetation Index  Name of Vegetation Index Formula Reference  Calibration (n =49)  Validation (# =16)  Evaluation (1 =9)

REDVI2 Red Edge Difference Vegetation Index B8A — B6 [46]

REDVI1 Red Edge Difference Vegetation Index B8A — B5 [46]

MCARI11 Modified chlorophyll absorption in [(BSA — B5) — 0.2 x (B8A — B3)] x (BSA/B5) [46]
reflectance aindex

GDVI Green Difference Vegetation Index B8A — B3 [47]

GOSAVI Green optimized soil adjusted vegetation index (1+0.16) x (BS8A — B3)/(B8A + B3 + 0.16) [47]

TCI Terrestrial chlorophyll index (B6 — B5)/(B5 — B4) [48]

NDRE1 Normalized Difference Red-edge Index (BSA — B5)/(B8A + B5) [49]
SWIR11 related transformed Chlorophyll _ _ _

SWIR11-TCARI3 Absorption Reflectance Index 3 x [(B7 — B11) — 0.2 x (B7 — B3) x (B7/B11)] [50]

Clrel Red-edge Chlorophyll Index (B8A/B5) — 1 [51]

NDI1 Normalized difference index (B8A — B5)/(B8A + B4) [52]

MCARI13 Modified chlorophyll absorption in reflectance index  [(BSA — B7) — 0.2 x (BSA — B3)] x (B8A/B7) [46]

DVI Difference vegetation i‘ndex o BSA — B4 [53]

SWIR11-MCARI3 SWIR11 relf.ated modified chlorophyll absorption in [(B7 — B11) — 0.2 x (B7 — B3)] x (B7/Bl1) [50]
reflectance index o

SWIR11-0savi  SWIRIL related optimized soil adjusted (1+0.16) x (BSA — B11)/(B8A + B11 + 0.16) [50]
vegetation index

GNDVI Green Normalized Difference Vegetation Index (BSA — B3)/(B8A + B3) [54]

SWIRI2-MCARIZ ~ SWIRI2 rel'ated modified chlorophyll absorption in [(B7 — B12) — 0.2 x (B7 — B3)] x (B7/B12) [50]
reflectance index o

SWIR12-0sAvl  SWIRI2related optimized soil adjusted (1+0.16) x (BSA — B12)/(BSA + B12 + 0.16) [50]
vegetation index

Clgreen Green Chlorophyll Index (BSA/B3) — 1 [55]

GRVI Green ratio Vegetation index B8A/B3 [56]

o . . 1.5 x (1.2 x (BBA — B3) — 2.5 x (B4 — B3))/

MTVI Modified Triangular Vegetation Index sqrt((2 x BSA +1)2 — (6 x B8A — 5 x sqrt(B4)) — 0.5) [57]

S2REP2 Sentinel-2 red-edge position 705 + 35 x [0.5 x (B7 + B4) — B5]/(B6 — B5) [50]

OSAVI Optimized soil adjusted vegetation index (1+0.16) x (B8A — B4)/(B8A + B4 + 0.16) [58]

MCARI23 Modified chlorﬁfhyll absorption reflectance index [(B7 — B4) — 0.2 x (B7 — B3)] x (B7/B4) [59]
Transformed Chlorophyll Absorption -~ - -~

TCARI3 Reflectance Index o 3 x [(B7 — B4) — 0.2 x (B7 — B3) x (B7/B4)] [60]

SWIR11-MCARI2 SWIR11 rel;.ated modified chlorophyll absorption in [(B6 — B11) — 0.2 x (B6 — B3)] x (B6/Bl1) [50]
reflectance index
SWIR11 related transformed Chlorophyll

SWIR11-TCARI2 Absorption Reflectance Index o 3 x [(B6 — B11) — 0.2 x (B6 — B3) x (B6/B11)] [50]

SWIR12-MCARI2 SWIR12 rele_ated modified chlorophyll absorption in [(B6 — B12) — 0.2 x (B6 — B3)] x (B6/B12) [50]
reflectance index

NNIR Normalized NIR Index B8A/(B8A + B4 + B3) [47]
SWIRI12 related transformed Chlorophyll

SWIR12-TCARI3 Absorption Reflectance Index 3 x [(B7 — B12) — 0.2 x (B7 — B3) x (B7/B12)] [50]

IRECI1 Inverted Red-Edge Chlorophyll Index (BSA — B4)/(B6 — B5) [61]
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Table 4. Cont.

Vegetation Index Name of Vegetation Index Formula Reference Calibration (1 = 49) Validation (1 = 16) Evaluation (1 = 9)
MCARI22 Modified chlorophyIl absorption reflectance index [(B6 — B4) — 0.2 x (B6 — B3)] x (B6/B4) [59]
TCARI2 Transformed Chlorophyll Absorption Reflectance Index 3 x [(B6 — B4) — 0.2 x (B6 — B3) x (B6/B4)] [60]
IRECI2 Inverted Red-Edge Chlorophyll Index (B7 — B4)/(B6 — B5) [62]
RVI Ratio Vegetation index B8A/B4 [56]
Clre3 Red-edge Chlorophyll Index (BSA/B7) — 1 [51]
NDRE3 Normalized Difference Red-edge Index (BSA — B7)/(B8A + B?7) [49]
NDI3 Normalized difference index (BSA — B7)/(B8A + B4) [52]
NDVI Normalized Difference Vegetation Index (BSA — B4)/(B8A + B4) [63]
NDI2 Normalized difference index (BSA — B6)/(B8A + B4) [52]
SWIR11-MCARI1 SWIR11 related modified chlorophyll absorption in [(B5 — BI1) — 0.2 x (B5 — B3)] x (B5/B11) [50]
reflectance index
S2REP1 Sentinel-2 red-edge position 705 + 35 x [0.5 x (BS8A + B4) — B5]/(B6 — B5) [61]
SWIR12-TCAR2 1S_{WIRlZ related transformed Chlorophyll Absorption 3 x [(B6 — B12) — 0.2 x (B6 — B3) x (B6/B12)] [50]
eflectance Index
GDR Green reflectance divide red reflectance B3/B4 [64]
SWIR11-NRI SWIR11 related Normalized ratio index (B11 — B4)/(B11 + B4) [50]
MCARI12 Modified chlorophyll absorption in reflectance index [(BSA — B6) — 0.2 x (BSA — B3)] x (B8A/B6) [46]
SWIR12-NRI SWIR12 related Normalized ratio index (B12 — B4)/(B12 + B4) [50]
Clre2 Red-edge Chlorophyll Index (BSA/B6) — 1 [51]
NDRE2 Normalized Difference Red-edge Index (BSA — B6)/(B8A + B6) [49]
REDVI3 Red Edge Difference Vegetation Index B8A — B7 [46]
GMR Green reflectance minus red reflectance B3 — B4 [64]
MCARI21 Modified chlorophyll absorption reflectance index [(B5 — B4) — 0.2 x (B5 — B3)] x (B5/B4) [59]
CVI Chlorophyll vegetation index (BSA/B3) x (B4/B3) [65]
SWIR12-TCARI1 1S_{WIRlZ related transformed Chlorophyll Absorption 3 x [(B5 — B12) — 0.2 x (B5 — B3) x (B5/B12)] [50]
eflectance Index
SWIR12-MCARIL SWIR12 rel{ited modified chlorophyll absorption in [(B5 — B12) — 0.2 x (B5 — B3)] x (B5/B12) [50]
reflectance index
SWIR11-TCARTL ?{WIRll related transformed Chlorophyll Absorption 3 % [(B5 — B11) — 0.2 x (B5 — B3) x (B5/B11)] [50]
eflectance Index
TCARI1 Transformed Chlorophyll Absorption Reflectance Index 3 x [(B5 — B4) — 0.2 x (B5 — B3) x (B5/B4)] [60]
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3. Results
3.1. Dry Matter Yield Distribution

The average sampled DMY across the whole growing season in 2019 and 2020 were,
respectively, 1.16 and 0.56 t ha—! at As, 0.78 and 0.95 t ha~! at Linnis, and 1.38 and
1.32 t ha~! at Robacksdalen. At Ojebyn, the samples were only taken in 2019 and the
average DMY was 2.76 t ha~!. The variation in sampled DMY between different sites and
years had a wide range (Figure 3), which was beneficial for model calibration. At Ojebyn,
the DMY was significantly higher than other stations in 2019, and the main reason might
be that there was a more intense solar radiation (2852 MJ m 2 during the growing season
in 2019, see Table 1).

B2 2019
B2 2020

G

DMY (tha ')
e

As Lannis Ojebyn  Robicksdalen
Site
Figure 3. Variation in forage dry matter yield (DMY) of the dataset (180 samples, Table 2) at four sites
in 2019 and 2020. The horizontal lines in the boxplot show the first quartile (Q1), median and third
quartile (Q3) of the datasets. The upper end of the black line is the upper bound for detecting outliers

(Q3 + 1.5 x (Q3-Q1)) and the bottom end of the black line is the lower bound for detecting outliers
(Q3 + 1.5 x (Q3-Q1)). The black dot shows outlier, which was removed for the regression analyses.

The measured BC varied among different locations. At As, the clover was the dominant
species (more than 50%). At Lannds and Robacksdalen, timothy was the main species (on
average more than 70%). At Ojebyn, the proportion of weeds was higher compared to other
places due to the organic management approaches (no herbicides were used).

3.2. Univariate Regressions

The results of UR are shown in Table 4 as a heat map. Generally, the fits between
VIs and DMY differed from moderate to poor depending on the VI. None of the calibra-
tion and validation NSE values exceeded 0.55. Among these VIs, red-edge-related VIs
had stronger correlations with DMY compared to others. Short-wave infrared (SWIR)-
related VIs did not show a strong ability to correlate with DMY. Surprisingly, accuracies
for evaluation were higher than for calibration and validation (e.g., average NSE of
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0.51 among 56 VIs for evaluation against 0.33 and 0.22 for calibration and validation).
However, the evaluation dataset only had nine samples; therefore, the results must be
interpreted cautiously.

3.3. Multivariate Regressions

Table 5 shows the results from the PLSR, SVR and RFR models. Overall, calibration
accuracies were high, with mean NSE and RMSE ranging from 0.81 to 0.95 and 0.19 to
0.39 t ha—!, respectively. However, for the validation, the accuracies decreased. Mean NSE
ranged from 0.34 to 0.61, and mean RMSE increased to 0.58 to 0.75 t ha~!. Evaluation
underlined obvious model differences, as RFR performed better than PLSR and SVR (mean
NSE and RMSE value of 0.86 and 0.26 t ha™1).

For both calibration and validation, the SVR and RFR performed better than PLSR.
The accuracy of SVR was slightly higher than RFR due to the relatively higher mean NSE,
but RFR performed more stably for calibration since standard deviation (SD) values were
lower. When considering the evaluation dataset, RFR showed a better performance than
PLSR and SVR, with higher NSE and less spread of values.

Based on the calculations of the variable importance measures (%IncMSE and Inc-
NodePurity) shown in Figure 4, the bands of near infrared (NIR) and red-edge and the
related VIs (e.g., REDVI1, REDVI 2, NDREI1, TCI, Clrel) are the most important for the
RFR analysis.

Figure 5 shows the effect of running the model 300 times on the NSE of calibration,
validation and evaluation. SVR and RFR show similar median values of validation NSE but
the values were lower comparing to calibration, yet the majority of NSE values distributed
from 0.4 to 0.8 suggest relatively comparable accuracies for SVR and RFR. In addition, the
variation in NSE values intuitively indicates that RFR was more stable, especially for model
calibration and evaluation, which is confirmed by the results shown in Table 5 (lower SD
values for RF calibration).

Table 5. Statistical analysis results for the multivariate regressions, using methods from partial least
square regression (PLSR), random forest regression (RFR) and support vector regression (SVR). The
values show the statistical distribution (mean =+ standard deviation) of NSE and RMSE from running
the model 300 times.

Indi Calibration (n = 49) Validation (1 = 16) Evaluation (n =9)
ndicator PLSR RFR SVR PLSR RFR SVR PLSR RFR SVR
NSE 0814017 0924001 095+0.04 034+041 055+022 061+021 035+111 086+004 0614026

RMSE 0.39 +£0.17

0274+0.03 019+£011 075+021 063+£017 058+0.17 049+031 026+£003 043+0.14

Figure 6 shows scatterplots of observed versus RFR-estimated DMY, using a model
with a calibration NSE value of 0.92 (Table 5), which was the average value of randomizing
the samples and running the model 300 times (Table 5). The corresponding NSE values for
validation and evaluation of the selected RFR model were 0.62 and 0.84, respectively. The
distributions of scatterplot points showed that the effect from the BC on the selected RFR
model was mild.
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Figure 4. Importance of predictor variables (individual bands and vegetation indices) according to
the random forest regression analysis in explaining the dry matter yield (DMY). Descriptions of the

individual bands and indices are given in Table 4.
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Figure 5. Variation in Nash-Sutcliffe efficiency (NSE) of running the models 300 times using partial
least square regression (PLSR), random forest regression (RFR) and support vector machine-based
regression (SVR). The horizontal lines in the boxplot show the first quartile, median and third quartile

of NSE values.
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Figure 6. Observed versus estimated dry matter yield (DMY, t ha™?!) for selected random forest
regression (RFR) model with a calibration NSE value of 0.92 (average value of 300 runs, Table 5). The
timothy contents (%) are marked with different colors and the black color indicates that the botanical
compositions of the samples were not measured, hence there was no data.

4. Discussion

Even though several VIs (e.g., red-edge band-related, Table 4) fitted moderately with
DMY (NSE values for model calibration were higher than 0.5), the overall VI-based UR
performed inadequately (Table 4). The evaluation accuracies were much higher than
expected, which was likely derived from the small size of the evaluation dataset (1 = 9);
however, the accuracies of calibration and validation were low, which further indicates
that the overall accuracy of UR models was not convincing. Adar et al. [38] reported
similar results where the VIs calculated from satellite images were proven to have been
insufficient to capture the submeter variability of rangelands due to the relatively coarse
spatial resolution. Several VIs, such as NDVI, also have saturation issues when the LAI
reaches three [40,66], which could contribute to the poor correlation as well. Indeed, in
northern Sweden, crops in general and grasslands in particular grow exceedingly fast
once temperature is not limiting due to long daylight hours, and canopy closure is rapidly
reached. Another reason could be that the datasets used in this study included several sites
and years, resulting in different conditions (Tables 1 and 2), which made it challenging to
build a robust model to accommodate this heterogeneity based on simple Vls.

In contrast to the relatively poor performance of UR, MR performed notably better with
higher calibration NSE values, thus emphasizing the advantages of PLSR and especially
nonparametric machine learning-based regression approaches (SVR and RFR), which do
not have distributional assumptions and variance requirements [26,67]. The most notable
enhancement of MR over UR is that it can manage multiple variables in a single model and
take advantage of more explanatory variables, and thus, information.

PLSR and RFR can identify the importance of predictor variables based on either
principal components analysis and consequent components selection [68] or the OOB
indices calculation [19,67]. Thus, less important and collinear variables can be discarded,
which could significantly improve the model performance. In this study, RFR outperformed
PLSR to a certain extent in model calibration, validation and evaluation (Table 5) and the
possible reason would be that RFR has a stronger ability to produce relatively robust
models [69]. For SVR, unlike PLSR and RFR, it cannot distinguish the importance of
variables and select the variables by statistical analysis, but the model accuracy would
be advanced to a large extent once the parameters of the kernel are correctly set [3,38].
However, it is also the main drawback for SVR as it needs computation and time to find the
right kernel and there is a risk that the found kernel is not optimal [26]. RFR has apparent
merits, such as easy operation, high efficiency and reliable robustness [29]. Several remote
sensing-based studies in other areas have found similar results, i.e., simple VIs were not able
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to produce sufficiently robust models for prediction, but RFR could improve performance,
such as potato N status estimation [19] and lake transparency monitoring [70].

It was observed in this study that the BC had little effect on the selected RFR model.
RF has a strong ability to integrate different datasets from different sources into a single
model for classification or regression analyses [19,71]. A previous study reported that
the effect from BC on the Sentinel-2 satellite data-based regression modeling for pasture
biomass estimation was unclear [9]. This study answered this question to a certain extent
and it should be continued to be explored and quantified in future studies.

By applying the selected RFR model shown in Figure 6, it is possible to map the
instantaneous DMY of ley fields before harvest (Figure 7). From the map, farmers could
potentially identify the variation within and among fields, which could help to determine
the optimal harvest time and plan the harvesting sequence.

Figure 7. Layout of the estimated dry matter yield (DMY) for the first harvest from Sentinel-2
imagery obtained on 09 June 2019, one week before the first harvest using a selected RFR model, at
Robécksdalen field research station. The background imagery is obtained from Google Earth.

However, it should be mentioned that due to the coverage of clouds and shadows,
there was some important missing information. As the example in Figure 8 shows, the
time-series DMY estimation from Sentinel-2 images using the RFR model reflected the
growth pattern of leys, including the reduction in biomass following harvests; however,
as key information was missing due to the presence of clouds or shadows (the interval
between available cloud-free Sentinel-2 images before the second harvest was 15 days), the
time-series DMY estimation could not precisely track the growth conditions between the
first and second harvests.
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Figure 8. Example of forage dry matter yield (DMY) during the growing season, estimated from
Sentinel-2 imagery in 2020 at Robécksdalen field research station using a selected random for-
est regression (RFR) model. The red-dashed vertical lines indicate the timing of the first and
second harvests.

Table 6 further illustrates the mean intervals between cloud-free Sentinel-2 images and
the corresponding standard deviations for each experimental field and year. Mean intervals
between available cloud-free Sentinel-2 images ranged from 4-9 days and 3-7 days, de-
pending on the location in 2019 and 2020, respectively. Furthermore, there were larger gaps
(e.g., 20 days) between Sentinel-2 images in June and July (Figure 9), which makes it hard
to track the information at the most needed time. Therefore, including more datasets, such
as Sentinel-1 imagery, which is insensitive to clouds, would be helpful in the future [72,73].
Statistical methods such as the weighted ensemble of radial basis function (RBF) convolu-
tion filters [74] can be used to detect time-series imagery outliers (e.g., clouds and shadows)
and approximate missing data to create more frequent time-series data, and should be
tried in future research. Including multispectral data from Landsat-8 could be another
good solution to fill in the missing data. However, because of the coarser spatial resolution
(30 m) and the lack of red-edge bands from Landsat-8 data [75], more caution should be
taken and the effect from these differences on the modeling should be explored.
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Table 6. The mean and standard deviation values of the intervals between available cloud-free
Sentinel-2 images from May to September in 2019 and 2020.

Year Location Mean Interval (days) Standard Deviation (days)
As 8.50 6.80
Lannés 7.39 6.09
Ojebyn 5.11 3.74
2019 Robéacksdalen Field 1 3.89 241
Robéacksdalen Field 2 4.00 2.50
Robéacksdalen Field 3 4.00 241
Robéacksdalen Field 4 4.83 3.30
Robéacksdalen Field 5 7.00 7.47
As 3.38 4.08
Lannés 6.95 8.39
Ojebyn 413 3.80
Robicksdalen Field 1 4.06 3.90
2020 Rébécksdalen Field 2 4.06 3.59
Robéacksdalen Field 3 5.35 5.67
Robicksdalen Field 4 4.58 3.98
Robéacksdalen Field 5 5.00 4.15
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Figure 9. Distribution of all of the available Sentinel-2 images (black dots) and available cloud-free
Sentinel-2 images (colored dots) during the growing season (May—September) in 2019 and 2020 for
different study locations.

In this study, even though MR algorithms created relatively robust models, especially
for model calibration and evaluation, there were obvious overfitting problems when the
validation was taken into consideration. The relatively small dataset size (Table 3) is a
potential reason, and the reason why SVR and RFR produced better results than PLSR was
most likely because both SVR [76] and RFR [29] could function with small-sized model
training datasets.

The signal from soil could be another reason, especially at earlier growing stages.
Adar et al. [38] found that the forage DMY prediction models derived from machine learn-
ing algorithms can be much improved by using satellite pixels with over 50% canopy cover.
This study attempted to use individual bands as predictor variables, but the results were
poorer (data not shown), and the possible reason as to why involving VIs as predictor
variables improved the model accuracy could be that several soil-sensitive VIs (e.g., OSAVI
and GOSAVI) contributed to overcome the soil effects.

Physical inversion [77,78] and hybrid inversion models combining physical modeling
and machine learning algorithms [79] are also relevant approaches to account for multiple
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factors, such as soil optical properties, and compensate for limited training data. The
integration of Sentinel-1 and Sentinel-2 data would be another solution, since incorporating
Sentinel-1 and Sentinel-2 data would increase the predictor variable diversity, and thus,
more likelihood can be included in the modeling, and the model could yield more accurate
results [39,73].

5. Conclusions

(i) DMY estimation of harvested forages in northern Sweden from Sentinel-2 data us-
ing univariate and multivariate regression models was tested in this study. The
results demonstrate precise in-season DMY estimation by the random forest algo-
rithm. Multivariate models performed better than the univariate models in terms
of accuracy. Using both individual band reflectances and VlIs as predictor variables
improved the accuracy of multivariate regression models compared to only utilizing
individual bands.

(ii) It was challenging to develop a sufficiently robust model to estimate forage DMY by
using Sentinel-2 data. The overfitting problem demonstrated by low model validation
accuracy was the main indicator of this. The reasons may be the coarse spatial reso-
lution and the small model training datasets. Data fusion by combining Sentinel-2
and Sentinel-1 data would be a potential way to overcome this. Furthermore, more
datasets are needed for robust model building, and we therefore require continued
resources and possibly international collaboration for further data collection. Never-
theless, even though model validation was slightly less accurate, the high accuracy of
model calibration and evaluation showed that the selected model was promising.

(iii) The estimated time-series of DMY fitted well with the recorded harvesting dates. The
methods established in this study could be used to develop a decision support system
to assist farmers in making decisions on fertilization and harvest timing.
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