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A B S T R A C T   

Koi herpesvirus disease (KHVD), caused by Cyprinid herpesvirus-3 (CyHV-3), is one of the most serious threats to 
carp farming. In the present study, we investigated the efficiency of a low-density (LD) SNP panel for estimating 
genetic parameters and breeding values to KHVD resistance in the Amur mirror carp (AMC). Two populations 
(Pop 1 and Pop 2) of AMC generated from unrelated parents were created using a partial factorial design. One- 
year old fish (Pop 1 = 1500 individuals.; Pop 2 = 1200 individuals) were challenged with CyHV-3 and phe
notyped to KHVD resistance. 218 SNPs originating from a medium genotyping platform previously applied to 
Pop 1 (15615 SNPs; denoted as MD panel) with the highest association to KHVD resistance were used as a LD 
panel to genotype individuals of Pop 2. Genetic parameters and estimated pedigree-based BLUP (EBV) and 
genomic-based GBLUP (GEBV_MD and GEBV_LD) breeding values were calculated and obtained for Pop 1 using 
either pedigree, MD or LD panel and for Pop 2 using either pedigree or the LD panel. The heritability estimates of 
KHVD resistance were very high for both populations ranging from 0.42 to 0.96. Selection for KHVD resistance in 
Pop 2 using the LD panel would have led to a relative increase of ~7% in prediction accuracy compared to the 
pedigree-based selection. Pearson correlation coefficients between pedigree-based and genomic-based estimated 
breeding values (EBV vs. GEBV_MD; EBV vs. GEBV_LD; GEBV_MD vs. GEBV_LD) showed a strong association for 
both populations (0.79 – 0.91). In addition, the concordance rate of individuals selected by pedigree-based (EBV) 
and genomic-based breeding values (GEBV_MD and GEBV_LD) within selection pressures of 5%, 10% and 20% 
were not statistically different in most cases. In conclusion, the low-density SNP panel could be useful for a 
selection program focused on the genetic improvement of KHVD resistance.   

1. Introduction 

Aquaculture is a relatively young industry compared to that of 
terrestrial animals. Notably, aquaculture has been the fastest-growing 
food industry worldwide for several decades. This trend is expected to 
continue in the following years, together with the increasing food de
mand due to the ever-growing world human population (FAO, 2020). 
Although technological advances and innovations to improve aquacul
ture production are on a high level, viral and bacterial infection diseases 
are still a significant threat to the whole aquaculture sector (Gjedrem, 
2005). 

Central European aquaculture has been focusing on pond culture 

with common carp (Cyprinus carpio and Cyprinus rubrofuscus) as a major 
fish-species. Nevertheless, summer hypoxia, predation pressures, and 
disease outbreaks are major threats to carp production (Horváth et al., 
2008). Currently, one of the most serious disease is the koi herpesvirus 
disease (KHVD) which is caused by Cyprinid herpesvirus-3 (CyHV-3), a 
double-stranded DNA (dsDNA) virus (Aoki et al., 2007; Haenen et al., 
2004; Rakus et al., 2013). KHVD is also listed as a notifiable disease by 
the European Union (Taylor et al., 2010) and the World Organization for 
Animal Health (OIE, 2018). Although morbidity (the ratio of the sick 
individuals to the entire population) may reach up to 100%, mortality of 
common carp stocks exposed to KHV is significantly variable ranging 
between 5% and 90% (Haenen et al., 2004; Piačková et al., 2013; 
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Adamek et al., 2019; Machat et al., 2022). 
Generally, common carp strains/hybrids derived from Amur wild 

carp, were found to be more resistant to KHVD compared to the others 
(Piačková et al., 2013; Adamek et al., 2019; Nedoluzhko et al., 2020). 
Also, selective breeding programs have been increasingly focusing on 
genetic improvement of disease resistance in many aquaculture species 
with an expected genetic gain of up to 12.5% per generation (Gjedrem 
and Robinson, 2014). Notably, high heritability estimates for KHVD 
resistance (0.50 – 0.79) have been previously reported in various carp 
populations (Ødegård et al., 2010; Tadmor-Levi et al., 2017; Palaio
kostas et al., 2018b; Zhao et al., 2020). Furthermore, five significant 
quantitative trait loci (QTLs), explaining up to 10% of KHVD resistance, 
have been recently identified by a genome-wide association study 
(GWAS) in mirror carp strains (Palaiokostas et al., 2018b; Jia et al., 
2020). Therefore, a solid genetic potential for the production of genet
ically improved carp strains with a high level of resistance exists. 

Genomic technologies have transformed the field of aquaculture 
selective breeding, substantially improving the prediction accuracy 
(Houston et al., 2020). The OTLs can be applied in form of 
marker-assisted selection (MAS) when genes with relatively large effects 
on a trait are present. It was the case of the QTL for resistance to in
fectious pancreatic necrosis (IPN) in Atlantic salmon (Salmo salar) 
(Houston et al., 2008; Moen et al., 2009; Yáñez et al., 2014). Moreover, 
incorporation of MAS into breeding programs requires also previous 
knowledge of the genetic architecture of the target trait(s) (Robinson 
et al., 2022; Song et al., 2022) and the level of linkage disequilibrium 
between markers and the underlying QTL plays a key role (Goddard, 
2005). Unfortunately, most performance traits are polygenic and 
controlled by many genes with minor effects. In this case, genomic se
lection (GS) is the preferred approach (Yáñez et al., 2014; Robinson 
et al., 2022; Song et al., 2022). 

Compared to the traditional pedigree-based selection, the genomic 
selection takes advantage of markers spread across the genome to esti
mate genetic relationships at a higher resolution (Meuwissen et al., 
2001). Therefore, estimates of genomic breeding values (GEBVs) of 
performance traits using GBLUP (genomic best linear unbiased predic
tion) models may enable a faster genetic gain than conventional pedi
gree methods in aquaculture species (Houston et al., 2020; Boudry et al., 
2021; Song et al., 2022; Yáñez et al., 2022). Overall, usage of genomic 
selection in polygenic traits outperformed the pedigree-based or MAS 
selection, especially in traits that cannot be phenotyped directly on the 
breeding candidates (e.g. meat quality, slaughter yields and disease 
resistance) (Sonesson and Meuwissen, 2009; Yáñez et al., 2014; Gjedrem 
and Rye, 2018 ; Houston et al., 2020; Song et al., 2022). 

Even though high-throughput genotyping technologies are becoming 
more economically affordable, genotyping costs still remain high. Thus, 
it is important to develop cost-effective genotyping strategies for aqua
culture species (Houston et al., 2020; Song et al., 2022; Yáñez, 2022). 
Several recent studies (Yoshida et al., 2018a; Vallejo et al., 2018; 
Kriaridou et al., 2020; Tsairidou et al., 2020; Al-Tobasei et al., 2021; 
Griot et al., 2021; Song and Hu, 2022) focusing on optimizing GS have 
shown that using low-density SNP panels (1000 – 6000 SNPs) may give 
almost identical prediction accuracy compared to medium/high-density 
ones. In addition, 200 – 3000 SNPs still gave better selection accuracies 
than pedigree-based approaches. Hence, finding the optimal balance 
between economic cost associated with the density of a SNP panel and 
prediction accuracy could facilitate the implementation of breeding 
programs exploiting genomics in some fish species. 

This study aimed to assess the genetic parameters and the prediction 
accuracy for KHVD resistance on two Amur mirror carp populations 
using either a low-density or a medium-density SNP panels. Both SNP 
panels were taken from previous genomic studies on KHVD resistance in 
Amur mirror carp (Palaiokostas et al., 2018b; Palaiokostas et al., 2019). 

2. Material and methods 

2.1. Ethics statement 

The present study was performed in accordance with the law on the 
protection of animals against cruelty (Act No. 246/1992 Coll. Of the 
Czech Republic) and was approved by the expert committee of the 
Institutional Animal Care and Use Committee (IACUC). All people 
conducting the phenotypic recordings (body weight and experimental 
challenges) were qualified to conduct and manage such kind of experi
ments on live animals. 

2.2. Population origins and disease challenge 

The origin of the Amur mirror carp (AMC) populations used in this 
study and the details of the KHVD challenge experiments have been fully 
described previously (Pop 1: Palaiokostas et al., 2018b; Pop 2: Prchal 
et al., 2021). In brief, the study was performed on two populations of 
Amur mirror carp that were established at the University of South 
Bohemia in České Budějovice, Czech Republic in May 2014 (Pop 1) and 
2017 (Pop 2) using an artificial fertilization (Vandeputte et al., 2004). 
Pop 1 was set from 20 dams and 40 sires (four factorial crosses of five 
dams x ten sires), Pop 2 was set from 27 dams and 29 sires (three 
factorial crosses of eight dams and seven sires and one factorial cross of 
eight dams and six sires). After first the growing season in temperate 
climate, 1500 individuals out of Pop 1 and 1200 individuals out of Pop 2 
were randomly chosen, PIT-tagged, fin-clipped, weighed for body 
weight (BW) to nearest 0.1 g and measured for standard length (SL) to 
nearest mm. BW and SL records were then used to calculate Fulton’s 
condition coefficient as FC = 105 * (BW / SL3). 

The KHVD experimental challenges were performed in both pop
ulations using the same protocol. The challenged fish were first accli
matized together with Koi carp, serving as a control, for five days at 
water temperature of 22 ◦C and bathed in FMC solution (formalin, 
malachite green, methylene blue using a dose of 2 mL per 100 L of 
water) to eliminate ectoparasites. A week later, the fish were transferred 
to the Veterinary Research Institute (VRI) in Brno to perform the KHVD 
experimental challenge test. The experimental challenge was performed 
by cohabitation in a tank of 1.4 m3 with recirculation and biological 
filtration. A small sample (n = 20) of Koi carps received an intraperi
toneal injection with KHV culture established according to standardized 
protocol by Piačková et al. (2013). Those animals cohabitated alongside 
the AMC populations and the rest of Koi carps (~ 200 fish). Mortality of 
individual fish was recorded twice a day for a period of 35 days post 
infection (dpi) in Pop 1 and 41 dpi in Pop 2 (until no mortality or disease 
symptoms appeared). After that period, mortalities were negligible. 
Resistance to KHV was recorded as a binary trait (0 for dead fish and 1 
for alive fish). Presence of KHV in a sample of dead fish (n = 100) was 
confirmed by PCR according to guidelines by the Centre for Environ
ment, Fisheries and Aquaculture Science, United Kingdom (Cefas) 
(Pokorova et al., 2010). In total, phenotypic records regarding 
growth-related traits and survival/mortality from experimental chal
lenges were documented for 1425 (Pop 1) and 1135 (Pop 2) individuals. 

2.3. Genotypes and parentage assignment 

Restriction-site associated DNA sequencing (RAD-seq) was applied to 
generate a medium-density (MD) genotypic panel including 15615 
SNPs. Details on the MD SNP panel were reported by Palaiokostas et al. 
(2018a) and Palaiokostas et al. (2019). A low-density (LD) 218 SNP 
subset (Supplementary Table S1) derived from the MD panel with the 
highest association to KHVD resistance (based on their p-values) and 
spread across the carp genome was also generated. 

Genotyping of Pop 2 and their parents was performed by 
LABOGENA-DNA, the French laboratory for DNA extraction and geno
typing (ISO 170025 accredited, Jouy-en-Josas, France). From the initial 
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LD SNP subset (218), only SNPs with a call rate higher than 0.97, no 
significant deviation from Hardy- Weinberg equilibrium (p-value >
0.0001), and a minor allele frequency (MAF) higher than 0.05 were 
retained for further analysis. In addition, samples in which less than 90% 
of SNPs were genotyped were removed. In total, 183 (Pop 1) and 165 
(Pop 2) SNPs of the LD SNP panel passed quality-control filtering. 

Parentage assignment for both populations was performed using the 
R package hsphase version 2.0.2 (Ferdosi et al., 2014) and validated also 
using APIS package (Griot et al., 2020) with a maximum allowed gen
otyping error set to 2%. 

2.4. Estimation of genetic parameters 

Heritabilities for KHVD resistance (overall binary survival; 0 = dead, 
1 = alive) were calculated using either a pedigree-based relationship 
matrix or a genomic relationship matrix using LD SNPs subset for both 
studied populations (Pop 1 and Pop 2). Pedigree-based and MD SNP 
panel-based heritability estimates were available for Pop 1 from a study 
by Palaiokostas et al. (2018b) and presented here for comparison. 

Variance components of KHVD resistance were estimated using 
either a linear model using AIREMLF90 (Misztal et al., 2002) or a 
threshold model using THRGIBBSF90 (Tsurata and Misztal, 2006). The 
following animal models, excluding (1) and including the maternal ef
fect (2) to specifically test effect of the model on heritability estimates, 
were applied:  

y=Xb+Zu+e,                                                                                 (1)  

y=Xb+Zu+Tm+e,                                                                          (2) 

where y is the vector of the observations of KHVD resistance, X and Z are 
the corresponding design matrices for the intercept and the additive 
genetic effects of the animal, b is the vector of the intercept for KHVD 
resistance, u is the vector of random animal effects ~ N(0, Aσg

2) with A 
corresponding to the pedigree-based relationship matrix or the genomic 
relationship matrix G (Van Raden, 2008) based on LD markers (Pop 1 – 
183 SNPs, Pop 2 – 165 SNPs) and σg

2 is the additive genetic variance. T 
corresponds to the incidence matrix relating KHVD resistance with 
maternal effects m ~ N(0, Iσme

2 ), I is the identity matrix, m is the vector 
of random maternal effect and σme is the corresponding maternal vari
ance. Lastly, e is the vector of residuals ~ N(0, Iσe

2) and σe
2 the residual 

variance. 
Heritability for KHVD resistance was estimated using the following 

formula (both populations):  

h2=σg
2/(σg

2+σe
2)                                                                                      

while in the case of model (2), heritability for KHVD resistance 
including maternal effect was calculated as (only Pop 2):  

h2=σg
2/(σg

2+σ2
me+σe

2)                                                                               

while the random maternal effect was calculated as follows (only Pop 2):  

m2=σ2
me/σg

2+σ2
me+σe

2                                                                              

With the linear model, the observed values for heritability of KHVD 
resistance were subsequently transformed to the underlying normally 
distributed liability scale using the formula by Dempster and Lerner 
(1950). In the case of the threshold model, the variance components 
were estimated using a Gibbs sampler with 100,000 iterations, 10,000 of 
burn-in and keeping one sample every 100 iterations for posterior 
analysis. Convergence of the resulting posterior distributions was 
assessed visually after running POSTGIBSSF90 (inspecting the resulting 
MCMC plots). Heritability estimates using the linear model were 
considered significant when the difference of additive genetic effect in – 
2 log-likelihood was higher than the threshold value for p < 0.05 of a χ2 
distribution with 1 degree of freedom (Pinheiro and Bates, 2000). The 
significance of heritability estimates using threshold was evaluated 

based on the 95% highest posterior density interval and the standard 
error (SE) was calculated as SE = (upper limit – lower limit) / 3.92 
(Mohr et al., 2021). 

2.5. Association analysis 

To test the association between the selected subset of LD SNP panels 
and resistance to KHV on Pop 2, a classical association analysis was 
performed using R/gaston (Perdry and Dandine-Roulland, 2016). 

The mixed model applied for KHVD resistance was as follows:  

y=Xb+Zu+e,                                                                                       

with the same notation as described in model (1) with the addition of 
including each SNP as a fixed effect. The -log10 of the p-values were 
compared to the genome-wide significance threshold (α = 0.05) after 
Bonferroni correction (0.05 / N), where N represents the number of QC- 
filtered SNPs. 

2.6. Estimation of breeding values 

Both pedigree-based (PBLUP) breeding value estimates (EBVs) and 
genomic-based (GBLUP) breeding value estimates using MD (GEBV_MD) 
and LD (GEBV_LD) SNP panels were calculated using the software 
package BLUPf90 (Misztal et al., 2014). The general form of the fitted 
model was as in model (1). Thus, for Pop 1 we had available EBVs, 
GEBV_MD and GEBV_LD, for Pop 2 we had available only EBVs and 
GEBV_LD. 

The Pearson correlation coefficient was used to evaluate the linear 
correlation of the breeding values as follows: EBV vs. GEBV_MD (Pop 1), 
GEBV_MD vs. GEBV_LD (Pop 1) and EBV vs. GEBV_LD (Pop 1 and Pop 2). 
In addition, the concordance rate of individuals ranked as the best ac
cording to above mentioned models of breeding value estimates was 
assessed for scenarios of 5%, 10% and 20% of selection pressure. 

To evaluate the prediction accuracy of (G)EBVs on Pop 2, 50 repli
cates of Monte Carlo ‘leave-one-group out’ cross-validation tests were 
run considering the same procedure as described in D’Ambrosio et al. 
(2020). For each replicate, approximately 20% of the fish were 
randomly chosen as a validation set, while the rest were used as a 
training set. The prediction accuracy (r) for each replicate was computed 
as:  

r=cor((G)EBV,y)/h,                                                                              

where cor ((G)EBV, y) is the correlation between the (G)EBV and the 
phenotypes of the individuals belonging to the validation population, 
and h is the square root of the genomic heritability estimated with a 
linear model. The prediction accuracies and the inflation coefficients of 
the tested models (PBLUP, GBLUP) were presented as average values 
over all 50 replicates. In the absence of selection bias, the inflation co
efficient is expected to be equal to 1; in the case of EBV overdispersion 
(inflation), the coefficient is below 1, and in the case of EBV under- 
dispersion the value is above 1. 

3. Results 

3.1. Growth-related traits and disease challenge 

The mean body weight of the challenged fish was 16.3 ± 4.6 g (Pop 
1) and 25.7 ± 8.3 g (Pop 2), while the mean Fulton’s condition coeffi
cient was 3.5 ± 0.3 (Pop 1) and 3.1 ± 0.2 (Pop 2). 

On Pop 1, mortality began at 12 dpi, reaching a maximum daily rate 
between 21 and 24 dpi (98 – 130 dead individuals per day), decreasing 
thereafter until the end of the challenge at 35 dpi without mortality 
(Palaiokostas et al., 2018b). On Pop 2, mortalities began also at 12 dpi, 
reaching a maximum daily rate between 17 and 18 dpi (98 – 106 mor
talities per day), while the challenge test ended at 41 dpi (See 
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Supplementary Fig. S1). Infected and dying fish were displaying typical 
KHVD clinical and pathological patterns. (e.g., weakness, lethargy, loss 
of equilibrium and disorientation, erratic swimming, sunken eyes, 
excessive mucous production, pale discoloration of the skin and gills or 
reddened skin, hemorrhagic lesions on the skin and gills, and fin 
erosion). All fish samples screened for KHV presence (in both experi
mental challenges) by nested PCR were positive. Overall, total mortality 
reached 66% for Pop 1% and 56% for Pop 2. 

3.2. Parentage assignment 

In Pop 1, 1259 offspring out of 1425 were uniquely assigned to a 
parental pair (88.3%), comprising 195 full-sib families from 20 dams 
and 40 sires. The number of progeny per sire varied from 7 to 53 (the 
average was 30). The number of progeny per dam varied from 9 to 99 
(the average was 61). In Pop 2, 758 individuals out of 1135 were 
uniquely assigned to a parental pair (66.8%) using 165 SNPs, comprising 
216 full-sib families from 27 dams and 29 sires. The number of progeny 
per sire varied from 11 to 46 (the average was 29). The number of 
progeny per dam varied from 4 to 49 (the average was 27). 

3.3. Genetic parameters 

Heritability estimates for KHVD resistance using a linear and a 
threshold model are listed in Table 1. The pedigree heritability of KHVD 
resistance on Pop 1 was 0.61 ± 0.07 (Palaiokostas et al., 2018b). The 
genomic heritability was 0.50 ± 0.06 using MD SNP panel (Palaiokostas 
et al., 2018b), while using LD SNP panel heritability decreased to 0.36 
± 0.04. Random maternal effect was found to be negligible and was 
excluded from the model in Pop 1. In Pop 2, heritability estimates were 
0.96 ± 0.09 (pedigree) and 0.68 ± 0.09 (LD SNP panel). Heritability 
estimates using the model (2) with the random maternal effect were 
slightly different (0.78 ± 0.25 for pedigree and 0.45 ± 0.16 for LD SNP 
panel). Similar values were found using a threshold model without 
maternal effect (0.93 ± 0.07 for pedigree and 0.66 ± 0.07 for LD SNP 
panel), while with maternal effect the heritability were 0.85 ± 0.14 for 
pedigree and 0.42 ± 0.10 for LD SNP panel. 

3.4. Association analysis 

Association analysis identified only one SNP surpassing the genome- 
wide significant threshold (Fig. 1), indicating possible loss of linkage 
disequilibrium between the QTL and the markers that most likely existed 
only within families of Pop 1. The logarithmic quantile-quantile (QQ) 
plot for the association analysis did not show any abnormal deviation 
(Fig. 2). 

3.5. Estimated breeding values 

Pearson correlations coefficients between the estimated breeding 
values of KHVD resistance (Fig. 3) were very high for EBV vs. GEBV_MD 
and GEBV_MD vs. GEBV_LD (0.91 and 0.86 respectively) in Pop 1. 
Furthermore, correlations between EBVs and GEBV_LD were still high 
and consistent for both investigated populations (0.81 in Pop 1 and 0.79 
in Pop 2). 

The extent of selecting the same individuals (from Pop 1 and Pop 2) 
using different models for breeding value estimation under three se
lection pressure scenarios (5%, 10% and 20%) is shown in Table 2. 
Concerning the models of breeding value estimation within Pop 1 and 
Pop2, the lowest concordance rate of breeding candidates was seen in 
the case of EBV vs. GEBV_LD (~ 32%) in Pop 2. Moreover, the values for 
Pop 2 were generally lower than for Pop 1. Concerning the concordance 
rates between populations for EBV vs. GEBV_LD, the highest difference 
was observed for a selection pressure of 20% (72.5% and 62.3% com
mon candidates, respectively), which was the only significant difference 
among tested selection pressures. In general, the overall number of 
common candidates (Pop 1) meeting the selection criteria for GEBV_MD 
vs. GEBV_LD was lower than for EBV vs. GEBV_MD. However, differ
ences in concordance rates of pairs of different breeding value estimate 
models (EBV vs. GEBV_MD, EBV vs. GEBV_LD and GEBV_MD vs. 
GEBV_LD) were not statistically significant within the tested selection 
pressure values. 

In terms of prediction accuracy, GBLUP had on average 7% higher 
accuracy (0.66 ± 0.06) than PBLUP (0.62 ± 0.07) in Pop 2 (Fig. 4). A 
pairwise t-test showed that the difference in prediction accuracy be
tween PBLUP and GBLUP models was significant (p = 0.006). Finally, 
the inflation coefficients were not statistically different from 1 and were 
slightly lower for GBLUP (0.88 ± 0.09) than for PBLUP (0.99 ± 0.12). 

4. Discussion 

Our study focused on evaluating the implementation potential of a 
low-density (LD) SNP panel for predicting KHVD resistance in common 
carp based on the animal’s genomic profile. Two populations of Amur 
mirror carp (AMC) challenged to KHVD resistance were used. As already 
mentioned, the LD SNP panel was derived from data from our previous 
study (Palaiokostas et al., 2019). Thus, we compared genetic parameters 
estimates and prediction accuracies of breeding value estimates using 
different approaches with our previous results on Pop 1 (Palaiokostas 
et al., 2018b; Palaiokostas et al., 2019). 

There was substantial variation in survival of fish challenged to 
KHVD among half-sib families of sires (Pop 1: 9 – 81%; Pop 2: 0 – 93%) 
and dams Pop 1: 0 – 53%; Pop 2: 0 – 96%) in both populations (data not 
shown). Such variation may suggest the existence of considerable ge
netic variation for KHVD resistance. Indeed, heritability estimates for 
resistance to KHVD were high in Pop 1 (Palaiokostas et al., 2018b) using 
both pedigree and genomic relationship matrix (0.50 ± 0.06) with the 
MD SNP markers. Using the LD SNP panel, we observed ~30% reduction 
(from 0.50 to 0.36) in the estimated heritability of KHVD. Similarly, 
Kriaridou et al. (2020) showed a reduction of heritability estimates 
(~50%) in various traits across different fish species using 200 SNPs 
compared to the full-density panels. Therefore, low-density SNP panels 
cannot fully capture the additive genetic variance, and their perfor
mance could be highly dependent on SNP selection. In the current study, 
a subset of SNPs was primarily selected based on their prior association 
with KHVD resistance on Pop 1. In Pop 2, the heritability estimates 
calculated with linear model or threshold model were even higher (0.96 
± 0.09 and 0.93 ± 0.07 using the pedigree, respectively; 0.68 ± 0.09 
and 0.66 ± 0.07 using the LD SNP panel, respectively). It appears, that 
at least in the case of the pedigree model, the heritability estimate was 
inflated. The parentage assignment rate in Pop 2 using the LD SNP panel 
was worse (66.8%) than the full-density panel in Pop 1 (88.3%). The 
reason for that may be due to the fact that the LD SNP panel set-up 

Table 1 
Heritability estimates (± standard error) ± of KHVD resistance estimated with 
threshold or linear model using either the pedigree-based (P) or the genomic 
relationship matrix (G) in both studied populations (Pop 1 and Pop 2).  

KHVD Resistance Model h2 h2 (maternal effect) ** 

Pop 1 – P * Threshold 0.61 ± 0.07 - 
Pop 1 – G (MD)* Threshold 0.50 ± 0.06 - 
Pop 1 – G (LD) Threshold 0.36 ± 0.04 - 
Pop 2 – P Linear 0.96 ± 0.09 0.78 ± 0.25 
Pop 2 – G (LD) Linear 0.68 ± 0.09 0.45 ± 0.16 
Pop 2 – P Threshold 0.93 ± 0.07 0.85 ± 0.14 
Pop 2 – G (LD) Threshold 0.66 ± 0.07 0.42 ± 0.10 

MD: Medium-density SNP panel (15615 SNPs) 
LD: Low-density SNP panel (183 SNPs – Pop 1, 165 SNPs – Pop 2) 
* taken from Palaiokostas et al. (2018b) 
* * model including random maternal effect 
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prioritized SNPs associated with KHVD resistance over the ability to 
discriminate between closely related parents. As such, the heritability 
estimates from Pop 2 were calculated with ~40% less individuals than 
the ones in Pop 1. 

Moreover, the random maternal effect might partially explain the 
high pedigree-based heritability in Pop 2. When a model including the 
maternal effect was used, a significant reduction of heritability estimates 
was observed on both the linear (0.78 ± 0.25 – P; 0.45 ± 0.16 – G) and 
threshold model (0.85 ± 0.14 – P; 0.42 ± 0.10 – G) (Table 1). Notably, 
studies concerning maternal effects on disease resistance in aquaculture 
species are rare. However, an underlying epigenetic factor was sug
gested to be a causative factor for the observed maternal effect related to 
cold tolerance in blue tilapia (Oreochromis aureus) (Nitzan et al., 2016) 
and hypoxia tolerance in rainbow trout (Oncorhynchus mykiss) (Prchal 
et al., 2018). Overall, regardless of the studied population or model used 
for variance components estimation, the resistance to KHVD is a highly 
heritable trait. These findings are in accordance with the results of 
previous studies that also highlighted substantial genetic variation of 
host resistance to KHVD (Ødegård et al., 2010; Tadmor-Levi et al., 
2017). 

In our previous study on Pop 1 (Palaiokostas et al., 2018b), a QTL 
associated with KHVD resistance was detected on chromosome 33. 

However, this QTL accounted for only 7% of the genetic variance related 
to KHVD resistance, highlighting that multiple additional genomic re
gions could be involved. Moreover, an association analysis performed on 
Pop 2 revealed only one significant SNP surpassing the genome-wide 
significant threshold related to KHVD resistance. Our findings suggest 
a possible loss of linkage equilibrium between the QTL and the markers 
that most likely existed only within families of Pop 1 and not across 
families/populations of the whole AMC stock due to the recombination 
events. Therefore, the linkage phase between the marker and the QTL 
should be determined in each generation and separately for each fam
ily/population (Wientjes et al., 2013). Thus, genomic selection for 
KHVD resistance seems to be the most appropriate approach. Yet, the 
genotyping costs are still relatively high, and the reference population 
size and SNP marker density create the two major cost drivers (Rajsic 
et al., 2016; Kriaridou et al., 2020; Griot et al., 2021). Therefore, 
assessing the efficiency of cheaper low-density SNP panels for estimating 
breeding values of KHVD resistance has been the main intent of the 
present study. Our results show that despite lower heritability estimates 
in Pop 2, usage of LD panel of 165 SNPs would increase of ~ 7% the 
prediction accuracy (0.65) of breeding values compared to a 
pedigree-based calculations (0.62) considering a reference population of 
~ 600 individuals. In our previous study on Pop 1 (Palaiokostas et al., 

Fig. 1. Association plot using LD SNP markers for KHVD resistance on Pop 2. The red horizontal line corresponds to the genome-wide significance threshold at 5%.  

Fig. 2. Logarithmic quantile-quantile (QQ) plot for the association analysis obtained p-values.  
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2019), the prediction accuracy using PBLUP was 0.49 while genomic 
prediction models showed 8% and 18% higher prediction accuracies 
with dependence on the tested scenarios (kinship of training and vali
dation set, number of SNPs). Several recent studies focused on the 
optimization of genomic prediction using low-density SNP panels in 
aquaculture showed that using 200 – 500 SNPs (Vallejo et al., 2018; 
Al-Tobasei et al., 2021), 1000 – 2000 SNPs (Kriaridou et al., 2020) and 
~ 3000 SNPs (Yoshida et al., 2018a; Griot et al., 2021; Song and Hu, 
2022) were sufficient for obtaining a relatively high prediction accuracy 
outperforming the PBLUP. 

Overall, the LD SNP panel used in our study is valuable for predicting 
breeding values of KHVD resistance across Amur mirror carp stocks. 
Studies performed on Australian sheep (Moghaddar et al., 2019) and 
dairy cattle (van den Berg et al., 2016; Raymond et al., 2018) showed 

that the prioritization of LD SNPs by preselected from GWAS could be 
beneficial. Similarly, Yoshida and Yáñez et al. (2022) found that pre
selected SNPs from GWAS can improve the accuracies of breeding values 
prediction for growth under chronic thermal stress in rainbow trout, and 
the use of high-density SNP panels might be inefficient. Hence, 
non-random SNP selection can increase the prediction accuracy of 
low-density SNP panels (Kriaridou et al., 2020). 

It is known that the magnitude of genetic relationships between the 
training and the validation population strongly affects the accuracy of 
breeding values prediction (Pszczola et al., 2012; Palaiokostas et al., 
2019; Griot et al., 2021; Fraslin et al., 2022). Similarly, the effectivity of 
LD SNP panel for prediction of breeding values strongly correlates with 
level of the genetic relatedness of training and selection stocks 

Fig. 3. Correlations between estimated breeding values: EBV vs. GEBV_MD (A), GEBV_MD vs. GEBV_LD (B) and EBV vs. GEBV_LD (Pop 1 = C, Pop 2 = D).  

Table 2 
Ratio of common individuals (%) in Pop 1 and Pop 2 that would pass the se
lection threshold under selection pressures of 5%, 10% and 20% when 
comparing different models for estimating breeding values (EBV, GEBV_MD and 
GEBV_LD).  

Population Selection 
pressure (%) 

EBV vs. 
GEBV_MD 

GEBV_MD vs. 
GEBV_LD 

EBV vs. 
GEBV_LD 

Pop 1 5 48.4(30/62) 54.8(34/62) 38.7(24/62) 
Pop 1 10 60.8(76/ 

125) 
60.0(75/125) 49.6(62/ 

125) 
Pop 1 20 78.1(196/ 

251) 
75.7(190/251) 72.5(182/ 

251)* 
Pop 2 5 x x 32.4(12/37) 
Pop 2 10 x x 44.0(33/75) 
Pop 2 20 x x 62.3(94/ 

151)* 

Values indicated with * are mutually significantly different at α = 0.05 using the 
χ2 test Fig. 4. Prediction accuracy of PBLUP and GBLUP models for KHVD resistance 

in Pop 2 for each of 50 replicates. 
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(Palaiokostas et al., 2019; Kriaridou et al., 2020; Fraslin et al., 2022). In 
breeding programs focused on disease resistance traits, the reference 
population generally consists of challenged individuals that are full- or 
half-sibs of the breeding candidates (Ødegård et al., 2011). Moreover, 
the ancestral effective population size estimated for AMC breed was 
found to be low (n = 33) by Saura et al. (2021). In addition, high 
breeding values prediction accuracy using LD SNP panels were observed 
in traits displaying high heritability estimates (Sonesson and Meu
wissen, 2009). Thus, the relatively high breeding value prediction ac
curacy achieved with a panel of only 165 SNPs in our study might be 
given the combination of close family relationships between the 
sampled animals and high heritability estimates of KHVD resistance. 
Still, both phenotyping and genotyping of the training population for 
KHVD resistance must be performed every generation to achieve high 
efficiency in selection of breeding candidates resistant to KHVD using 
the LD SNP panel in the selection population. 

On the other hand, the future reliability of low-density SNP panels in 
future generations may fluctuate due to possible recombination between 
the SNP alleles and the underlying QTL(s) controlling the resistance to 
KHVD. As a result, genotype imputation from very low-density panels of 
100 – 200 SNPs (progeny) to medium-density SNPs of 1000 – 5000 SNPs 
(parents) might be a useful alternative strategy to reduce the overall 
genotyping costs (Kriaridou et al., 2020). Previous studies have shown a 
high potential for imputation to achieve prediction accuracy close to the 
value obtained by medium-density SNP panels (Tsai et al., 2017; 
Yoshida et al., 2018b; Tsairidou et al., 2020). 

The Pearson correlation analysis between pedigree-based and 
genomic-based (MD and LD) breeding values estimates showed a strong 
association. More specifically, we observed in Pop 1 a very high corre
lation between EBVs and GEBVs_MD (0.91) and only a slight decrease 
between EBVs and GEBV_LD (0.81). Similarly, the relationship between 
the genomic prediction of GEBV_MD and GEBV_LD was high (0.86), 
further suggesting that the LD SNP panel might be sufficiently efficient 
for the accurate prediction of KHVD resistance. Additionally, the cor
relation between EBVs and GEBV_LD in Pop 2 showed the same linear 
relationship (0.79). These results are in line with the ones observed in 
Atlantic salmon (Bangera et al., 2017) for resistance against Piscirick
ettsia salmonis (0.76–0.81). In contrast, only a moderate correlation 
(~0.60) was found in rainbow trout for bacterial cold water disease 
resistance (Vallejo et al., 2016) which indicated that EBVs and GEBVs 
were not similar predictors of genetic merit. 

Upon further investigation, the ranking of the animals did not remain 
consistent between the EBVs and GEBVs using different scenarios. More 
specifically, we mutually compared the concordance rates of individuals 
in both Pop 1 and Pop 2 that would pass the selection threshold under 
different selection pressures (5%, 10% and 20%) based on breeding 
value estimates derived from different models (pedigree, HD SNP panel 
and LD SNP panel). We found that i) the overall ratio of common in
dividuals (individuals that would be selected in both methods) grew 
with lowering the selection pressure, ii) the number of common in
dividuals among any pair of methods used for calculating breeding 
values within given selection pressure did not differ significantly in Pop 
1 and iii) the ratio of common individuals in the case of the EBV vs. 
GEBV_LD scenario between Pop 1 and Pop 2 within the given selection 
pressure differed significantly only for a selection pressure of 20%. 
Nevertheless, it must be stressed that some SNPs might not be infor
mative in all AMC stocks. Re-rankings of top-selected animals depending 
on tested scenarios (size of SNP chip, studied population, statistical 
models etc.) differed up to 45% in dairy cattle (Krejčová et al., 2007; 
Hanna et al., 2014). Even though the LD panel of 165 SNPs in our study 
could be sufficiently reliable for a selection program on improving 
KHVD resistance in AMC, it might be beneficial to construct LD SNP 
panel with a slightly higher number of informative SNPs. 

5. Conclusions 

Heritability estimates were substantially high in both populations 
regardless of the model and approach used (pedigree, LD or MD genomic 
information). Thus, resistance to KHVD is a prospective trait to be 
genetically improved by a selection program. Furthermore, imple
menting of a low-density SNP panel in our study would increase 
breeding values prediction accuracy by 7% compared to pedigree-based 
BLUP in Pop 2. Besides, correlations between pedigree-based and 
genomic-based (MD and LD) EBVs showed a strong association for both 
populations (0.79 – 0.91). In addition, the concordance rates of top- 
selected individuals based on breeding values using different selection 
scenarios were not statistically different in most cases. In conclusion, 
selected LD SNP panel might be used for relatively accurate prediction of 
breeding values for KHVD resistance in different stocks of AMC. 
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sources, Writing – review & editing. Stanislava Reschová: Investiga
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Yáñez, J.M., Barría, A., López, M.E., Moen, T., Garcia, B.F., Yoshida, G.M., Xu, P., 2022. 
Genome-wide association and genomic selection in aquaculture. Rev. Aquac. 1–31. 
https://doi.org/10.1111/raq.12750. 
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