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Abstract 

Background  Genomic prediction of breeding values (GP) has been adopted in evolutionary genomic studies to 
uncover microevolutionary processes of wild populations or improve captive breeding strategies. While recent 
evolutionary studies applied GP with individual single nucleotide polymorphism (SNP), haplotype-based GP could 
outperform individual SNP predictions through better capturing the linkage disequilibrium (LD) between the SNP 
and quantitative trait loci (QTL). This study aimed to evaluate the accuracy and bias of haplotype-based GP of immu-
noglobulin (Ig) A (IgA), IgE, and IgG against Teladorsagia circumcincta in lambs of an unmanaged sheep population 
(Soay breed) based on Genomic Best Linear Unbiased Prediction (GBLUP) and five Bayesian [BayesA, BayesB, BayesCπ, 
Bayesian Lasso (BayesL), and BayesR] methods.

Results  The accuracy and bias of GPs using SNP, haplotypic pseudo-SNP from blocks with different LD thresholds 
(0.15, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, and 1.00), or the combinations of pseudo-SNPs and non-LD clustered SNPs were 
obtained. Across methods and marker sets, higher ranges of genomic estimated breeding values (GEBV) accuracies 
were observed for IgA (0.20 to 0.49), followed by IgE (0.08 to 0.20) and IgG (0.05 to 0.14). Considering the methods 
evaluated, up to 8% gains in GP accuracy of IgG were achieved using pseudo-SNPs compared to SNPs. Up to 3% gain 
in GP accuracy for IgA was also obtained using the combinations of the pseudo-SNPs with non-clustered SNPs in 
comparison to fitting individual SNP. No improvement in GP accuracy of IgE was observed using haplotypic pseudo-
SNPs or their combination with non-clustered SNPs compared to individual SNP. Bayesian methods outperformed 
GBLUP for all traits. Most scenarios yielded lower accuracies for all traits with an increased LD threshold. GP models 
using haplotypic pseudo-SNPs predicted less-biased GEBVs mainly for IgG. For this trait, lower bias was observed with 
higher LD thresholds, whereas no distinct trend was observed for other traits with changes in LD.

Conclusions  Haplotype information improves GP performance of anti-helminthic antibody traits of IgA and IgG 
compared to fitting individual SNP. The observed gains in the predictive performances indicate that haplotype-based 
methods could benefit GP of some traits in wild animal populations.
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Background
Genomic prediction of breeding values (GP) was 
described over 20  years ago with the primary goal of 
accurately identifying the breeding candidates with the 
highest genetic merit using genome-wide single nucleo-
tide polymorphism (SNP) markers [1]. The development 
of GP models and the affordable cost of genotyping have 
revolutionized animal breeding by increasing selec-
tion accuracies, shortening the generation interval, and 
increasing genetic progress of economically important 
traits [2, 3]. GP has also received considerable attention 
in other fields with similar practical needs. Genomic 
selection has been implemented in plant breeding pro-
grams for genetic improvement of quantitative traits 
[4, 5]. Moreover, GP has been applied to human genet-
ics for identifying patient risk for particular diseases, 
referred to as “polygenic risk score” or selecting the best 
treatment option based on the individual’s genotype [6, 
7]. Despite the application of GP in livestock, plant, and 
human genetics, a limited number of studies have applied 
this method in wild or unmanaged animal populations 
[8–10].

The choice of the statistical model to be used for GP 
is a critical step in the success of genomic analyses. Sta-
tistical models commonly used for GP can be classi-
fied into two categories: (i) linear parametric methods 
referred to as “Best Linear Unbiased Prediction (BLUP) 
methods”, such as genomic BLUP or GBLUP [11] and 
Single-step GBLUP [12], and (ii) non-linear paramet-
ric methods, such as BayesA [1], BayesB [1], BayesCπ 
[13], Bayesian Lasso (BayesL) [14], and BayesR [15]. 
These methods mainly differ in the assumptions used 
for the prior distribution of genetic effects. In GBLUP, 
a normal prior distribution is assumed for the marker 
effects, which means that a large number of quanti-
tative trait loci (QTL) influence the trait, with most 
markers exhibiting a small effect [1]. The two models 
of BayesA and BayesB, described by Meuwissen et  al. 
[1], assume SNP-specific variances; BayesA fits all 
SNPs, while BayesB fits approximately 1-π proportion 
of SNPs, where π is the percentage of markers which 
have no influence on the trait (zero effect). Therefore, 
when π = 0, BayesB is equivalent to BayesA. BayesCπ is 
similar to BayesB but treats π as an unknown param-
eter with a uniform (0, 1) prior distribution, and it 
assumes all SNP effects have a common variance [13]. 
The BayesL method assumes that the variance of the 
SNP marker effects follows a double exponential or 

Laplace distribution [16]. BayesR provides high flex-
ibility by using a mixture of normal distributions as the 
prior for SNP effects [15]. In this method, four classes 
of SNP effect size (null, small, medium, and large) 
can be defined, for instance, and SNP effects would 
be modeled using a four-component normal mixture 
model [15]. In general, Bayesian approaches tend to be 
more accurate than GBLUP when the number of QTL 
explaining the trait variance is small [17].

Practical applications of GP have focused on sin-
gle-SNP models fitting individual SNP as a locus in 
the mixed models without any information about the 
marker location. Instead, haplotype models have the 
potential to include structural genomic information to 
improve the accuracy of genomic evaluation [18–20]. 
Haplotypes are more informative than SNPs in describ-
ing recent identical-by-descent (IBD) relationships, and 
they may also be more effective in capturing linkage 
disequilibrium (LD) with multiallelic QTL than individ-
ual SNP, which are often biallelic [19]. In practice, the 
performance of GP based on haplotypes varies across 
traits and species, ranging from negligible to substan-
tial increases in accuracy compared to SNP-based 
models [19, 21–24]. Three methods have been applied 
to define haploblocks, including (i) a fixed number of 
SNPs per haplotype block [25], (ii) fixed block length 
[26], and (iii) LD blocks [27]. The latter method is an 
efficient method that can decrease the number of 
explanatory variables without losing the information 
provided by the SNP markers [28]. By setting a mini-
mum LD between SNP markers, they can be grouped 
into haploblocks that do not have a fixed length or a 
fixed number of SNPs. Due to the presence of relatively 
strong LD among particular markers, the number of 
variants per haploblock is reduced considerably com-
pared to when haploblocks are defined by a fixed num-
ber of close SNPs [27]. Haplotypic information could be 
then integrated as pseudo-SNPs into BLUP [21, 22] or 
Bayesian [26] GP models, or based on a recent method 
applied by Araujo et al. [23], the pseudo-SNPs can con-
tribute to a genomic relationship matrix (GRM) con-
struction in combination with non-LD clustered SNPs, 
i.e., those located out of haploblocks.

Recently, GP methods have been adopted by research-
ers interested in quantitative evolution of wild animals 
[8, 9]. With the rise of wildlife infectious diseases, e.g., 
sea-star wasting disease [29], bats’ white-nose syn-
drome [30], chytrid fungus in amphibians [31], and the 
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emergence of zoonotic infections such as SARS-CoV-2 
in captive [32, 33] and unmanaged populations [34], GP 
models could be used to improve captive breeding and 
conservation strategies to select resistant individuals 
against pathogens. Moreover, GP models can be used 
in wild populations to investigate the microevolution-
ary trends of traits, and more accurate models can bet-
ter demonstrate these changes. Then, we can better 
understand the “cryptic microevolution” process, which 
refers to traits being heritable and under directional 
selection, but they do not constantly evolve in response 
to that selection in the expected way [35]. Thus, it is of 
interest to know the accuracy of different GP models in 
prediction of the individuals’ genomic merit for differ-
ent traits in wild populations. Additionally, it is unclear 
if the GP of immune response traits in wild populations 
would potentially benefit from haplotypic information.

The goal of the present study was to investigate the GP 
accuracy of antibody response against a gastrointestinal 
strongyle nematode, Teladorsagia circumcincta, in Soay 
sheep lambs, as an example to explore the performance 
of haplotype-based GP models for their potential future 
applications in captive breeding or conservation strate-
gies. Therefore, three different analyses were performed: 
(i) SNP markers were fitted, (ii) haplotypes constructed 
based on different LD threshold were fitted as pseudo-
SNPs, and (iii) the pseudo-SNPs combined with the non-
LD clustered SNPs were fitted. The accuracy and bias of 
GP from GBLUP and five Bayesian approaches, including 
BayesA, BayesB, BayesCπ, BayesL, and BayesR, were then 
compared. This study used a publicly-available dataset 
from a 25-year study that quantified antibody levels in 
unmanaged Soay breed lambs [36].

Results
The descriptive statistics of the phenotypic records 
and adjusted phenotypes are presented in Table  1. The 
average ± standard error (SE) of inter-marker distance 
was 68.50 ± 2.19  Kb, and the minimum and maximum 

distances between SNPs were 3.17  Kb and 423.72  Kb, 
respectively.

Haploblock construction was performed based on ten 
thresholds of LD (measured as r2) ranging from 0.15 to 
1.00 (Table 2). As the LD threshold increased, the num-
ber of haploblocks and pseudo-SNPs decreased, ranging 
from 1,432 to 8,442 and 2,897 to 28,265, respectively. 
With an increase in r2 , the average number of SNPs per 
block decreased, ranging from 2.10 to 2.22 SNPs. Moreo-
ver, with stricter LD thresholds, the total number of SNPs 
applied to haploblocks and the total length of the auto-
some covered by the haplotypes decreased from 18,705 
to 2,991 and 249.7 Mb to 32.2 Mb, respectively (Table 2).

Non-LD cluster SNPs were combined with pseudo-
SNPs from haplotype blocks with different LD thresholds 
(Table 3). With an increase in r2 , the number of non-clus-
tered SNPs decreased from 34,038 to 18,324, i.e., fewer 
SNP markers contributed to the haploblock construc-
tion, and more markers remained as individual SNP out 
of haploblocks. Notably, the proportion of pseudo-SNPs 
in the total variants decreased from 61 to 8% with an 
increase in the LD levels, and the total number of vari-
ants (i.e., the overall number of SNP and pseudo-SNP 
markers) decreased from 46,589 to 36,935.

Genomic relationship matrices
The GRMs were constructed using the SNPs and pseudo-
SNPs and based on the VanRaden method [11]. To inves-
tigate the presence of family structure in the studied 
population, the principal component analysis (PCA) of 
SNP markers was depicted (Fig.  1A). Furthermore, the 
distribution of the diagonal elements of the genomic rela-
tionship matrix based on individual SNP (GSNP) was plot-
ted (Fig. 1B and Fig. 1C). The bar and QQ plots of GSNP 
diagonal elements show that the distribution was close 
to normal. Moreover, no distinct cluster was observed in 
the PCA (Fig. 1A). These results confirm that there was 
minimal familial structure among the genotyped animals.

Euclidean distances between different pairs of GRMs 
are depicted in Fig. 2. Our results confirmed that GRMs 

Table 1  Total number (N), minimum (Min), maximum (Max), mean, standard deviation (SD) of phenotypes and adjusted phenotypes, 
and number of individuals in the traininga and testingb sets

c IgA_adj = adjusted phenotype of IgA; IgE_adj = adjusted phenotype of IgE; IgG_adj = adjusted phenotype of Ig

Trait N Min Max Mean SD Training (N)a Testing (N)b

IgA 2,034 0 2.73 0.74 0.50 1,848 186

IgA_adjc -0.84 2.02 0 0.50

IgE 2,034 0 1.08 0.09 0.12 1,848 186

IgE_adja -0.14 1.00 0 0.12

IgG 2,034 0 1.60 0.24 0.19 1,848 186

IgG_adja -0.32 1.36 0 0.19
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constructed based on SNPs, haplotypes, or their combi-
nations were different from each other. Regarding GRMs 
based on haplotypes, with stricter LD thresholds, more 
SNP markers were eliminated from the analyses; fewer of 
them contributed to the GRM construction. Therefore, 
with the increase in the LD threshold, higher distances 
were observed from GSNP. Concerning GRMs based on 
the combination of pseudo-SNPs and non-LD clustered 
SNPs, by increasing the LD threshold, more SNPs were 
removed from the haploblock construction; instead, they 
were used as individual SNP in the GRM construction. 
In contrast, with lower LD thresholds, more SNP mark-
ers would contribute to the haploblocks, and fewer non-
LD clustered SNP markers were involved in the GRM 
construction. Consequently, with stricter LD thresh-
olds, more similarity was observed between these GRMs 
and GSNP. Interestingly, the magnitude of differentia-
tion from GSNP was more apparent for GRMs based on 

the pseudo-SNPs than those observed for GRMs based 
on the combination of pseudo-SNPs and non-clustered 
SNPs at different levels of LD.

Heritability estimates
Heritability estimates for different scenarios are shown 
in Fig.  3. We observed higher ranges of heritability for 
IgA (0.20 to 0.49) compared to IgG (0.15 to 0.30) and IgE 
(0.08 to 0.24). The Bayesian methods resulted in higher 
heritability estimates for all traits than restricted maxi-
mum likelihood (REML). Irrespective of the applied 
methods, the heritability estimates were close when 
analyses were based on the combination of SNPs and 
pseudo-SNPs (ACOM0.15-ACOM1.00). However, for the anal-
yses based on haplotypes (AHAP0.15-AHAP1.00), with more 
relaxed LD thresholds, from 1.00 to 0.15, the heritability 
estimates increased by 14–23%, 6–12%, and 3–11% for 
IgA, IgE, and IgG, respectively.

For each trait, the highest and lowest heritabilities 
obtained based on individual SNP, pseudo-SNP, and the 
combinations of pseudo-SNPs and non-LD clustered 
SNPs are listed in Supplementary Table  1. The highest 
heritability (0.49) was obtained for IgA when the BayesL 
method was applied to the ACOM0.20 and ACOM0.50. On 
the contrary, the lowest heritability (0.20) was observed 
when AHAP1.00 was applied to BayesB. Regarding IgE, the 
highest estimate (0.24) was obtained for BayesA based 
on ASNP, AHAP0.15, AHAP0.20, AHAP0.30, AHAP0.40, and based 
on all the applied combinations of SNPs and pseudo-
SNPs. However, the lowest estimate of 0.08 was observed 
by BayesR with AHAP1.00. The highest heritability of 
IgG (0.30) was observed by BayesL based on ACOM0.20, 
ACOM0.50, and ACOM0.60. In contrast, the lowest heritabil-
ity of 0.15 was found by BayesB based on AHAP1.00.

Table 3  Number and proportion (%) of pseudo-SNPs and 
non-LD clustered SNPs combined for genomic prediction 
analyses, based on linkage disequilibrium (LD) level of r2

r
2 Analysis Pseudo-SNP (%) SNP (%) Total

0.15 ACOM0.15 28,265 (61%) 18,324 (39%) 46,589

0.20 ACOM0.20 26,673 (58%) 19,527 (42%) 46,200

0.30 ACOM0.30 22,971 (51%) 21,797 (49%) 44,768

0.40 ACOM0.40 19,562 (45%) 23,843 (55%) 43,405

0.50 ACOM0.50 16,384 (39%) 25,728 (61%) 42,112

0.60 ACOM0.60 13,354 (33%) 27,553 (67%) 40,907

0.70 ACOM0.70 10,663 (27%) 29,161 (73%) 39,824

0.80 ACOM0.80 8,031 (21%) 30,773 (79%) 38,804

0.90 ACOM0.90 5,816 (15%) 32,142 (85%) 37,958

1.00 ACOM1.00 2,897 (8%) 34,038 (91%) 36,935

Fig. 1  Plots of the principal components and the distribution of the genomic relationship matrix based on the genome-wide SNP markers. A 
Scatter plot of the first three principal components of the genomic dataset; no distinct clusters are observed in the studied dataset. B Histogram 
of the diagonal elements of the genomic relationship matrix. Despite the fact that a small portion of the population has high kinship values (> 1.1), 
no distinct peaks were observed for the studied dataset. (C) Quantile–quantile plot of the diagonal elements of the genomic relationship matrix. 
Overall, it is inferred that the genotypic dataset of Soay sheep was mainly generated from the animals with minimum family structure
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Genomic prediction accuracies
The accuracies of GPs based on different methods and 
analyses are presented in Fig. 4. Higher ranges of accura-
cies were observed for IgA (0.20 to 0.49), followed by IgE 
(0.08 to 0.20), and IgG (0.05 to 0.14). Through compar-
ing the accuracy of different marker sets in each applied 
method, we found up to 3% improvement in GP accuracy 
of IgA using the combination of the pseudo-SNPs with 
non-LD clustered SNPs. In contrast, for IgE, comparable 
accuracies to GBLUP using individual SNP were obtained 
by the combination of the pseudo-SNPs with non-LD 
clustered SNPs and haplotype-based GPs. For IgG, up to 
8% gains in GP accuracy were observed in analyses based 
on the haplotypic pseudo-SNPs (Fig. 4).

Bayesian methods outperformed GBLUP in all three 
studied traits. By comparing the accuracy of differ-
ent methods in each applied marker set, we found that 
BayesB outperformed all other methods for IgA. In most 
cases of IgE and IgG, Bayesian approaches obtained 
higher accuracy than GBLUP (Fig.  4). For each trait, 
the highest and lowest accuracies achieved based on 
individual SNP, pseudo-SNP, and the combinations of 

pseudo-SNPs and non-LD clustered SNPs were listed in 
Supplementary Table  2. Regarding IgA, the highest GP 
accuracy (0.49) was obtained with the BayesB method 
based on ACOM0.15 or ACOM0.20 compared to GBLUP using 
ASNP (0.31). In contrast, the lowest accuracy (0.20) was 
estimated based on BayesL and GBLUP with AHAP0.90. 
Concerning IgE, the highest accuracy (0.20) was given by 
BayesL with ASNP and BayesR with ACOM0.60 or ACOM0.70. 
On the contrary, the lowest accuracy (0.08) was obtained 
for BayesB using AHAP0.90. With regards to IgG, the high-
est accuracy (0.14) was estimated for BayesB based on 
AHAP0.70. Conversely, the weakest performance (0.04) was 
given by BayesL based on ACOM0.40.

Regardless of the applied methods, a general trend was 
observed for IgA GPs based on haplotypic pseudo-SNPs 
and the combination of pseudo-SNPs and non-clustered 
SNPs, indicating lower accuracies with the increase in 
the LD threshold. Meanwhile, higher accuracies were 
obtained for IgG with higher LD threshold when the 
combinations of pseudo-SNPs and non-clustered SNPs 
were used; however, a slight reduction in the accuracies 
was observed with stringent LD levels (> 0.70).

Fig. 2  Heatmap of Euclidean distance between different genomic relationship matrices (GRM). Euclidean distance was used to compare a total of 
21 GRMs, including GSNP, which refers to the GRM defined based on SNPs as markers, and GHAP0.15, GHAP0.20, GHAP0.30, GHAP0.40, GHAP0.50, GHAP0.60, GHAP0.70, 
GHAP0.80, GHAP0.90, and GHAP1.00 defined based on haplotypes constructed by LD thresholds of 0.15, 0.20, 0.30, 0.40, 0.50, 0.60, 0.70, 0.80, 0.90, and 1.00 
as markers, respectively. Values were scaled between 0 and 1
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In 13 out of the 18 model-trait combinations, i.e., all 
IgG scenarios along with five out of six IgA’s, at least 
one of the models based on haplotypes or the combina-
tion of haplotypes and non-clustered SNPs achieved a 
higher accuracy than the model fitting SNPs (Supple-
mentary Table 3). Only in one scenario (BayesL for IgE), 
a higher accuracy was obtained by the model fitting indi-
vidual SNPs. In four scenarios, comparable performances 
were observed between models fitting individual SNP 
and those using haplotypic information (Supplementray 
Table 3).

We revealed that the magnitude of differences between 
the highest and the lowest GP accuracies was higher for 
haplotype-based approaches than those based on the 
models fitting the combinations of pseudo-SNPs and SNP 
markers. These differences were 0.27, 0.11, and 0.09 for 
haplotype-based GPs of IgA, IgE, and IgG, respectively. 
In contrast, we obtained lower differences of 0.18, 0.05, 
and 0.02 for GPs of IgA, IgE, and IgG based on the com-
bination of pseudo-SNPs and non-clustered SNP mark-
ers, respectively.

Genomic prediction biases
The bias in Genomic Estimated Breeding Value (GEBV) 
predictions for all scenarios is presented in Fig. 5 as devi-
ations from 1 (bias – 1). Considering all methods and 
analyses, the bias deviation values ranged from -0.44 to 
0.30, -0.63 to 0.19, and -0.80 to -0.30 for IgA, IgE, and 
IgG, respectively. In most scenarios (17 out of 18 model-
trait combinations), at least one of the models based on 
haplotypes or the combination of haplotypes and non-
clustered SNPs achieved a lower bias than the model fit-
ting SNPs individually (Supplementary Table 4). Only in 
one scenario a comparable bias was observed between 
models fitting individual SNPs and those using haplo-
typic information (Supplementary table 4).

For IgA, we observed unbiased GP by haplotype-
based scenarios of BayesR using ASNP, ACOM0.70, and 
ACOM0.90, which were comparable to the bias obtained by 
GBLUP using ASNP. In contrast, the most biased scenario 
was observed when BayesL was applied with AHAP0.90 
(-0.44 ± 0.20). Regarding IgE, GBLUP based on ACOM0.30 
and ACOM0.40 provided unbiased GEBV prediction. On 

Fig. 3  Heritability estimates for IgA, IgE, and IgG applying different methods and analyses. Heritability was computed as the ratio of the additive 
genetic variance to the phenotypic variance. The methods evaluated are GBLUB, BayesA, BayesB, BatesCπ, BayesLasso, and BayesR based on 
different analyses, including ASNP, ACOM0.15, ACOM0.20, ACOM0.30, ACOM0.40, ACOM0.50, ACOM0.60, ACOM0.70, ACOM0.80, ACOM0.90, ACOM1.00, AHAP0.15, AHAP0.20, AHAP0.30, 
AHAP0.40, AHAP0.50, AHAP0.60, AHAP0.70, AHAP0.80, AHAP0.90, and AHAP1.00. Definitions of the analyses are given in Tables 3 and 4
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the contrary, the highest level of bias was obtained by 
BayesB based on AHAP0.90 (-0.63 ± 0.36). Concerning 
IgG, the least biased haplotype-based GP was observed 
by GBLUP based on AHAP0.70 (-0.30 ± 0.70). However, 
the BayesL method using ACOM0.40 showed the most 
biased GP (-0.80 ± 0.31). Haplotype-based GPs predicted 
less-biased GEBVs in most IgG scenarios with high LD 
thresholds compared with SNP-based models, whereas 
no improvement in bias was observed for other traits 
with an increase in LD level. Moreover, in most scenarios 
of IgE and all IgG scenarios, GEBV inflation (bias < 0) was 
observed.

Discussion
GP has been widely used to enhance the genetic gain of 
complex traits in livestock and plant breeding and pre-
dict polygenic risk scores of particular human diseases 
[37–39]. Recently, more attention has been given to this 
tool in the evolutionary genetics topic to improve captive 

breeding strategies and understand the microevolution 
of breeding values [8, 9]. In this study, we applied a hap-
lotypic GP approach on three helminth-specific immune 
response traits of IgA, IgE, and IgG against T. circumci-
ncta in the unmanaged population of Soay sheep. 
Haplotype-based GP has achieved little to substantial 
improvements in prediction accuracies compared with 
SNP models in domesticated species [21, 22, 40], includ-
ing sheep [41]. However, to our knowledge, the applica-
tion of haplotype-based GP and assessment of haplotypic 
GP performance have not been reported in wild or 
unmanaged populations.

Haploblocks were constructed based on different LD 
thresholds (Table 2). The Big-LD method applied to our 
study constructs the LD blocks using the weights esti-
mated based on the number of SNPs from all possible 
overlapping intervals [42]. We observed the construc-
tion of haploblocks with LD = 1, which is not very com-
mon in commercial populations of domesticated species, 

Fig. 4  The estimates of genomic prediction accuracy of IgA, IgE, and IgG applying different methods and analyses. The genomic prediction 
accuracy was measured by the correlation between adjusted phenotypes ( yc ) and GEBV for the validation subset. Methods under evaluation were 
GBLUB, BayesA, BayesB, BatesCπ, BayesLasso, and BayesR based on different analyses, including ASNP, ACOM0.15, ACOM0.20, ACOM0.30, ACOM0.40, ACOM0.50, 
ACOM0.60, ACOM0.70, ACOM0.80, ACOM0.90, ACOM1.00, AHAP0.15, AHAP0.20, AHAP0.30, AHAP0.40, AHAP0.50, AHAP0.60, AHAP0.70, AHAP0.80, AHAP0.90, and AHAP1.00. Definitions of 
the analyses are given in Tables 3 and 4
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as markers in such a high LD are typically eliminated in 
the process of designing SNP panels. When setting low 
LD thresholds to construct the LD blocks, more inter-
vals of linked SNPs are obtained, the number of blocks is 
increased, fewer SNPs are excluded, and a higher portion 
of the genome is covered by haploblocks (and vice versa). 
Consequently, a greater number of blocks are expected 
with lower LD thresholds, as observed when comparing 
the numbers of blocks across LD thresholds from 0.15 
to 1.00 (Table 2). The average number of SNPs per block 
showed that most of the haploblocks were constructed by 
two SNPs; however, the proportion of two-SNP-blocks 
increased with stricter LD thresholds. The reason could 
be that we used genotypes obtained from a medium-den-
sity SNP chip (50  K) for haploblock construction. This 
could result in the less presence of haploblocks with > 2 
SNP markers with high LD thresholds since one essen-
tial criterion by which SNP markers are selected for SNP 
chips in commercial species is the gaps between mark-
ers, more importantly, the distance between two adjacent 

SNPs. Moreover, genotype imputation based on higher-
density reference panels can increase SNP density and, 
therefore, haplotype construction. However, higher-den-
sity SNP data was unavailable for the current study, and 
we suggest genotype imputation in future studies. The 
number of total variants increased for analyses based on 
haplotypic pseudo-SNPs and individual SNP with stricter 
LD thresholds (Table  3). The reason is that with higher 
LD, fewer individual SNP were blocked in haplotypes, 
and more SNP markers remained non-clustered.

We showed that with higher LD thresholds, GRMs 
constructed based on haplotypes are more differenti-
ated than that based on individual SNP, whereas, for 
GRMs based on the combinations of pseudo-SNPs and 
non-clustered SNPs, the trend was reversed (Fig. 2). For 
GRMs based on haplotypes, with stricter LD thresholds, 
the relationship among individuals in the population is 
defined based on a shorter length of the genome and a 
lower number of SNPs; consequently, it could cause more 
differentiation among GRMs. However, for GRMs based 

Fig. 5  The bias estimates of genomic estimated breeding values (GEBV) of IgA, IgE, and IgG applying different methods and analyses. The genomic 
prediction bias was measured as the regression coefficients obtained by regressing the adjusted phenotypes ( yc ) upon the precited direct genomic 
values GEBV in the validation subset. Methods under evaluation were GBLUB, BayesA, BayesB, BatesCπ, BayesLasso, and BayesR based on different 
analyses, including ASNP, ACOM0.15, ACOM0.20, ACOM0.30, ACOM0.40, ACOM0.50, ACOM0.60, ACOM0.70, ACOM0.80, ACOM0.90, ACOM1.00, AHAP0.15, AHAP0.20, AHAP0.30, AHAP0.40, 
AHAP0.50, AHAP0.60, AHAP0.70, AHAP0.80, AHAP0.90, and AHAP1.00. Definitions of the analyses are given in Tables 3 and 4
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on the combinations of pseudo-SNPs and non-clustered 
SNPs with higher LD thresholds, greater similarity was 
observed with GSNP due to the lower number of blocked 
SNPs and more contribution of individual SNP to the 
GRM (Table 3).

Heritability estimates
We estimated a wider range of heritabilities (0.08 to 0.49) 
for the antibody traits against T. circumcincta compared 
to previous studies on Soay lambs, where the estimated 
heritability of the antibody traits ranged from 0.21 to 0.39 
[36, 43]. The differences among our estimated heritabili-
ties and the previous studies could be due to the different 
methods, SNP/haplotype information, and models. For 
IgA and IgG, higher heritability estimates were achieved 
when a combination of haplotype information with 
non-clustered SNPs was used, and for IgE, haplotypes 
achieved an equal heritability to fitting individual SNPs 
(Supplementary Table  1). In all combinations of SNPs 
and non-clustered SNPs, the total number of variants 
were more than individual SNP or haplotypic pseudo-
SNPs with different LD thresholds (Tables 3). Therefore, 
more variants were available to explain the phenotypic 
variances of IgA, IgE, and IgG. In parallel to our results, 
Won et  al. [44] obtained higher heritability estimates 
from haplotypes than individual SNP for carcass traits 
in pigs. Estimated heritabilities among haplotype-based 
GPs tended to decrease as the LD threshold increased, 
the length of haplotypes shortened, and the number 
of haplotypes declined. With higher LD thresholds, a 
smaller number of SNP markers and shorter genomic 
length contributed to the haplotype block construction 
(Table 2). Therefore, fewer haplotypic pseudo-SNPs were 
available to explain the phenotypic variance, and a lower 
proportion of total variance could be captured, resulting 
in lower heritability estimates.

Genomic prediction accuracy
Gains in the accuracy of IgG’s GPs were observed using 
haplotype-based pseudo-SNPs. Our results are in con-
cordance with the previous studies, revealing that sig-
nificant improvements in haplotype-based GPs could be 
gained when oligogenic traits or those affected by major 
genes are evaluated [22, 44, 45]. For instance, Won et al. 
[44] reported an increase of 4.6% in GEBV accuracy 
with haplotypic GP for eye muscle area in Korean cattle. 
Moreover, a 9.8% improvement in the accuracy of carcass 
weight GEBV was documented by incorporating haplo-
type information based on SNP markers from function-
ally related genomic regions [45]. Additionally, up to 22% 
gain in accuracy was observed using haplotypes from 
fixed length or LD blocking strategies in genomic evalu-
ation of milk production traits in French dairy goats [22].

One explanation for the higher performance of hap-
lotype-based GPs, particularly for IgG, could be that 
GSNP is constructed based on marker alleles being IBS. 
As SNP chip markers typically represent old mutations, 
GSNP mainly traces old relationships among distant rel-
atives and may not precisely account for changes due to 
recent selection [19]. Meanwhile, haplotype blocks can 
provide more information on recent mutations and bet-
ter show close relationships [25]. Another explanation 
is that haplotype blocks are multi-allelic; consequently, 
they can better capture the LD with multi-allelic QTLs 
than biallelic individual SNP [19]. Moreover, haplo-
type blocks are derived from common ancestors; thus, 
GRMs based on haplotypes can differentiate between 
IBD and IBS, while GSNP lacks this ability [46]. Another 
advantage of haplotype information is that haplotypes 
include the local epistatic effects among QTLs located 
within the haplotype blocks [25]. We observed lower 
performances in GPs of IgA when haplotype-based 
pseudo-SNPs based on high LD thresholds were applied 
to analyses compared to individual SNP. This might be 
due to the reason that these haplotypes are not suffi-
cient to capture the effects of all the important chro-
mosomal regions controlling the trait.

In each applied method, gains in accuracy were 
observed for IgA when methods were applied based on 
the combination of pseudo-SNPs and non-clustered 
SNPs. Our results are in disagreement with the previous 
study in which the combinations of SNPs and non-clus-
tered pseudo-SNPs were used for GP for the first time 
and showed no improvement in accuracy [23]. In their 
study, highly polygenic traits were simulated, and GP 
was performed based on the Single-step GBLUP method, 
while we used traits with different genetic architectures, 
and we conducted GP based on GBLUP and Bayesian 
methods. The difference in genetic architecture could 
result in capturing of a higher LD between the pseudo-
SNPs and multiallelic QTLs when haplotypic pseudo-
SNPs are added to individual SNP [47].

In all studied traits, Bayesian methods outperformed 
GBLUP. The genetic correlation between the stud-
ied traits was reported to be more than 69.5%, with the 
highest correlation of 82.4% between IgA and IgG [36]. 
Moreover, around 44% and 10% of additive genetic vari-
ance of IgA and IgG traits in Soay sheep were explained 
by three and two QTLs, with one overlapping genomic 
region on chromosome 20 [36]. The high genetic corre-
lation between the studied traits, the overlapping QTLs 
between them, and the outperformance of Bayesian 
approaches for all the traits in the current study sug-
gest that these traits are more likely to be less polygenic, 
with some similarities in their genetic architectures. In 
parallel to our results, several studies have shown that 
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Bayesian approaches could yield higher GP accuracies 
than GBLUP for oligogenic traits [13, 48, 49].

Generally, the heritability of traits is positively asso-
ciated with GP accuracy [50]. While we observed this 
trend in IgA and IgE, with higher LD thresholds, lower 
heritabilies and higher GP accuracies were obtained for 
IgG up to LD = 0.70. This could be due to the overlaps 
between the IgG major genes and the haplotypes con-
structed based on high LD thresholds of 0.60 and 0.70. 
We could not find any overlapped regions between the 
IgG QTLs identified by Sparks et al. [36] and the genomic 
positions of haplotypes in AHAP0.70; however, there might 
still be some unknown QTLs for this trait. Moreover, the 
obtained higher accuracies might be due to the better 
capture of LD between multiallelic QTLs, which could be 
missed in biallelic studies. For instance, the multiallelic 
polymorphism of the major histocompatibility complex 
region, which significantly contributes to antigen rec-
ognition and antibody production such as IgA, IgE, and 
IgG, has been well-documented in the Soay sheep popu-
lation [51–53].

We achieved remarkably lower accuracies for IgG com-
pared with IgA and IgE. While higher GP accuracies 
are more desirable, there are some explanations for why 
a trait may not evolve as expected, including: (a) there 
might be a genetic correlation between the trait of inter-
est and fitness-related traits [54, 55], (b) considering the 
breeder’s equation ( R = h

2
S , where R is the response 

to selection, h2 is the narrow-sense heritability, and S is 
the strength of selection; [56]), the fluctuations in envi-
ronmental conditions covarying with the heritability of 
the trait [57], the strength of selection [58], or both [59], 
can affect the response to selection, (c) in particular situ-
ations, the trait has responded to the selection, but a 
change in environmental conditions caused the pheno-
typic trend to mask the underlying genetic trend, which 
is referred to as “cryptic microevolution” [35].

Considering the higher accuracy achieved in this study 
with haplotype-based GPs for IgG and with the combi-
nation of pseudo-SNPs and non-clustered SNPs for IgA, 
there is an opportunity to apply these models in evolu-
tionary and conservation genetics to improve captive 
breeding strategies. Wild animals could be genotyped, 
and haplotype-based GP models could be used to select 
the best individuals for the traits of interest. Considering 
the rise in wildlife infectious diseases and the emergence 
of zoonotic infections in wild animal populations, haplo-
type-based GP models could be used to improve captive 
breeding and conservation strategies to select pathogen-
resistant individuals. Meanwhile, GP models have already 
been successfully applied for better immune responses to 
pathogens in livestock species breeding programs, such 
as tuberculosis resistance in dairy cattle [60], resistance 

against Piscirickettsia salmonis in Atlantic salmon [61], 
and higher immune response for porcine reproductive 
and respiratory syndrome in pigs [62].

Genomic prediction bias
The magnitude of the bias was lower for IgA among the 
three studied traits. The reason could be that bias in 
genomic evaluations was generally lower for the traits 
with higher heritability [63]. Less biased GPs were 
observed for some haplotypic scenarios in all traits 
(Supplementary Table  4). GP models using haplotypic 
pseudo-SNPs, which gained higher accuracy compared 
to those fitting individual SNP, predicted less-biased 
GEBVs for IgG. In contrast, the higher accuracy achieved 
by some combinations of pseuso-SNPs and non-clustered 
SNPs came with the cost of more-biased GEBVs for IgA. 
Karimi et al. [21] also reported a less biased GP based on 
haplotypic pseudo-SNPs for traits with moderate-to-high 
heritabilities in Holstein cattle. However, Feitosa et  al. 
[24] observed a more biased prediction for beef fatty acid 
profile using the haplotype model compared with the 
SNP model. An explanation for the less biased genomic 
evaluation based on haplotypes in some haplotype-based 
scenarios could be that haploblocks account for local 
epistasis, i.e., the interaction between SNPs within hap-
lotype block, which can reduce the bias of GPs [45, 64].

Future studies
Several opportunities exist for additional assessments 
of haplotype-based GPs in wild populations. We inves-
tigated the application of haplotype-based GP on three 
traits with similar genetic architectures. Therefore, 
we suggest evaluating the performance of haplotype 
approaches on other traits with different genetic archi-
tectures. Also, the benefits of the haplotype-based meth-
ods need to be investigated with larger populations. We 
used the forward validation method to estimate GPs 
accuracy, as also used in other sheep GP studies [65]. 
With larger sample sizes, the accuracy of GPs could be 
evaluated based on alternative validation methods, such 
as random and k-means cross-validation. Furthermore, 
several other methods can be used for fitting haplotypes 
in GP analyses (references) and future studies could 
compare alternative methods. A well-known approach 
is using haplotype information in a multi-allelic mixed 
model treating each haplotype block as a locus and each 
haplotype within the haplotype block as an allele [66]. We 
assessed the efficacy of GP using haplotypes constructed 
based on different LD thresholds. Haplotypic pseudo-
SNP can also be produced based on a fixed number of 
SNPs per haplotype block or a fixed block length.
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Conclusions
Haplotypic information could improve the accuracy of 
genomic evaluations for antibody production of IgG 
and IgA traits. The gains in accuracy were more remark-
able for IgG in most scenarios applied pseudo-SNPs. 
The improvement in accuracy was more significant for 
IgA using some combinations of pseudo-SNPs with 
individual SNP, particularly when lower LD thresholds 
applied. However, the slightly higher accuracy in IgA 
comes with the cost of more bias compared to the SNPs. 
In all studied traits, Bayesian approaches outperformed 
GBLUP. Although genomic evaluations based on haplo-
types require additional steps, achieved improvements in 
GEBVs accuracy for some traits could be advantageous. 
We anticipate that this method could be applied to evo-
lutionary and conservation quantitative genetics research 
to improve captive breeding and conservation strate-
gies and better understand unmanaged populations’ 
microevolution.

Methods
Study population
The St. Kilda archipelago (54o49′08o34’W) is located at 
65  km west of the Outer Hebrides, Scotland, and con-
sists of four islands: Hirta, Soay, Boreray, and Dun. Soay 
sheep are descendants of primitive European domestic 
sheep introduced to the island of Soay several millen-
nia ago [67]. A population of unmanaged Soay sheep has 
inhabited the island of Hirta since 1932 [67]. The Hirta 
Soay sheep population is well-characterized by peri-
ods of growth followed by considerable declines due to 
cold winters, feed availability, and parasitic infections, 
leading to reduced body weight and increased mortal-
ity rates [68–70]. A longitudinal individual-based study 
on the Soay sheep population in the Village Bay area of 
Hirta began in 1985 [67]. Since that time, > 95% of the 
lambs have been captured during the lambing season in 
March–May to collect a variety of measures, including 
immunoglobulin (Ig) levels against T. circumcincta third 
larval stage [36, 71].

Data preparation
A total of 2,061 IgA, IgE, and IgG records from 2,061 
Soay sheep lambs against antigens of T. circumcincta 
were obtained from a publicly available dataset belong-
ing to the study conducted by Sparks et al. [36]. In brief, 
antibody levels were measured as optical density (OD) 
values using direct ELISA tests on blood samples col-
lected between 1990 and 2015. The procedure of cap-
turing animals, sample collection, and ELISA methods 
were previously described in detail by Sparks et al. [36]. 
Samples belonging to the lambs within 50  days of birth 

were already removed from the dataset due to the poten-
tial presence of maternal antibodies [36]. Only animals 
with genotypic data were included in this study. There-
fore, a total of 2,034 IgA, IgE, and IgG records belong-
ing to 2,034 Soay lambs with an average ± SE, minimum 
and maximum age of 115.19 ± 0.17, 77, and 146  days 
remained for subsequent analyses.

A fixed-effects model was used to obtain the adjusted 
phenotypes for subsequent analyses. IgA, IgE, and IgG 
ODs were corrected for the systematic effects of animal 
age (in days), birth year, and sex. Two other “Plate ID” and 
“Run Date” effects were also present in the downloaded 
dataset. However, less than 5% of phenotypic variances of 
IgA, IgE, and IgG in lambs were explained by plate ID, 
and no variance was explained by Run Date in the Sparks 
et  al. [36] study. Therefore, we did not use them in our 
analyses since they did not have remarkable effects. No 
information on other potentially significant effects was 
available in the dataset obtained. The fixed effect model 
was fitted using the AIREMLF90 package [72]. The resid-
ual effects were obtained and used as pseudo-phenotypes 
for the subsequent analyses.

Samples were already genotyped using the Illumina 
Ovine SNP50 BeadChip (Illumina; San Diego, CA, USA) 
by Sparks et  al. [36]. While quality control was already 
conducted on the dataset by Sparks et al. [36], we reper-
formed quality control of 39,176 SNPs using PLINK 1.9 
[73] on the lamb population (N = 2,034) with our crite-
ria to ensure the quality of the data. Remaining markers 
with minor allele frequency (MAF) < 0.01, SNP calling 
rate < 0.90, extreme departure from Hardy–Weinberg 
equilibrium (p-value < 10–6), and SNPs located on non-
autosomal chromosomes were removed. Moreover, 
samples with a genotype call rate of less than 90% were 
discarded from downstream analyses. A total of 37,031 
SNPs from 2,034 lamb passed the quality control steps 
with the average genotype call rate > 99%. Then, the miss-
ing genotypes were imputed using the Beagle 5.2 soft-
ware [74]. Subsequently, SNPs with MAF < 0.01 were 
filtered out. At the end, 37,029 SNPs from 2,034 lamb, all 
having the Ig records, remained for further analyses.

Principal component analysis was performed on SNP 
markers using the PLINK 1.9 software [73] to investigate 
the presence of family structure in the studied popula-
tion. Furthermore, GRM was constructed by individual 
SNP (GSNP) using the AGHmatrix 2.0.4 R package [75] 
based on the VanRaden method [11]. Then, the distribu-
tion of the diagonal elements of the GRM was evaluated 
using bar and Q-Q plots to investigate the presence of 
significant family structures. All plots were created using 
the ggplot2 R package [76].
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Haploblock construction
The Big-LD method [42], which has been linked with 
higher accuracy in estimating the recombination hot-
spots than other existing methods, was used to construct 
the haplotype blocks. This method is based on interval 
graph modeling of LD bins which are clusters of strong 
pairwise LD SNPs, not necessarily physically consecutive 
[42]. As described by previous studies [23, 77], the gpart 
1.13.0 package [78] in R [79] was used to implement the 
Big-LD method for haploblocks construction, using the 
default settings; however, the MAFcut was set to zero 
since the data was already passed this quality control 
test. Moreover, the CLQcut was set based on the com-
mon pairwise LD measure of r2 , and ten LD thresholds 
were considered, including 0.15, 0.20, 0.30, 0.40, 0.50, 
0.60, 0.70, 0.80, 0.90, and 1.00. These LD thresholds were 
applied to capture different block structures from the 
biggest blocks with more SNPs in low LD ( r2 = 0.15) to 
the smallest blocks with a lower number of SNPs in high 
LD ( r2 = 1.00). Finally, the haplotype alleles were trans-
formed to pseudo-SNPs, as described by Teissier et  al. 
[22], using the GHap 2.0.0 R package [80]. Notably, many 
haploblocks can be multi-allelic, and several pseudo-
SNPs can be created from the multiallelic haploblocks. 
The pseudo-SNPs were subjected to the same quality 
control criteria as the SNPs before their use for GP.

Training and validation sets
We used the forward validation approach to evaluate 
the performance of the applied GPs models. The hold-
out approach has two main advantages over the com-
mon cross-validation approach, including: (i) in terms 
of breeding, holdout validation is generally preferred 
over cross-validation, as it provides a more realistic esti-
mate of the accuracy of the model on new data. This is 
very important for breeding purposes, where the goal is 
to predict the genomic merit of future offspring based 
on the genotypes of their parents or individuals from 
previous generations. In contrast, in the cross-validation 
approach, animals from different generations can be 
denoted to the validation set, which is not realistic [65, 
81, 82]; (ii) forward validation is computationally less 
intensive, as it requires training the model only once 
[13]. Forward validation approach has been widely used 
for evaluating GP models in different species, includ-
ing sheep [83, 84], pigs [85], and cattle [86]. The valida-
tion set included lambs born in 2014 and 2015 (N = 186), 
comprising 10% of the total population. Lambs born 
before 2014 (N = 1,848) were classified as the training set 
and used to predict the GEBV of animals in the valida-
tion set. The size of the training and validation sets were 
comparable for all traits. Adjusted phenotypes calcu-
lated for animals born from 1995 to 2013 were used as 

pseudo-phenotype for the training, and those calcu-
lated for animals born in 2014 and 2015 were applied for 
validation.

Genomic prediction of breeding values
Overall, six methods, including GBLUP, BayesA, BayesB, 
BayesCπ, BayesL, and BayesR were used in GP analyses. 
In each method, GP was computed based on three differ-
ent analyses, including:

	(i)	 analyses based on individual SNP (ASNP) fitted in 
the models;

	(ii)	 analyses using haplotypes constructed based on 
different LD thresholds fitted as pseudo-SNPs 
in the GP models. Therefore, AHAP0.15, AHAP0.20, 
AHAP0.30, AHAP0.40, AHAP0.50, AHAP0.60, AHAP0.70, 
AHAP0.80, AHAP0.90, and AHAP1.00 refer to the analyses 
using haplotypes constructed by LD thresholds of 
0.15, 0.20, 0.30, 0.40, 0.50, 0.60, 0.70, 0.80, 0.90, and 
1.00 as pseudo-SNPs, respectively;

	(iii)	 analyses using pseudo-SNPs in combination with 
non-LD clustered SNPs, located out of haploblocks, 
fitted in the model. After defining the haplotypic 
pseudo-SNPs based on the different LD thresh-
olds, we combined them with individual SNP that 
were not blocked in haplotypes. Thus, ACOM0.15, 
ACOM0.20, ACOM0.30, ACOM0.40, ACOM0.50, ACOM0.60, 
ACOM0.70, ACOM0.80, ACOM0.90, and ACOM1.00 refer 
to the analyses in which the pseudo-SNPs with dif-
ferent LD thresholds were combined with non-LD 
clustered SNPs.

GBLUP method: The GBLUP model used was as 
follows:

where yc is the vector of adjusted phenotype in the refer-
ence population, µ is the overall mean effect, g is the vec-
tor of additive genetic effects accounted for by all 
markers, i.e., SNPs in ASNP, pseudo-SNPs in 
AHAP0.15-AHAP1.00, or a combination of SNPs and pseudo-
SNPs in ACOM0.15-ACOM1.00, and e is a vector of random 
residual. Z is the incidence matrix relating GEBV to 
adjusted phenotypes of individual animals. It was 
assumed that g ∼ N 0,Gσ2g  and e ∼ N

(
0, Iσ2e

)
 , where G 

is the GRM constructed based on only SNP markers, only 
haplotypes fitted as pseudo-SNPs, or a combination of 
pseudo-SNPs with non-clustered SNPs, I is an identity 
matrix, σ2g is the additive genetic variance, and σ2e is the 
residual variance. The GRM was constructed as follows 
[11]:

yc = 1µ+ Zg + e,
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the accuracy of estimation of a quantile using the R pack-
age coda [90].

Comparison of genomic relationship matrices
Overall, 21 GRMs were constructed for GPs, which could 
be classified into three categories:

	(i)	 GSNP, which refers to the GRM defined based on 
SNPs as markers;

	(ii)	 GHAP0.15, GHAP0.20, GHAP0.30, GHAP0.40, GHAP0.50, 
GHAP0.60, GHAP0.70, GHAP0.80, GHAP0.90, and GHAP1.00 
defined based on haplotypes constructed by LD 
thresholds of 0.15, 0.20, 0.30, 0.40, 0.50, 0.60, 0.70, 
0.80, 0.90, and 1.00 as markers, respectively;

	(iii)	 GCOM0.15, GCOM0.20, GCOM0.30, GCOM0.40, GCOM0.50, 
GCOM0.60, GCOM0.70, GCOM0.80, GCOM0.90, and 
GCOM1.00 constructed using pseudo-SNPs with dif-
ferent LD thresholds combined with non-LD clus-
tered SNPs.

As previously applied by Karimi et al. [21], to investi-
gate the differences between matrices, pairwise Euclidean 
distance was calculated by d(C,D) =

√∑
i

∑
j (cij − dij)

2 , 
where cij and dij are elements of two comparing GRMs of 
C and D, respectively. Finally, the calculated values were 
scaled between 0 and 1.

Heritability estimation
Variance components were estimated using the GVCB-
LUP software [87] and the hibayes package [89] for 
GBLUP and Bayesian approaches, respectively. The 
REML algorithm and MCMC method were applied to 
variance component estimation in GBLUP and Bayesian 
methods, respectively. In GBLUP, heritability was com-
puted as h2 =

σ2g

σ2g+σ2e
 , where σ2g and σ2e are the additive 

genetic and residual variances, respectively. For the 
Bayesian methods, heritability was estimated by 

Table 4  Assumption of effect size distribution of markers for the Bayesian methods used in this study

a where βj is the effect of SNP/haplotype j , σ2g is the additive genetic variance, ν and S are the degree freedom and scale parameter for inverse chi-square distribution, 
t represents student’s t-distribution, δ0 is the effect size equals to zero, �2 is the rate parameter which is assigned a gamma prior, π = (π1 + π2 + π3 + π4) is the 
mixing proportions such that 

∑4
i=1πi = 1

Method Joint distribution of SNP/ pseudo-
SNP effect

SNP/pseudo-SNP effect distributiona Variance distribution of the 
SNP/pseudo-SNP effects

Reference

BayesA t βj ∼ N (0, σ2g) σ2g ∼ χ−2(ν, S) [1]

BayesB point-t βj ∼ 0.05
(
0, σ2g

)
+ 0.95δ0 σ2g ∼ χ−2(ν, S) [1]

BayesCπ t mixture βj ∼ (1− π)N
(
0, σ2g

)
+ πδ0 σ2g ∼ χ−2(ν, S) [13]

BayesL double exponential or Laplace βj ∼ N
(
0, σ2g

)
σ2g ∼ Exp( �

2

2
) [16]

BayesR point-normal mixture βj ∼ 

π1δ0 + π2N
(
0, 10−4σ

2

g

)
+ π3N

(
0, 10−3σ

2

g

)
+ π4N

(
0, 10−2σ

2

g

)
σ2g ∼ χ−2(ν, S) [88]

where, Z contains genotypes adjusted by the allele fre-
quency and pj is the MAF of marker j . Variance com-
ponents were estimated using the Average Information 
Restricted Maximum Likelihood (AIREML) algorithm. 
This process and the prediction of GEBVs with GBLUP 
models were performed using the GVCBLUP software 
[87].

Bayesian methods
Five Bayesian GP models were fitted, including BayesA, 
BayesB, BayesCπ, BayesL, and BayesR. For these meth-
ods, the general statistical model was:

where, yc is the vector of adjusted phenotype in the ref-
erence population, µ is the overall mean effect, K is 
the number of markers fitted, including SNPs in ASNP, 
pseudo-SNPs in AHAP0.15- AHAP1.00, or a combination of 
SNPs and pseudo-SNPs in ACOM0.15-ACOM1.00, zj is a vec-
tor denoting the genotypes of the animals for marker j , βj 
is the effect of marker j , and e is a vector of random resid-
uals. The vector of residuals e was assumed to be distrib-
uted as e ∼ N

(
0, Iσ2e

)
 , where σ2e is the residual variance 

and I is an identity matrix. The hypothetical distribution 
of all markers’ effects in each Bayes method and the for-
mula of the effect distribution are shown in Table 4.

In all the Bayesian methods, the marker effects were 
estimated using a total of 100,000 Markov chain Monte 
Carlo (MCMC) iterations, with the first 20,000 discarded 
as burn in, and a thinning interval of 100. All the Bayes-
ian methods were implemented using the hibayes R pack-
age [89]. We diagnosed convergence using a criterion of 

G =
ZZ

′

2
∑i

j=1pj(1− pj)
,

yc = 1µ+

K∑

j=1

zjβj + e,
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h2 = VA

VA+σ2e
 . In this equation, VA is the total additive 

genetic variance which was estimated by 
VA = π× 2σ̂2SNP

∑m
j=1pjqj , where π is the proportion of 

the markers with non-zero effect, σ̂2SNP is the marker vari-
ance, and pj and qj are allele frequencies of jth SNP or 
pseudo-SNP.

Performance of genomic prediction of breeding values
The accuracy of the GEBV was obtained by dividing the 
Pearson correlation between adjusted phenotypes ( yc ) 
and GEBV for the validation subset. Bias was defined as 
the inflation or deflation of GEBV compared to adjusted 
phenotypes for the validation subset. The bias of the 
GEBV was calculated as the deviation from the unity of 
regression coefficient of adjusted phenotypes on GEBV 
for the validation subset [i.e., yc = b0 + b1GEBV where 
yc is the adjusted phenotype in the validation set, GEBV 
corresponds to the predicted direct genomic values in the 
validation set, and b0 and b1 are the intercept and slope, 
respectively]. Therefore, the value of 0 indicates no bias 
in GEBV estimates , while bias < 0 and > 0 show inflation 
and deflation, respectively [3, 91].
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