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Abstract. Weather and climate play an important role in
shaping global wildfire regimes and geographical distribu-
tions of burnable area. As projected by the Sixth Assessment
Report of the Intergovernmental Panel on Climate Change
(IPCC-AR6), in the near future, fire danger is likely to in-
crease in many regions due to warmer temperatures and
drier conditions. General circulation models (GCMs) are an
important resource in understanding how fire danger will
evolve in a changing climate, but, to date, the development
of fire risk scenarios has not fully accounted for systematic
GCM errors and biases. This study presents a comprehensive
global evaluation of the spatiotemporal representation of fire
weather indicators from the Canadian Forest Fire Weather
Index System simulated by 16 GCMs from the sixth Cou-
pled Model Intercomparison Project (CMIP6). While at the
global scale, the ensemble mean is able to represent variabil-
ity, magnitude and spatial extent of different fire weather in-
dicators reasonably well when compared to the latest global
fire reanalysis, there is considerable regional and seasonal
dependence in the performance of each GCM. To support the
GCM selection and application for impact studies, the eval-
uation results are combined to generate global and regional
rankings of individual GCM performance. The findings high-
light the value of GCM evaluation and selection in devel-

oping more reliable projections of future climate-driven fire
danger, thereby enabling decision makers and forest man-
agers to take targeted action and respond to future fire events.

1 Introduction

Wildfires burn hundreds of millions of hectares each year
around the world (Giglio et al., 2013; Yang et al., 2014;
van Lierop et al., 2015; van Wees et al., 2021). Their im-
pacts include profound effects on ecosystems, damage to in-
frastructure, high costs associated with suppression activi-
ties and risk to human lives. In recent years, the impacts
of devastating individual events have been widely reported.
For instance, the 2016 wildfire in Fort McMurray (Alberta,
Canada) resulted in the destruction of around 2400 build-
ings, the evacuation of 88 000 people and financial costs of
more than USD 3.5 billion (Mamuji and Rozdilsky, 2019).
In California, during the 2020 wildfire season, around 1.7 ×

106 ha burned, causing 33 casualties and damaging more than
10 000 infrastructure elements (Department of Forestry and
Fire Protection, 2021). Responding to present and future fire
risks is of critical importance, particularly in the world’s most
vulnerable regions. Given the strong influence of weather
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and climate on temporal and spatial patterns of wildfire oc-
currence (Flannigan and Wotton, 2001; Zumbrunnen et al.,
2009; Masrur et al., 2018), a better understanding of the im-
pact of climate change on wildfire risk, and the tools used to
quantify this impact, is an important step in formulating such
responses.

Wildfires are associated with a multitude of drivers, in-
cluding land use; vegetation type; topography; and, quite sig-
nificantly, human activity linked to ignitions (Camia et al.,
2013; Balch et al., 2017; Gaboriau et al., 2020; Fernández-
Guisuraga et al., 2021). In addition, wildfire occurrence,
spread and impact (in terms of area burned) are highly de-
pendent on climate and weather conditions (Littell et al.,
2009; Abatzoglou and Kolden, 2013; San-Miguel-Ayanz et
al., 2013; Harris et al., 2019; Mueller et al., 2020). Across
the globe, long-established spatiotemporal patterns of wild-
fire are being altered by changing land use; population rise;
and, perhaps most importantly, changes to the climate sys-
tem in a warming world (United Nations Environment Pro-
gramme, 2022). While wildfires cannot strictly be defined as
meteorological hazards in the same way as droughts, floods
and storms, fire danger is greater during periods of high tem-
perature, minimal precipitation, low relative humidity and
strong winds. Notably, higher temperatures are significantly
related to wildfire occurrence and a large extent of burned
areas (Westerling et al., 2006; Littell et al., 2009; Koutsias
et al., 2013; Cardil et al., 2015). The same positive rela-
tionship between drought and wildfires has also been doc-
umented (Littell et al., 2016). Similarly, lower precipitation
and increased dry days intensify wildfire activity (Flannigan
and Harrington, 1988; Holden et al., 2018).

Disentangling the respective contribution of different me-
teorological variables to fire risks is challenging, particularly
in a changing climate. It is understood that the intensity and
frequency of hot extremes (e.g. heat waves) are an expected
consequence of a warmer world, and changes in mean precip-
itation will vary geographically (IPCC, 2021b). On a global
scale, weather conditions may become more favourable to
wildfire activity (Jolly et al., 2015; de Rigo et al., 2017;
Mueller et al., 2020) and extend over longer periods (Jolly
et al., 2015). To better understand past, present and future
changes, it is usually preferable to combine the hot, dry and
windy conditions that are conducive to fire. The term fire
weather was coined to describe the collective influence of
local specific weather conditions that may lead to effective
ignition and fire spread (Schroeder and Buck, 1970). Fire
weather is typically quantified as a series of indicators, gener-
ated based on meteorological input variables and established
empirical relationships, which can be used to estimate wild-
fire danger.

Future changes in fire weather will most likely represent
an increase in wildfire danger in many regions of the world
(de Rigo et al., 2017; Arias et al., 2021). Understanding fu-
ture meteorologically driven wildfire danger under climate
change scenarios relies on projections from general circula-

tion models (GCMs). As mathematical representations of the
climate system and its processes, GCMs are the most im-
portant tool in understanding how the world’s climate has
varied in the past and how it will respond to different fu-
ture scenarios associated with anthropogenic climate change.
GCMs have frequently been used to quantify the link be-
tween wildfire activity and weather conditions (Bedia et al.,
2015; Williams and Abatzoglou, 2016), specifically, to sim-
ulate fire weather both in the past and under future climate
change scenarios (Moritz et al., 2012; Flannigan et al., 2013;
Bedia et al., 2015; Littell et al., 2018; Abatzoglou et al.,
2019) and also in recent attribution studies to assess the influ-
ence of anthropogenic climate change on fire weather (Bar-
bero et al., 2020; Liu et al., 2022). However, all GCMs are
associated with performance limitations that manifest as sys-
tematic biases and, ultimately, as uncertainty in GCM pro-
jections (Hawkins and Sutton, 2009; Lehner et al., 2020).
Evaluation of model outputs, whether generated by individ-
ual GCMs or as part of a multi-GCM ensemble, is a contin-
uous challenge and has been the subject of numerous stud-
ies (Johns et al., 2006; Flato et al., 2013; Baker and Taylor,
2016; Kotlarski et al., 2019). It is especially important for
climate impact studies to (a) use projections from multiple
GCMs and (b) evaluate the capacity of each individual GCM
to represent characteristics of climate variables or phenom-
ena that are relevant to the impact under investigation. To
date, fire weather projections have frequently been based on
single GCMs (e.g. Krawchuk et al., 2009; Amatulli et al.,
2013), and, even when multiple GCMs have been used (e.g.
Moritz et al., 2012; Dowdy et al., 2019), the capacity of each
GCM to simulate realistic conditions (i.e. comparable to ob-
served fire weather conditions) has not been thoroughly eval-
uated. In the absence of a comprehensive GCM evaluation, it
is not possible to characterise and quantify the uncertainties
that may affect the reliability of multi-GCM means and pro-
jections (Moritz et al., 2012; Bedia et al., 2015; Dowdy et al.,
2019).

This study aims to evaluate the performance of the lat-
est generation of GCMs from the sixth phase of the Cou-
pled Model Intercomparison Project (CMIP6) in simulating
a range of fire weather indicators across all fire-prone regions
of the world (see Sect. 2.4). The analysis represents the first
global evaluation of GCM capacity to realistically simulate
spatiotemporal variability in meteorologically driven wildfire
danger. Evaluation is performed at the global and regional
scales, accounting for model performance in simulating both
mean and extreme fire weather conditions. The results gen-
erated are relevant for wildfire risk assessment studies and
more informed decision-making and planning to respond to
future fire danger. In the context of the ongoing global cli-
mate change, more tailored fire management strategies are
key to better adapt to future fire weather conditions.

The remainder of this paper is organised into four sections.
Section 2 gives an overview of the chosen set of fire weather
indicators, the CMIP6 models and the reference datasets used
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as the basis for evaluation, alongside a description of the
evaluation methodology. Section 3 presents the results of the
model evaluation on both global and regional scales, initially
for the multi-GCM mean and seasonality and subsequently
for inter-model performance. Section 4 includes a synthesis
and discussion of the implications of the results. Section 5
provides a set of conclusions and an outlook.

2 Data and methods

2.1 Fire weather indicators

The long-established relationship between climate and wild-
fire has led to the development of a range of meteorology-
based indicators to describe fire weather (and consequently
fire danger) in different parts of the world (e.g. McArthur,
1967; Deeming et al., 1972; Van Wagner, 1974). Throughout
this study, indicators of fire weather are represented by the
Canadian Fire Weather Index System (CFWIS). While orig-
inally developed for a standard pine forest in Canada (Van
Wagner, 1974, 1987; Wotton, 2009), this system has been
proven to be applicable in other regions (Carvalho et al.,
2008; Di Giuseppe et al., 2016; Bowman et al., 2017) and
is being used by the European Commission for fire weather
statistics in Europe (European Forest Fire Information Sys-
tem) and worldwide (Global Wildfire Information System).
It is also widely used for projections of future fire weather
(Bedia et al., 2015; Camia et al., 2017; Dupuy et al., 2020).

The CFWIS consists of a set of different components, each
of them calculated using a combination of daily meteorolog-
ical variables (Van Wagner, 1987; Fig. 1): temperature, wind
speed, relative humidity and precipitation. Firstly, a set of
fuel moisture codes describe the quantity of moisture con-
tained by fire fuels: the Fine Fuel Moisture Code (FFMC)
represents the moisture content of litter and other fine fuels,
indicating the relative ease of ignition and the flammability
of fine fuel; the Duff Moisture Code (DMC) represents the
average moisture content of loosely compacted organic lay-
ers of moderate depth; and the Drought Code (DC) represents
the average moisture content of deep, compact organic lay-
ers. The following components describe weather-driven fire
behaviour: the Initial Spread Index (ISI) represents the ex-
pected rate of fire spread, combining the effects of wind and
FFMC on the rate of spread without the influence of variable
quantities of fuel; and the Buildup Index (BUI) represents
the total amount of fuel available for combustion, combining
DMC and DC. Finally, two indices are calculated: the Fire
Weather Index (FWI) represents fire intensity, combining ISI
and BUI, and is often used as the main fire danger indicator
(Padilla and Vega-García, 2011; Bedia et al., 2015; de Rigo et
al., 2017); the Daily Severity Rating (DSR), an extension of
the CFWIS, is a transformation of the daily FWI value, rep-
resenting the effort required for suppression. All fire weather
components of the system are numeric ratings, and a higher

number represents a higher potential fire danger. A detailed
description of the system and its individual components can
be found in Van Wagner (1987).

2.2 CMIP6 models

During recent decades, the development and dissemination
of a growing number of GCMs from numerous modelling
centres around the world have been coordinated by CMIP
(Meehl et al., 2000, 2007; Taylor et al., 2012; Eyring et
al., 2016). CMIP supports climate change assessments at
national and international levels and brings about climate
model improvements. CMIP results have consequently been
used to prepare the Intergovernmental Panel on Climate
Change (IPCC) assessment reports (IPCC, 2021a). CMIP’s
sixth and current phase (CMIP6) (Eyring et al., 2016) in-
cludes the participation of more institutions (and model ver-
sions) in comparison to the project’s fifth phase (CMIP5).

We calculated the CFWIS components using the R pack-
age cffdrs (Wang et al., 2017). The CFWIS typically re-
quires observations of temperature, relative humidity and
wind speed taken at noon local time, in addition to 24 h accu-
mulated precipitation. For a consistent approach to the global
analysis, daily values for maximum temperature, mean wind
speed, minimum relative humidity and total precipitation
were used as proxies for noon conditions. This approach is
similar to that taken by Jolly et al. (2015) and Calheiros et al.
(2021). At the time of analysis, the required input fields were
available for 16 CMIP6 models (Eyring et al., 2016). Given
the disparity in ensemble size among the available models,
our analysis is limited to a single ensemble member for each
model. The full set of models, developed by a total of 13 in-
stitutions, is detailed in Table 1.

Following the calculation of the CFWIS components, to
permit comparison between CMIP6 models and the reference
data, all data were re-gridded to a 2◦

× 2◦ resolution, using
bilinear interpolation.

2.3 Fire danger reanalysis

An obvious choice for observational reference for fire
weather is CFWIS data from the Global ECMWF Fire Fore-
cast model (hereafter GEFF-ERA5) (Vitolo et al., 2020). Pro-
duced by the European Forest Fire Information System of the
Copernicus Emergency Management Service, GEFF-ERA5
offers daily continuous fire weather data of the different
CFWIS components at a spatial resolution of 0.25◦ through-
out the world’s land area. GEFF-ERA5 has been driven by in-
put fields from the ERA5 Reanalysis (ERA5; Hersbach et al.,
2020) from 1979 to present and replaces the previous global
fire danger reanalysis driven by ERA-Interim (Vitolo et al.,
2019). In general, ERA5 provides a realistic and temporally
coherent approximation of real-world weather states, with
higher spatial and temporal resolutions and better estimates
of meteorological variables compared to ERA-Interim (Dee
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Figure 1. Fire weather components of the Canadian Fire Weather Index System (CFWIS). Adapted from Natural Resources Canada (2021).

Table 1. List of the 16 models used to simulate the CFWIS components and their original resolutions.

Institution Model Resolution (long × lat)

CSIRO-ARCCSS ACCESS-CM2 1.875◦
× 1.25◦

CSIRO ACCESS-ESM1-5 1.875◦
× 1.25◦

CCCma CanESM5 2.8◦
× 2.8◦

CMCC CMCC-ESM2 1.25◦
× 0.9◦

CNRM-CERFACS CNRM-CM6-1 1.4◦
× 1.4◦

CNRM-ESM2-1 1.4◦
× 1.4◦

NOAA-GFDL GFDL-CM4 1.25◦
× 1◦

INM INM-CM4-8 2◦
× 1.5◦

INM-CM5-0 2◦
× 1.5◦

IPSL IPSL-CM6A-LR 2.5◦
× 1.3◦

NIMS-KMA KACE-1-0-G 1.875◦
× 1.25◦

KIOST KIOST-ESM 1.875◦
× 1.875◦

HAMMOZ-Consortium MPI-ESM-1-2-HAM 1.875◦
× 1.875◦

MPI-M MPI-ESM1-2-HR 0.94◦
× 0.94◦

MPI-ESM1-2-LR 1.9◦
× 1.9◦

MRI MRI-ESM2-0 1.125◦
× 1.125◦

et al., 2011; Hersbach et al., 2019), reducing biases and in-
creasing correlation with observations (Graham et al., 2019;
Gleixner et al., 2020; Tarek et al., 2020). GEFF-ERA5 and
other reanalysis-derived fire weather indicators have been
shown to represent fire danger well. For instance, McElhinny
et al. (2020) found a generally good agreement between FWI
values and station observations in Canada. In our case, as the
CFWIS indicators generated from CMIP6 rely on daily val-
ues for the four meteorological components as proxies for
noon conditions, and to ensure a fair comparison, we gener-
ate CFWIS indicators for ERA5 using the same input com-
ponents. We make a comparison between ERA5 and GEFF-

ERA5 to illustrate the consistency between the two sources
of CFWIS information.

2.4 Model evaluation

Model evaluation is limited to the areas of the world consid-
ered vulnerable to fire activity. Such fire-prone areas of the
world are here defined according to the historical evidence of
fire activity, determined using burned area data from version
4 of the Global Fire Emissions Database (GFED4) (Giglio et
al., 2013; Poulter et al., 2015; Mezuman et al., 2020). GFED4
burned area data are available for the 1996–2016 period. Fol-
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lowing the approach of Liu et al. (2022) in isolating burn-
able area, all grid points within a 50 km radius of a record
of burned area are identified as fire-prone in order to account
for the spatial randomness of fire activity and the relatively
short record of the GFED4 data.

To understand the overall model representation of all
CFWIS components (Fig. 1), historical simulations from
each GCM are then compared to corresponding ERA5-
calculated fields between 1980 and 2014, the maximum pe-
riod for which ERA5 and CMIP6 data are concurrently avail-
able. Model performance is then quantified through the abil-
ity of GCMs to simulate monthly mean climatologies of daily
values of each CFWIS indicator with ERA5 used as a refer-
ence. Additionally, to account for severe fire weather, perfor-
mance is also quantified by representation of the 90th per-
centile, constructed for each month using daily CFWIS val-
ues across all years. Evaluation of model representation of
spatial and seasonal patterns is undertaken for all CFWIS
components at both the global and regional scales, firstly,
concerning the multi-model mean (Sect. 3.1 and 3.2) and,
secondly, with respect to the inter-model spread (Sect. 3.3).
Multiple model performance metrics are used, including (i)
spatial correlation to assess the representation of spatial vari-
ability, (ii) root mean squared error (RMSE) to assess the
representation of mean states and the extent of model bias,
and (iii) the ratio of observed standard deviation to assess
the representation of spatial variance. Taylor diagrams (Tay-
lor, 2001; Grimmond et al., 2010; Abbasian et al., 2019) are
used to visualise and quantify inter-model relative perfor-
mance in terms of each model’s capacity to reproduce the
mean, variance and spatial variability of each CFWIS com-
ponent. Regional analysis is based on 14 GFED-defined fire
regions originally presented by Giglio et al. (2006) and Van
der Werf et al. (2006) and widely used in subsequent work
(e.g. Giglio et al., 2010, 2013; Andela et al., 2019; Mezuman
et al., 2020; Grillakis et al., 2022; Liu et al., 2022). To isolate
CMIP6 performance during periods that are most conducive
to fire activity, a fire season was established for each region
based on available GFED4 burned area data. For each GFED-
defined region, the fire season was defined by those months
for which the total burned area is greater than 50 % of the
maximum burned area across all months, averaged for each
month over the available 1996–2016 period.

3 Results

3.1 Evaluation of multi-model CFWIS representation

The ERA5 data suggest that wildfire danger is the largest in
dry tropical and subtropical regions such as Australia, sub-
Saharan Africa, South America, southern Asia, the Mediter-
ranean Basin and western North America (Fig. 2; second
column). These patterns compare favourably to those of the
GEFF-ERA5 dataset (Fig. 2; first column). For all CFWIS

components, global patterns of the CMIP6 multi-model
mean are generally similar for both the multi-annual monthly
mean (Fig. 2; third column) and 90th percentile statistics of
daily values (Fig. 3; third column).

The CMIP6 multi-model mean reproduces observed spa-
tial patterns, i.e. regions where fire danger is the highest,
reasonably well (Figs. 2 and 3). Nevertheless, compared to
ERA5 data (Figs. 2 and 3; second column), there is a ten-
dency for CMIP6 models to overestimate fire-prone weather
conditions within the tropics, particularly in parts of South
America, sub-Saharan Africa and southeast Asia (Figs. 2
and 3). There is also a general tendency for the CMIP6 multi-
model mean to underestimate fire danger in South Africa, the
western part of North America, some areas of the east of bo-
real Asia and Australia (Fig. 2h, l, t and x).

Regional contrasts are also identified in simulating the
fire weather indicators. Looking at the indices describing the
quantity of moisture contained by fire fuels, FFMC is overes-
timated in wet tropical and subtropical regions, such as South
America, sub-Saharan Africa and India, for both the mean
(Fig. 2d) and, to a lesser extent, the 90th percentile (Fig. 3d).
Meanwhile, the same index is particularly underestimated in
cold and temperate regions, such as North America, Europe
and boreal Asia. DMC is overestimated in South America,
sub-Saharan Africa and southeast Asia, while underestima-
tions are found in northern Australia, the southwestern part
of North America and southern Africa (Figs. 2h and 3h). DC
is generally underestimated in Australia, southern Africa, the
east of Central Asia, the western part of northern America
and eastern Brazil, whereas overestimation appears in areas
of South America, Central America, southeast and western
part of Central Asia, southern Europe, and Africa for both
the mean (Fig. 2l) and 90th percentile (Fig. 3l).

Regarding fire behaviour indices, ISI is generally well rep-
resented across the world, but the mean is overestimated in
a number of regions, including southeast Asia, the Middle
East, southern Europe, Central and South America, Africa,
the greater part of Australia, and some central areas of tem-
perate North America (Fig. 2p). By contrast, ISI is underesti-
mated in some areas of Central Asia, temperate North Amer-
ica, the northern part of Australia, some areas in Brazil, and
the southernmost parts of South America and South Africa
(Fig. 2p). For BUI, areas of overestimation include South
America, southeast Asia and Northern Hemisphere Africa,
with underestimation apparent in Australia, the western part
of central and temperate North America, and the southern-
most parts of South America and South Africa (Fig. 2t).
For FWI and DSR, there is a similar pattern as in the other
CFWIS components. FWI and DSR are overestimated in
southern Australia, southeast Asia, some areas of Central
Asia, the Middle East, southern Europe, the Northern and
Southern Hemisphere Africa, South and Central America,
and the central area of temperate North America (Fig. 2x
and bb). Meanwhile, FWI and DSR are underestimated in
northern Australia, the western part of Central and temperate
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Figure 2. Multi-annual monthly mean for GEFF-ERA5 (first column), ERA5 (second column) and the CMIP6 multi-model mean (third
column), as well as bias in the CMIP6 multi-model mean with respect to ERA5 (fourth column) for FFMC (a–d), DMC (e–h), DC (i–l),
ISI (m–p), BUI (q–t), FWI (u–x) and DSR (y–bb). The lighter yellow colour represents lower danger, and darker brown represents higher
danger. Meanwhile, the white colour represents lower bias, and darker blue (red) higher negative (positive) bias.

North America, southernmost South Africa and South Amer-
ica, eastern Brazil, and some areas of Central Asia (Fig. 2x
and bb). In the case of FWI, this underestimation is more
widespread in North America and eastern boreal and Central
Asia (Fig. 2x).

The biases are driven by multi-model representation of
the four meteorological components required as input for the
CFWIS indicators: daily values for maximum temperature,
mean wind speed, minimum relative humidity and total pre-
cipitation. The representation of these fields in ERA5 and

CMIP6 is shown in Fig. S1 in the Supplement. Biases are ap-
parent in all four fields, most strikingly in the representation
of relative humidity in the Northern Hemisphere (Fig. S1i).
However, cooler maximum temperatures in boreal Eurasia
(Fig. S1c) do not appear to have an impact on the represen-
tation of fire weather (Figs. 2 and 3; fourth column). Over-
estimation of precipitation in southern Africa (Fig. S1f) may
be responsible for an underrepresentation of DC and DMC
in particular (Figs. 2 and 3; fourth column).

Geosci. Model Dev., 16, 3103–3122, 2023 https://doi.org/10.5194/gmd-16-3103-2023
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Figure 3. Multi-annual monthly 90th percentile for GEFF-ERA5 (first column), ERA5 (second column) and the CMIP6 multi-model mean
(third column), as well as bias in the CMIP6 multi-model mean with respect to ERA5 (fourth column) for FFMC (a–d), DMC (e–h), DC
(i–l), ISI (m–p), BUI (q–t), FWI (u–x) and DSR (y–bb). The lighter yellow colour represents lower danger, and darker brown represents
higher danger. Meanwhile, the white colour represents lower bias and darker blue (red) higher negative (positive) bias.

3.2 Seasonality in multi-model biases

As model bias could exhibit strong seasonal and regional
dependencies, we examine how CMIP6 models perform
throughout the year for each of the 14 GFED fire regions
in Fig. 4. As for Sect. 3.1, model performances are assessed
by quantifying the model discrepancy with respect to ERA5.
Throughout the year, the results support those already deter-
mined from Figs. 2 and 3. CMIP6-simulated CFWIS com-
ponents generally agree with ERA5 in boreal and temperate

North America (BONA and TENA; Fig. 4a and b), South
Hemisphere Africa (SHAF; Fig. 4i), and Australia (AUST;
Fig. 4n). However, CMIP6 overestimation is found in South
America (Fig. 4d and e), as well as southeast and equatorial
Asia, (Fig. 4l and m) and, to a lesser extent, Northern Hemi-
sphere Africa (Fig. 4h) and Europe (Fig. 4f) for all CFWIS
components, except for FFMC.

There are some clear seasonal differences in model perfor-
mances. In boreal North America (BONA) and boreal Asia
(BOAS), several CFWIS components, including DMC, BUI,

https://doi.org/10.5194/gmd-16-3103-2023 Geosci. Model Dev., 16, 3103–3122, 2023
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Figure 4. Bias in monthly means and 90th percentiles in seven CFWIS components simulated by the CMIP6 multi-model mean with respect
to ERA5 across 14 GFED fire regions: (a) boreal North America (BONA), (b) temperate North America (TENA), (c) Central America
(CEAM), (d) Northern Hemisphere South America (NHSA), (e) Southern Hemisphere South America (SHSA), (f) Europe (EURO), (g) the
Middle East (MIDE), (h) Northern Hemisphere Africa (NHAF), (i) Southern Hemisphere Africa (SHAF), (j) boreal Asia (BOAS), (k) Central
Asia (CEAS), (l) southeast Asia (SEAS), (m) equatorial Asia (EQAS), and (n) Australia and New Zealand (AUST). Results show overall
model performance, with blue shading indicating underestimation and red shading overestimation. The lower-right triangle represents the
monthly mean and the upper-left triangle the monthly 90th percentile. Bar plots show the average monthly burned area for each GFED region,
represented as a fraction of the monthly maximum. Black bars highlight months that constitute the fire season, defined as those months for
which the average burned area is greater than 50 % of the monthly maximum.

FWI and DSR, are underestimated during the first half of the
year, then the rest of the year agrees quite well with ERA5,
except for DSR that is overestimated from July to October
(Fig. 4a and j). Biases for Central America (CEAM) vary dur-
ing the year, with higher positive biases from July to Septem-
ber and a general underestimation from November to May
(Fig. 4c). In the Middle East (MIDE) region, model biases
are positive; however, they present lower values during the
fire season and higher values from January to April for all
indicators except for FFMC (Fig. 4g).

Looking at the regions with lower bias, in temperate North
America (TENA), CFWIS components show good agree-
ment overall, with moderate underestimation evident from
December to May and moderate overestimation evident from
July to October (Fig. 4b). CMIP6 performance is strong
for all CFWIS components in Southern Hemisphere Africa
(SHAF), showing marginal underestimation for most indica-
tors and some slight overestimation for ISI, FWI and DSR
from August to November (Fig. 4i). In Australia (AUST),
CMIP6-simulated CFWIS components show good perfor-
mances (Fig. 4n), with the lowest negative bias in FFMC, and
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the rest of the indicators show a low negative bias, except
for November–February where biases are positive. In Cen-
tral Asia (CEAS), the CMIP6 ensemble generally agrees with
ERA5 data but exhibits overestimation from June to Novem-
ber, representing most of the fire season (Fig. 4k).

The rest of the regions present positive and higher bias,
FFMC being the component with lower values. In North-
ern Hemisphere South America (NHSA), CFWIS compo-
nents present a very large positive bias throughout the year,
with lower values for FFMC, especially for the 90th per-
centile (Fig. 4d). In Southern Hemisphere South America
(SHSA), indicators also show positive biases, especially in
DMC, BUI and DSR (Fig. 4e), which are, however, lower
than in NHSA. In Europe (EURO), most simulated indices
(DMC, ISI, BUI, FWI, DSR) are especially overestimated
compared to observations from June to October, which ex-
actly represents the fire season (Fig. 4f). Similarly, biases
in simulating CFWIS components in Northern Hemisphere
Africa (NHAF) are generally positive (Fig. 4h). Lastly, in
both southeast (SEAS) and equatorial Asia (EQAS) (Fig. 4l
and m), model biases are large and positive throughout the
year, in particular in the months of the fire season in SEAS
(May to November) and from October to April in EQAS.

3.3 Evaluation of inter-model performance

As shown in Sect. 3.1 and 3.2, the CMIP6 multi-model en-
semble shows overall good agreement with ERA5 in terms of
spatial patterns for both the mean and 90th percentile. In this
section, the focus is thus given to the performance of each
CMIP6 model to simulate CFWIS components at both global
and regional scales. This evaluation is again applied to simu-
lated mean and 90th percentile values for all CFWIS compo-
nents and is based on spatial correlation, the normalised root
mean squared error (RMSE), and the ratio of the observed
and simulated standard deviations, which are summarised us-
ing Taylor diagrams (Figs. 5 and 6).

At the global scale, the representations of DMC, DC and
BUI present similar patterns, with greater inter-model vari-
ability and thus greater uncertainty than the other indices, for
both monthly mean (Fig. 5b, c and e) and 90th percentile an-
nual values (Fig. 6b, c and e). Inter-model variability and un-
certainty are smaller for FFMC, ISI, FWI and DSR (Figs. 5
and 6a, d, f and g), for which most models reproduce spatial
patterns reasonably well, with a normalised RMSE around
0.5 and a correlation ranging from 0.80 to 0.96.

Looking at the different indicators individually, model
performance varies greatly from one indicator to another.
For FFMC, the best-performing models are GFDL-CM4,
CNRM-CM6-1 and INM-CM5-0, while the poorest perfor-
mances are found in the MPI group of models (Fig. 5a). The
models best representing DMC and BUI are GFDL-CM4,
KACE-1-0-G and MPI-ESM-1-2-HAM (Fig. 5b and e). By
contrast, the CNRM, MPI-M and CMCC models show poor
performances in simulating these two indicators (Fig. 5b

and e). DC is well reproduced by MPI-ESM1-2-HR, MRI-
ESM2-0 and MPI-ESM-1-2-HAM, while the models IPSL-
CM6A-LR and CMCC-ESM2 show poorer skill (Fig. 5c).
Finally, for ISI, FWI and DSR, the models with the best
skill are GFDL-CM4 and MPI-ESM1-2-HR, and the models
with poorer performance are KACE-1-0-G and MRI-ESM2-
0 (Fig. 5d, g and f). GFDL-CM4 is an example of a model
that performs well for all CFWIS components (Fig. 5).

Regarding the 90th percentile over the different CFWIS
components (Fig. 6), individual model performance varies
slightly, but patterns of models across regions remain very
similar to the fire season mean simulations (Fig. 5).

The CMIP6 ensemble mean results show considerable re-
gional dependencies, and one would expect such differences
to be apparent in the performance of individual models. To
understand and quantify the relative performance of each
model, Fig. 7 details the same set of spatial correlation, nor-
malised RMSE and standard deviation ratio shown in Figs. 5
and 6, this time for each of the 14 GFED regions. Unlike the
global analysis shown in Figs. 5 and 6, the results in Fig. 7
only consider the corresponding fire season of each region
based on historical burned area (as determined in Fig. 4).

The values of the three evaluation metrics, both for the
mean and 90th percentile, vary greatly from region to region
and across individual models (Fig. 7). Looking at the spa-
tial correlation (Fig. 7a) for instance, Australia and southeast
Asia are consistently in good agreement with observations
across the different models, while for others like Central and
South America all models show much weaker performance.
For the normalised RMSE (Fig. 7b), most models in Cen-
tral and South America show larger values, and central and
southeast Asia present lower values overall. In the case of the
standard deviation (Fig. 7c), there are no clear patterns, and
the values are quite heterogeneous both among models and
among regions.

Following the approach taken by Dieppois et al. (2015)
in the evaluation of CMIP5 models, all three different statis-
tics from Fig. 7 are combined to rank the individual model
performance. Models are ranked for each of the three spa-
tiotemporal skill metrics for seasonal mean and 90th per-
centile in each CFWIS component and each region, with a
comprehensive ranking matrix shown in Fig. 8. The overall
relative performance of individual models exhibits a strong
degree of heterogeneity across the different regions but, in
most cases, is consistent among the different CFWIS com-
ponents (Fig. 8). There are some models (e.g. INM mod-
els, IPSL-CM6A-LR and MPI-ESM-1-2-HAM) that con-
sistently show weaker performance in most of the regions
(Fig. 8). The CNRM models, for instance, perform relatively
poorly in many regions but perform reasonably well in Aus-
tralia (Fig. 8). By contrast, there are some models, such as
ACCESS-CM2, GFDL-CM4 and MRI-ESM2-0, that show
better performance in most regions, with some exceptions
(Fig. 8).
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Figure 5. Taylor diagrams showing the capacity of 16 CMIP6 models to simulate annual means in the seven CFWIS indices. The correlation
coefficient is plotted in relation to the polar axis, the normalised RMSE in relation to the internal circular axis and the normalised standard
deviation in relation to the horizontal axis. ERA5 is represented by an empty dot on the horizontal axis.

4 Synthesis and discussion

To support applications that seek to justify the selection of
one or more models on which to base an impact study on, we
generated a set of rankings inspired by those produced for
the evaluation of the EURO-CORDEX ensemble by Vautard
et al. (2021). All 16 models were ranked according to two
different measurements: (1) the count of the number of times
in which each model falls into the upper tercile in terms of
all three skill metrics (i.e. correlation, normalised RMSE and
the ratio of standard deviation) for the seasonal mean and
90th percentile in each of the seven CFWIS components and
across each of the 14 GFED fire regions (Fig. 9a) and (2) the
count of the number of times in which a model falls into the
lower tercile, indicating which models exhibit poorer perfor-
mance more frequently (Fig. 9b).

Only three models appear in the upper tercile more than
50 % of the time: GFDL-CM4, ACCESS-CM2 and MRI-
ESM2-0 (Fig. 9a). GFDL-CM4 is a strong performer in
Central Asia, as well as in Europe (EURO), North Hemi-
sphere Africa (NHAF) and Australia (AUST), but is far
weaker in Central America (CEAM) and equatorial Asia
(EQAS). ACCESS-CM2 features in the upper tercile at least
35 out of 42 times in Europe (EURO) and Central Amer-
ica (CEAM) regions. In boreal (BONA) and temperate North
America (TENA), the standout model is MPI-ESM1-2-HR
and KIOST-ESM for TENA. In Australia (AUST), CNRM-
CM6-1 and GFDL-CM4 perform the best overall. Overall,
the two INM models and MPI-ESM-1-2-HAM feature in the
upper tercile in less than 20 % of occasions, and there are
no individual regions where these models are shown to per-
form well. MPI-ESM-1-2-HAM and the two INM models
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Figure 6. Taylor diagrams showing the capacity of 16 CMIP6 models to simulate annual 90th percentiles in the seven CFWIS indices. The
correlation coefficient is plotted in relation to the polar axis, the normalised RMSE in relation to the internal circular axis and the normalised
standard deviation in relation to the horizontal axis. ERA5 is represented by an empty dot on the horizontal axis.

also appear in the lower-tercile category more than 300 times
(Fig. 9b). GFDL-CM4 and ACCESS-CM2 are the strongest
performers in this respect, falling in the lower tercile fewer
than 100 times.

In addition, models perform well in simulating some vari-
ables but not others. The individual model performance also
exhibits a strong regional dependence. For several models,
performance was found to be strong across some regions and
poorer in others. It is difficult to identify systematic reasons
for the inter-model differences based on spatial resolution or
shared pathways of model development, otherwise referred
to as model genealogy (Masson and Knutti, 2011). Perfor-
mance is similar between the INM and CNRM model fami-
lies, but there are considerable differences among the three
MPI models. MPI-ESM1-2-HR consistently performs bet-
ter than its companion lower-resolution models (MPI-ESM1-

2-LR and MPI-ESM-1-2-HAM). It is also notable that the
CanESM5 model has the lowest resolution (2.8◦

× 2.8◦) but
outperforms many higher-resolution models in several re-
gions, particularly in boreal North America (BONA) and
Central America (CEAM). However, this observation aside,
there is little evidence for a model’s original spatial resolu-
tion as an important factor in its performance. Comparison
of different models does not provide an ideal framework to
draw conclusions, as the impact of resolution is likely to be
driven by internal model physics and dynamics.

The models performing better across a wider set of regions
are GFDL-CM4, ACCESS-CM2 and MRI-ESM2-0 when as-
sessing model performance region by region and for each
region’s fire season (Fig. 8). MPI-ESM1-2-HR shows good
skill annually and at a global scale (except for DMC and
BUI), and it is one of the models performing well in sev-
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Figure 7. Individual CMIP6 model (a) correlation, (b) RMSE, and (c) absolute log of the ratio of standard deviation with respect to ERA5
for the fire season mean and 90th percentile across each of the seven CFWIS indices and each of the 14 GFED fire regions. Darker colours
show higher spatial correlations and lighter colours lower. The fire season for each region is defined as those months for which the average
burned area is greater than 50 % of the monthly maximum (see Fig. 4).

eral regions (Figs. 8 and 9). The models that show the poor-
est skill in most regions are INM-CM4-8, INM-CM5-0 and
MPI-ESM-1-2-HAM, and they are also often found in the
lower part of the global ranking distribution (lower tercile,
Fig. 9). It is advisable not to include models consistently per-

forming poorly, when simulating CFWIS components both at
global and at regional scales, in a multi-model study unless
for specific regions where they present better skill. Careful
consideration to model selection should be given, taking into
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Figure 8. CMIP6 inter-model ranking for 14 GFED regions, 7 CFWIS components and 3 × 2 skill metrics (correlation, RMSE, and ratio of
standard deviation for the mean and 90th percentile). For a given region and CFWIS component, models are ranked from 1 (the strongest) to
16 (the weakest) according to a given skill metric. Blue (red) shading is thus indicative of strong (weak) model performance.

account the study area and the chosen fire weather indicators
under analysis.

Our synthesis does not consider model representation of
the meteorological components taken as input in deriving the
CFWIS indicators. A first-order analysis of multi-model bi-
ases in these fields is given in Sect. 3.1 and Fig. S1, but more
in-depth analysis of the relative contribution of biases in each
field to the overall representation of fire weather is beyond
the scope of this study. Clearly, model development in fire
weather representation of fire weather, especially in a chang-
ing world, should consider the reasons for model biases in
key fire-prone regions. This includes the representation of
temperature highs and relative humidity lows in large parts
of the Northern Hemisphere.

5 Conclusions and outlook

Changes in the intensity and spatial distribution of wildfires
are a likely consequence of a changing global climate. Pro-
ducing reliable projections of meteorologically driven wild-
fire danger is crucial for establishing forest management
and restoration strategies that will remain resilient in future
decades. We presented a detailed evaluation of the perfor-

mance of a subset of CMIP6 models in simulating spatiotem-
poral variability in fire weather across all parts of the world
currently vulnerable to wildfire. A set of fire weather indica-
tors, defined by the CFWIS, were generated for 16 different
CMIP6 models and compared with corresponding fields from
the ERA5 fire danger reanalysis for the period 1980–2014.
Models were analysed collectively as part of an ensemble
mean and in terms of their individual performance on both
global and regional scales according to a set of performance
criteria. At the global scale, the ensemble mean was found
to simulate the set of CFWIS components well, reproducing
similar spatial patterns to the ERA5 reference dataset. This
is broadly encouraging for the use of the CMIP6 ensemble
as a tool for understanding future changes in fire weather
associated with a changing climate. At the regional scale,
model results showed seasonal and regional variability, with
some regions exhibiting very little model bias (e.g. Australia
or Southern Hemisphere Africa) and vice-versa in other re-
gions (e.g. Northern Hemisphere South America or southeast
Asia).

Our results also have important implications for the use
of CMIP6-derived simulations of past, present and future
climate-driven fire danger. It is anticipated that the evalu-
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Figure 9. (a) Counts of the number of times that each CMIP6 model is ranked in the upper tercile (top five) across all seven CFWIS
components and 3 × 2 skill metrics (correlation, RMSE, and ratio of standard deviation for the mean and 90th percentile). The grid (left)
shows the breakdown of total counts for each of the 14 GFED regions. The bars (right) indicate the total counts across all regions. (b) As (a)
but for the lower tercile (bottom 5).

ation presented here, while based on solely historical spa-
tiotemporal variability, will serve as an important resource
for users of model-simulated fire weather, both during the
CMIP6 era and beyond, in three different ways. Firstly, the
extent to which any given model performs well is sensitive
to the fire weather indicator being evaluated. Ultimately, dif-
ferent indicators, including the CFWIS set evaluated here,
have different meanings in meteorological terms, and strong
model performance for one indicator does not necessarily
mean strong performance for another. At the global scale,
FFMC, ISI, FWI and DSR tend to be reproduced with lower
uncertainty. The results that are shown here catalogue where
and for which model skill is sufficiently strong for a range
of fire weather indicators. Secondly, model performance can
vary dramatically from one region to another. The evalua-
tion highlights regions where the capacity to reproduce fire
weather is strong, at least in a subset of models. These
differences should be fully accounted for in regional-scale
fire weather studies. Thirdly, the large differences in model
performances highlight the importance of a comprehensive
model selection. This could significantly affect the conclu-
sion provided in previous assessments of global wildfire pro-
jections using a single model (e.g. Krawchuk et al., 2009) or

using a multi-model mean (e.g. Moritz et al., 2012; Dowdy
et al., 2019). For instance, projected trends derived from
multi-model mean could be significantly impacted by outlier
models, presenting unrealistic mean, variability and trends.
Comprehensive characterisation and quantification of model
uncertainties are thus ethically crucial for robust decision-
making (Knutti, 2010; Daron et al., 2021). The results pre-
sented here not only demonstrate the value of model selection
but also provide a potential foundation for projections that
take individual model skill and/or independence into account
(e.g. Eyring et al., 2019). Future analysis will explore how
the multi-model mean bias could be potentially reduced us-
ing a weighted mean or a multi-model mean with those mod-
els showing better performance and see how it is reflected in
the projections for different shared socioeconomic pathway
(SSP) scenarios.

While here we provide a robust, meaningful and useful
global evaluation of CMIP6-simulated fire weather, it is nec-
essary to outline potential caveats and opportunities for ex-
pansion. The availability of the input fields necessary to con-
struct the full set of CFWIS components limited the evalua-
tion to 16 CMIP6 models out of more than 50. Further study
may consider additional models that contribute to CMIP6 for

Geosci. Model Dev., 16, 3103–3122, 2023 https://doi.org/10.5194/gmd-16-3103-2023



C. Gallo et al.: Evaluation of CMIP6-simulated fire weather 3117

which input data may become available in the future. Fur-
thermore, as some of the models only had one realisation
available, we only consider here differences between sin-
gle members, which could potentially affect the model vari-
ability on regional scales (Deser, 2020). The currently used
CFWIS indicators (Van Wagner, 1987) were firstly defined
for specific stand conditions at noon time. In order to up-
date the system, so it provides better fire danger information,
moisture codes and behaviour indices are being reviewed to
consider peak daily burning conditions, and a new version
of the system will be released by 2025 (Canadian Forest
Service Fire Danger Group, 2021). In addition, analysis of
fire weather indicators from other risk assessment systems
would complement the results presented here. Global analy-
sis of the CFWIS (e.g. Liu et al., 2022) has recommended
extension to fire weather indicators from systems such as
the McArthur Forest Fire Danger Index from the Centre for
Australia Weather and Climate Research (McArthur, 1967),
the Keetch–Byram drought index from the US Department
of Agriculture’s Forest Service (Keetch and Byram, 1968),
and the Energy Release Component from the US National
Fire Danger Rating System (Deeming et al., 1972). To truly
understand the sources of error and biases for a given index,
an in-depth analysis of the relative contribution of the me-
teorological fields used to construct it is required. Such an
analysis is not trivial and should be an important focus for
future study. A final point concerns the GFED fire regions
taken as the basis for the regional-scale analysis: while they
are a useful categorisation for the purpose of this evaluation,
fire regimes vary substantially at the intra-regional scale. Po-
tential alternative categorisations, in Europe for example, in-
clude the fire regimes defined by Galizia et al. (2021), while
fire-prone areas may be better isolated using high-resolution
land surface data (e.g. normalised difference vegetation in-
dex). It is important for studies requiring GCM-simulated fire
weather data to consider that such intra-regional variability
will likely extend to model performance. We also note that
CMIP6 models have been found to show a greater warming
extent than CMIP5 (Coppola et al., 2020; Hausfather et al.,
2022), with several models exhibiting far greater equilibrium
climate sensitivity (Forster et al., 2020; Zelinka et al., 2020).
It remains unclear to what extent some warming rates may
be unrealistic and how this might manifest in the calculated
indicators.

Wildfires are complex events that involve not only forest
dynamics but also climate conditions and human activity, so
their projection under climate change is challenging. Given
the predicted changes in fire regimes, their intensity and spa-
tial distribution, current forest management and restoration
strategies may not be effective for future conditions. This
is particularly crucial as changes in wildfire activity become
more evident both in fire-prone regions and in regions where
wildfire danger was previously minimal (Mamuji and Rozdil-
sky, 2019; Boer et al., 2020; McCarty et al., 2020). The ap-
proach presented here aimed to characterise uncertainty in

the latest generation of GCMs (CMIP6) when simulating fire
weather and to evaluate model fidelity in order to reduce
those uncertainties when informing future projections. Eval-
uation and model selection will support more appropriate and
informed decision-making and aid forest managers in formu-
lating strategies to respond to future wildfire events.
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