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A B S T R A C T   

Six cross-bred barley lines developed by a breeding strategy with the target to enhance the fructan synthesis 
activity and reduce the fructan hydrolysis activity were analyzed together with their parental lines, and a 
reference line (Gustav) to determine whether the breeding strategy also affected the content and molecular 
structure of amylopectin and β-glucan. The highest fructan and β-glucan content achieved in the novel barley 
lines was 8.6 % and 12 %, respectively (12.3-fold and 3.2-fold higher than in Gustav). The lines with low fructan 
synthesis activity had higher starch content, smaller building blocks in amylopectin, and smaller structural units 
of β-glucans than the lines with high-fructan synthesis activity. Correlation analysis confirmed that low starch 
content was associated with high amylose, fructan, and β-glucan content, and larger building blocks in 
amylopectin.   

1. Introduction 

Barley (Hordeum vulgare) was one of the first domesticated crops, and 
the main component of barley grain is starch. It is also rich in dietary 
fiber and attracting growing interest as a healthy food (Baik & Ullrich, 
2008; Sullivan, Arendt, & Gallagher, 2013). There are two major com-
ponents in barley dietary fiber, mixed linkage (1 → 3, 1 → 4)-β-D-glucan 
(β-glucan) and arabinoxylan. The β-glucan content typically ranges from 
3 % to 7 % (Oscarsson, Andersson, Salomonsson, & Åman, 1996) and the 
molecular structure of the β-glucan plays a vital role in determining its 
functionality (Du, Meenu, Liu, & Xu, 2019). The arabinoxylan content in 
barley typically varies from 4 % to 11 % (Oscarsson et al., 1996). Cel-
lulose, fructan, and lignin are among the minor components of barley 
dietary fiber. 

Since the main component of barley endosperm is starch, the quality 
of barley-based foods could be affected by the quality of the starch (Zhu, 
2017). The molecular structure, composition, and amylose:amylopectin 

ratio in starch play a vital role in determining the quality of the starch 
for food and non-food applications. In general, barley starch contains 
20–25 % amylose and 70–75 % amylopectin (Morrison, Milligan, & 
Azudin, 1984), although the amylose content depends on the method of 
determination. Barley amylose is a linear molecule with molecular 
weight 1.03 × 105 g/mol, compared with 1.15 × 106 g/mol for highly 
branched amylopectin (Bello-Pérez, Rodríguez-Ambriz, Agama- 
Acevedo, & Sanchez-Rivera, 2009). The properties of starch have been 
shown to be affected by amylopectin molecular structure and amylose: 
amylopectin ratio (e.g., Källman et al., 2015; Vamadevan & Bertoft, 
2015; Vamadevan & Bertoft, 2018; Zhao, Hofvander, Andersson, & 
Andersson, 2023; Zhu, 2018; Zhu & Liu, 2020). 

A building block (BB) backbone model is currently used to describe 
the distribution of chains in amylopectin molecules (Bertoft, 2017; 
Tetlow & Bertoft, 2020). BBs, which are the basic structural units of 
amylopectin, are tightly branched and distributed along the long chains 
of amylopectin. The BBs are made up of approximately 2–11 chains, 
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with the number of chains increasing proportionally with increasing BB 
size (Bertoft, Koch, & Åman, 2012). BBs contribute directly in deter-
mining the physical properties of starch such as gelatinisation and 
retrogradation properties (Källman et al., 2015; Zhao et al., 2023). 
Therefore, information regarding BBs contributes to determining the 
end uses of particular starch types and the knowledge can be utilized by 
plant breeders to tailor starches that are, for example, more stable for 
freeze-thaw cycles. 

Barley is one of the most genetically diverse cereals, which provides 
ample opportunities for breeders to identify and produce novel varieties 
for specific end uses (Baik & Ullrich, 2008). For example, when barley is 
bred for human consumption, high β-glucan content in grain is preferred 
since high β-glucan is favorable to reduce blood cholesterol and risk of 
colorectal cancer (Kerckhoffs, Hornstra, & Mensink, 2003). Therefore, 
improving grain β-glucan content has become one of the foci in barley 
breeding programs (e.g., Ehrenbergerová et al., 2008; Steele et al., 
2013). High fructan content is an advantage in edible dietary fiber, since 
fructan and fructooligosaccharides are standard prebiotics with benefi-
cial health effects and considered as a low calorie healthy food and feed 
ingredient (Bosscher, 2009; Ritsema & Smeekens, 2003; Roberfroid, 
2007; Roberfroid et al., 2010). Fructans also play a role in protecting 
plants against stress factors such as drought and freezing (Benkeblia, 
2022; Livingston, Hincha, & Heyer, 2009). 

In barley carbon allocation between starch and fructan is regulated 
via sugar signaling in barley (SUSIBA) transcription system where 
SUSIBA2 is a transcription factor which induces starch synthesis, and 
SUSIBA1 is a negative transcription factor which inhibits fructan syn-
thesis. The presence of SUSIBA2 and SUSIBA1 forms a carbon competing 
system in barley that could be employed for the barley breeding (Jin 
et al., 2017). In a recent study, a cross-breeding strategy was applied to 
produce barley lines with enhanced fructan content by upregulating 
fructan synthesis activity and downregulating fructan hydrolysis activ-
ity (Fei et al., 2022). During breeding, the SUSIBA transcription system 
(Jin et al., 2017) was used as a molecular marker for progeny screening 
as described by Fei et al. (2022). In parallel with artificial screening for 
high-fructan lines, starch content was modified based on the function of 
the SUSIBA system in regulating carbon allocation (Fei et al., 2022; Jin 
et al., 2017; Sun et al., 2003). Moreover, an interesting correlation be-
tween fructan and β-glucan in high fructan barley lines was already 
revealed by Fei et al. (2022) (with Pearson correlation coefficient (r) 
of0.9121), showing the possibility of producing barley lines with 
simultaneous high fructan and β-glucan. 

In the present study, starch and β-glucan from the high-fructan 
barley lines and their parents were chemically characterized, to test 
the hypothesis that the function of the SUSIBA system in regulating 
carbon allocation affects the content, composition, and molecular 
structure of starch and β-glucan, in addition to the fructan content. 

2. Materials and methods 

2.1. Development of cross-bred barley lines 

Barley plants were cultivated in phytotrons, with conditions of 9 h 
light (300 μmol m− 2 s− 1) at 12 ◦C, 15 h darkness at 8 ◦C, 60 % relative 
humidity for the first 4 weeks, and then to 16 h light (400 μmol m− 2 s− 1) 
at 20 ◦C, 8 h darkness at 12 ◦C, and 70 % relative humidity until 
maturation. Barley crossing was performed according to Poehlman and 
Sleper (2013) and as explained by Fei et al. (2022). In brief, SW 28708 
(line 224, Lantmännen, Sweden) was used as the maternal to cross with 
KVL 1113 (line 199, Royal Veterinary and Agricultural University, 
Denmark) and SLU 7 (line 155, Swedish University of Agricultural Sci-
ences), and KVL 1113 was used as the maternal to cross with SW 49368 
(line 235, Lantmännen, Sweden). All the parental lines were genetically 
homozygous. The flat seed phenotype was correlated with high fructan 
content, so in the selection process flat seed phenotype was used as a 
screening marker of high-fructan grain to increase the speed of screening 

high fructan lines (Fei et al., 2022). After three-generations of 
inbreeding the F4 progeny of barley lines with unique flat seeds (Fig. S1) 
were screened and used in further analyses unless otherwise stated. 

The selection of parental lines was based on the fructan content of 
the developing barley grains at 9 day after flowering (daf), 22 daf and at 
maturity respectively and the fructan level reduction between 22 daf 
and maturity (Table 1 and Fei et al. (2022). As measured by Fei et al. 
(2022), lines 155 and 199 accumulated high amount of fructan during 
the developmental stages of 9 daf to maturity and reach >3 % at mature 
stage, while lines 224 and 235 accumulated low level of fructan than 
155 and 199 at mature stage. The fructan level decrease between 22 daf 
and maturity were highest in 199 (decreased by 12.0 %), followed by 
155 (decreased by 7.8 %). Lines 224 and 235 reported the lowest fructan 
level (decreased by <2.0 %) between 22 daf and maturity (Fei et al., 
2022). Based on the fructan accumulation and fructan level reduction 
between 22 daf and maturity, different combinations of parental lines 
were crossed with each other to combine the properties of a high rate of 
fructan synthesis and a low rate of fructan hydrolysis as explained by 
(Fei et al., 2022). 

Fructan synthesis and hydrolysis activity were defined based on 
fructan content analysis using the F3 progenies, as described by Fei et al. 
(2022). Five grains from middle positions of each spike were collected 
from ten individual plants of each line where three plants were 
randomly selected to present the fructan levels. Grain samples from the 
same plants were collected at 15:00 h at developmental stages 9 daf, 22 
daf, and maturity. As fructan synthesis in barley generally occurs at an 
early stage of development, the fructan content at 9 daf in experimental 
barley lines compared with a reference line (Gustav) was used to 
represent fructan synthesis activity. Lines with significantly higher 
fructan content than Gustav (20.7 ± 0.8 %) were classified as having 
high fructan synthesis activity, while all the other lines, together with 
Gustav, were classified as lines with low fructan synthesis activity 
(Table 1). 

Fructan hydrolysis generally occurs at the later stage of barley grain 
development, and therefore the hydrolysis rate between 22 daf and 
maturity was used to define hydrolysis activity. Lines with hydrolysis 
rate higher than 50 % were defined as having high hydrolysis activity, 
while all other lines were defined as having low hydrolysis activity 
(Table 1). 

The samples obtained were categorized into two main groups based 
on fructan synthesis activity as (1): samples with high fructan synthesis 
activity (group A) and (2): samples with low fructan synthesis activity 
(group B) (Table 1). 

2.2. Starch extraction 

A laboratory-scale barley starch extraction procedure was developed 
based on the method described by Källman et al. (2015) with the 
following three modifications: i) Barley grains were milled using an 
ultra-centrifugal mill of type ZM 200 (Retsch GmbH, Germany) at a 
speed of 1800 min− 1; ii) barley whole flour (3 g) was steeped in 15 mL 
0.02 M HCl, the pH was adjusted to between 2.5 and 3.0, and the 
mixture stirred overnight before neutralizing and mixing with an Ultra- 
Turrax; and iii) 0.05 M Tris-HCl buffer (pH 7.8, containing 0.25 % 
NaHSO3 and 0.02 % sodium azide) and proteinase K (from Paren-
gyodontium album (Tritirachium album); E-PRKMB, EC 3.4.21.62, specific 
activity >40 U/mg protein (on urea-denatured hemoglobin) at pH 7.5 
and 37 ◦C) were used. 

2.3. β-Glucan and fructan content 

β-Glucan content was determined using the mixed-linkage β-glucan 
kit (K-BGLU, Megazyme, Bray, Ireland) according to McCleary and Codd 
(1991). Fructan content was determined using the fructan kit (K-FRUC, 
Megazyme, Bray, Ireland) according to McCleary, Murphy, and Mugford 
(1997). 
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2.4. β-Glucan structural composition 

β-Glucan structural composition was determined by lichenase 
digestion followed by high performance anion-exchange chromato-
graph/pulsed amperometric detection (HPAEC-PAD) analysis, as 
described by Andersson et al. (2004). HPAEC-PAD was performed with a 
CarboPac PA-100 column eluted at 1 mL/min with eluent A (0.15 M 
NaOH) and eluent B (0.15 M NaOH and 0.5 M NaOAc) according to the 
following program: 0–20 min: 15–28 % eluent B; 20–35 min: 28–50 % B; 
35–45 min: 50 % B; 45–50 min: 50–15 % B (return to the start mixture); 
and 50–65 min: 15 % B. Electrode pulse potential and duration were as 
follows: E1 = 0.1 V, 0.4 s; E2 = − 2.0 V, 0.02 s; E3 = 0.6 V, 0.01 s; E4 =
− 0.1 V, 0.06 s. Signals were integrated over 0.2 s (0.2 to 0.4 s). 

2.5. Starch content and amylose content 

The starch content in barley whole flour was determined according 
to an existing method (Åman, Westerlund, & Theander, 1994) with the 
slight modifications that barley whole flour (20 mg), 50 μL thermostable 
α-amylase from Bacillus licheniformis (EC 3.2.1.1, 3000 U/mL, Mega-
zyme, Wicklow, Ireland), 100 μL of 10-fold diluted amyloglucosidase 
from Aspergillus niger (EC 3.2.1.3, 3260 U/mL soluble starch, Megazyme, 
Wicklow, Ireland) in acetate buffer, and 3 mL of GOPOD reagent 
(Megazyme, Wicklow, Ireland) were used. The absorbance was 
measured at 510 nm against a reagent blank. A two-point calibration 
curve was developed using 1 mg/mL and 0.5 mg/mL glucose standards 
incubated with a 3 mL GOPOD reagent, to calculate the glucose con-
centration of the samples. 

The amylose content in barley whole flour was analyzed by a 
colorimetric method according to Chrastil (1987) with the following 
slight modifications: Barley whole flour (30 mg) was solubilized ac-
cording to Morrison and Laignelet (1983) in 3 mL UDMSO (0.6 M urea in 
90 % DMSO) added on two occasions, and incubated in a 100 ◦C water 
bath for 30 min with occasional mixing. Then 100 μL of sample were 
transferred to each of two Eppendorf tubes and 200 μL and 700 μL of 
99.5 % ethanol were added and mixed on two occasions. The tubes were 
left to stand in an ice bath for 30 min, centrifuged at 10500 ×g for 15 min 
and the pellet was washed with 1.8 mL 95 % ethanol and redissolved in 
100 μL UDMSO at 100 ◦C for 15 min. The samples were transferred to 
new tubes by washing with 3 × 1 mL of 0.5 % Trichloroacetic acid (TCA) 

and an additional 2 mL of 0.5 % TCA were added. Two reaction blanks 
containing 5 mL of TCA were included from this step onwards. Then 50 

μL 0.01 N I2-KI solution (1.27 g I2 and 3 g KI per L) were added, the tube 
contents were mixed, and the tubes were placed in a 25 ◦C water bath for 
30 min. The absorbance was read against water at 620 nm. The amylose 
content was determined using a standard curve with defined amylose 
content and values are reported as average of two replicates based on 
total starch content (DM basis). 

2.6. Production of BBs 

Production and characterization of BBs were performed according to 
the method developed and described by Zhao, Andersson, and Ander-
sson (2021). For BB block distribution analysis, the BBs were prepared 
by hydrolyzing whole starch using β-amylase (E-BARBL, Megazyme, 
Wicklow, Ireland) and α-amylose (E-BAASS, Megazyme, Wicklow, 
Ireland). 

First, whole starch samples were subjected to β-amylolysis by 
β-amylase to remove the linear chains of amylose and amylopectin 
external chains and to produce β-limit dextrins (β-LD) s. The β -amylase 
was twice de-salted through PD-10 desalting columns (Sephadex, 
Amersham Pharmacia Biotech AB, Uppsala, Sweden) using sodium ac-
etate (NaOAc) buffer before using. 

The β-LDs produced were then hydrolyzed with α-amylase. Extensive 
α-amylosis yielded α-limit dextrins (α-LD) s. The isolated α-LDs were 
again treated with β-amylase to ensure no external chains remained in 
the resulting BBs. The enzymes were then denatured by heating in a 
boiling water bath and the BBs were isolated by, filtering through a 
membrane filter (0.45 μm) (Zhao et al., 2021). 

2.7. High performance size exclusion chromatography (HPSEC) for BB 
analysis 

The BBs were analyzed using HPSEC and the HPSEC setting was as 
described by Zhao et al. (2021). In brief, the HPSEC system was equip-
ped with a refractive index (RI) detector (Wyatt Technology Corp., Santa 
Barbara, CA) which measures the concentration of the elutes, and two 
serially connected OHpak SB-802.5 HQ columns with a guard column 
(Shodex, Showa Denko KK, Miniato, Japan) which have been kept at 
35 ◦C. The fragments were eluted using 0.1 M NaNO3, containing 0.02 % 
NaN3 with a flow rate of 0.5 mL/min. Data were analyzed using ASTRA 
software (version 4.70.07, Wyatt Technology Corp., Santa Barbara, CA). 

The results were presented as the mean of two replicates, and the 
sample blank was subtracted to eliminate the enzyme and buffer peaks 

Table 1 
Grain fructan content (%, DM basis) of barley lines of F3 progenies at different development stages, their fructan hydrolysis rate between 22 daf and maturity and the 
groups based on fructan synthesis activity (A = high, B = low) together with the grain fructan and β-glucan content (%, DM basis) of 10 experimental barley lines 
(samples 1–10) and a reference barley variety (Gustav, sample 11) of F4 progenies (mean ± standard deviation). Values within columns with different superscript 
letters differ significantly (ANOVA, α = 0.05). Some of the data presented in the table has previously reported by Fei et al. (2022)*. Standard deviations are modified for 
sample standard deviation.  

Sample Genealogy Fructan 
content at 9 
daf (%, DM 
basis) of F3 

progenies 

Fructan 
synthesis 
activity 

Fructan 
synthesis 
activity 
group 

Fructan 
content at 22 
daf (%, DM 
basis) of F3 
progenies 

Fructan 
content at 
maturity (%, 
DM basis) of 
F3 progenies 

Fructan 
hydrolysis 
rate (%) 

Fructan 
hydrolysis 
activity 

Fructan 
content of at 
maturity (%, 
DM basis) of 
F4 progenies 

β-Glucan 
content at 
maturity (%, 
DM basis) of 
F4 progenies 

1 #155 30.3* ± 2.2a High A  12.0*  4.2*  65.2 High 3.8 ± 0.2c 9.6 ± 0.2c 

2 #199 32.2* ± 1.3a High A  15.6*  3.9*  74.9 High 3.4 ± 0.1d 9.3 ± 0.3c 

3 #224 21.3* ± 0.9b Low B  3.9*  2.5*  35.2 Low 2.2 ± 0.1e 7.5 ± 0.1d 

4 #235 21.2* ± 0.8b Low B  3.7*  1.9*  47.7 Low 1.0 ± 0.1f 6.6 ± 0.2e 

5 ♀#224×♂#155, 
flat 

36.0* ± 3.4a High A  14.3*  11.8*  17.7 Low 8.6 ± 0.1a 11.5 ± 0.1a 

6 ♀#224×♂#199 31.5* ± 2.0a High A  14.3*  11.1*  22.7 Low 8.1 ± 0.2b 12.0 ± 0.0a 

7 ♀#199×♂#155 34.4 ± 1.0a High A  12.9  5.3  58.5 High 2.1 ± 0.1e 10.6 ± 0.1b 

8 ♀#155×♂#199 30.9 ± 0.9a High A  18.2  6.0  66.9 High 2.0 ± 0.1e 10.9 ± 0.0b 

9 ♀#224×♂#155, 
round 

21.5 ± 1.0b Low B  7.7  2.5  67.0 High 0.8 ± 0.0f 7.1 ± 0.1d,e 

10 ♀#199×♂#235 25.5 ± 2.8*a High A  11.6*  6.1*  47.5 Low 3.3 ± 0.1d 10.8 ± 0.1b 

11 249 (Gustav) 20.7 ± 0.8b Low B  8.9  1.8  80.2 High 0.7 ± 0.1f 3.8 ± 0.0f 

(Link to the Creative Commons license- http://creativecommons.org/licenses/by/4.0/.) 

S. Jayarathna et al.                                                                                                                                                                                                                            

http://creativecommons.org/licenses/by/4.0/


Carbohydrate Polymers 316 (2023) 121030

4

in the elution profiles. The chromatograms were normalized for the peak 
area between 13 and 17.5 mL elution volume and divided into 9 buckets 
for further analysis. 

2.8. HPAEC-PAD for BB analysis 

An HPAEC instrumentation (Series 4500i, Dionex Corp., Sunnyvale, 
CA, USA) equipped with a BioLC gradient pump and a pulsed ampero-
metric detector (PAD) was used in this study. The HPAEC-PAD setting 
was as described by Zhao et al. (2021). In brief, a Carbopac PA-100 (4 ×
250 mm) analytical column (Dionex, Sunnyvale USA) equipped with a 
guard column was used for separation. Elution was performed at 25 ◦C, 
at a flow rate of 1 mL/min, with an injection volume of 25 μL, using 0.15 
M NaOH (eluent A) and 0.50 M NaOAc +0.15 M NaOH (eluent B) with 
the following gradient: 0–15 min: 15–28 % eluent B; 15–45 min: 28–55 
% B; 45–55 min: 55 % B; and 55–60 min: 55–15 % B (return to the start 
mixture). The PAD response of BBs was calculated as relative peak area. 

2.9. Statistical analyses 

Differences in measured parameters were studied by One-way 
analysis of variance (ANOVA). Tukey pairwise comparisons and Dun-
nett's test were performed using Minitab 18 (State College, PA, USA). 
Principal component analysis (PCA) was carried out using Simca 14.0 
(Umetrics, Umeå, Sweden). Spearman's rank correlation coefficient 
analysis was performed using Minitab 18 (State College, PA, USA). 

3. Results and discussion 

3.1. Fructan synthesis activity of the barley lines 

Based on the fructan synthesis activity of the F3 progenies, the barley 
lines were divided into two groups, defined as having high fructan 
synthesis activity with an average fructan content of 31.5 ± 3.6 % at 9 
daf (group A) and low fructan synthesis activity, with an average fructan 
content of 21.2 ± 0.8 % at 9 daf (group B) (Table 1). 

3.2. Fructan and β-glucan content of mature grain 

Fructan and β-glucan content in mature grain of F4 progenies differed 
(p < 0.05) between the two groups. Group A lines had a higher grain 
fructan content (4.5 ± 2.6 % on average) than group B lines (1.2 ± 0.6 % 
on average). The average grain β-glucan content of group A lines was 
10.7 ± 0.9 % and that of group B lines was 6.3 ± 1.6 %. Individual 
values of fructan and β-glucan content in grains of F4 generation are 
presented in Table 1 and used for further analysis and interpretation of 
the data. The maximum fructan content was 8.6 % (sample 5), which 
was 12-fold higher than in Gustav. All experimental barley lines (sam-
ples 1–10) demonstrated at least 1.5-fold higher β-glucan content than 
Gustav. In general, the β-glucan content in barley varies between 3 and 
11 % (Loskutov & Khlestkina, 2021) and the maximum β-glucan content 
obtained in the current study was 12.0 % (sample 6), closer to upper 
limit reported by Loskutov and Khlestkina (2021), which was nearly 3- 
fold higher than in Gustav. 

An interesting correlation between β-glucan and fructan content was 
observed. Higher β-glucan content was accompanied by higher fructan 
content, which demonstrated an exponential increase (Fig. 1). One 
possible explanation for this is that processes of β-glucan and fructan 
biosynthesis are orchestrated (or at least upregulated) by the same 
mechanism. 

3.3. β-Glucan structural composition 

Molecular features of β-glucan affect its solubility and rheological 
properties (Skendi, Biliaderis, Lazaridou, & Izydorczyk, 2003). The 
molecular structure of β-glucan was investigated using lichenase 

analysis. Lichenase (endo-β-1,3-1,4-glucanase; EC 3.2.1.73) specifically 
cleaves the β-(1 → 4)-linkage of the 3G1 → 4G1 units of β-Glucan, 
yielding oligosaccharides containing a single β-(1 → 3)-linkage adjacent 
to the reducing end (Izydorczyk & Dexter, 2008). As β-glucan consists 
mainly of cellotriosyl and cellotetraosyl units, trisaccharide (Degree of 
polymerization (DP)3), and tetrasaccharide (DP4) are the main products 
of β-glucan hydrolysis by lichenase (Izydorczyk & Dexter, 2008; Skendi 
et al., 2003; Stevenson & Inglett, 2009). 

Based on the data obtained the samples were divided into two groups 
(the same groupings as for fructan synthesis activity) according to their 
pattern of β-glucan molecular structure. The sample group A (samples 1, 
2, 5, 6, 7, 8, 10) displayed a higher proportion of longer structural units, 
with a normalized average relative peak area of 24.0 ± 1.5 %, compared 
to barley lines belonging to group B (samples 3, 4, 9, and 11), which had 
a normalized average relative peak area of 14.0 ± 1.2 % (p < 0.05). 
However, the sample group B (samples 3, 4, 9, and 11), displayed a 
higher proportion of DP3 and DP4 structural units, with a normalized 
average relative peak area of 85.9 ± 1.2 %, compared to barley lines 
belonging to group A (samples 1, 2, 5, 6, 7, 8, 10), which had a 
normalized average relative peak area of 76 ± 1.5 % (p < 0.05). It 
should be noted that barley lines of group A had high fructan synthesis 
activity, while barley lines of group B had low fructan synthesis activity. 

The ratio of cellotriosyl to cellotetraosyl units (DP3/DP4) was found 
to be similar in all samples (DP3 / DP4 = 1.65) (Supplementary 
Table S1), which is common for barley cultivars sharing the same 
genotypic and environmental background (Izydorczyk & Dexter, 2008). 
The DP3/DP4 ratio obtained was slightly lower than reported previously 
for barley grain, e.g., 1.8–2.2 (Izydorczyk, Macri, & MacGregor, 1998) 
and 1.8–2.4 (Lazaridou, Chornick, Biliaderis, & Izydorczyk, 2008). 

There was an interesting correlation between β-glucan molecular 
structure and β-glucan content. As the proportion of β-glucan increased, 
proportions of DP3 and DP4 structural units decreased, while the pro-
portions of longer structural units increased (Figs. 2, Fig. S2). Therefore, 
as it follows from the data obtained, upregulation of β-glucan biosyn-
thesis resulted in production of β-glucan with lower ratios of DP3 and 
DP4 structural units, but with higher ratios of longer structural units. 
Although the genes associated with β-glucan synthesis have been iden-
tified, the method by which genetic regulation of β-glucan accumulation 
in barley grains occurs, is not yet known (Geng et al., 2021). 

3.4. Starch and amylose content 

A low starch content (mean 38.7 ± 3.5 %) was found to be associated 
with group A samples with high fructan synthesis activity (p < 0.05). A 
high starch content (mean 49.9 ± 3.9 %) was associated with group B 

Fig. 1. Relationship between β-glucan content and fructan content in grain 
from the experimental barley lines (1− 10) and the reference variety (11). Mean 
(n = 2), bars indicate standard deviation. For sample descriptions, see Table 1. 
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samples with low fructan synthesis activity (p < 0.05). As reported in 
subsection 3.2, Group B samples with high starch content of 49.9 % had 
low fructan and β-glucan content than group A samples (p < 0.05). The 
negative relationship between starch and β-glucan content is in agree-
ment with findings by Munck, Møller, Jacobsen, and Søndergaard 
(2004) who reported lower starch content in high-lysine barley mutants 
with elevated β-glucan content. Shimbata et al. (2011) reported high 
fructan content in sweet wheat lacking two enzymes involved in starch 
synthesis (GBSS1 and SSIIa). According to Shimbata et al. (2011), 
decreased starch synthesis and high abundance of sucrose may be the 
reason for higher fructan content, since sucrose is the substrate for 
fructan. 

Amylose content, as analyzed by colorimetric assay, varied between 
the samples, with the highest (39.5 %) and lowest (1.8 %) in samples 2 
and 3, respectively (Fig. 3). The amylose content was <10 % in samples 
3, 4, 6, and 9, which were therefore considered to be waxy lines. 

In the present study, we speculated that because of the constant 
carbon source, a low level of β-glucan and fructan apparently led to 
allocation of more carbon to starch synthesis. 

3.5. BB distribution 

The distribution of BBs was studied using HPSEC and HPAEC. In the 
HPSEC chromatogram (Fig. 4), the BB distributions were divided into 
nine buckets (B1–B9) for further analysis. Buckets B1–B6 contained 
branched BBs from hydrolysis of the amylopectin β-LD, while buckets 
B7, B8, and B9 contained linear dextrins produced during BB prepara-
tion. PCA identified two major clusters associated with the BB distri-
bution (Fig. 5). These were group A, with high fructan synthesis activity 
(dashed ellipse in Fig. 5a), and group B, with low fructan synthesis ac-
tivity (solid ellipse in Fig.5a). From the data derived from peak area of 
different buckets (B1–B9) of HPSEC BB distribution, variations in the BB 
distribution between these groups are shown in Table 2. Group A was 
associated with a higher proportion of larger BBs (B1 = 20.0 ± 1.8, B2 =
107.7 ± 4.2, B3 = 107.6 ± 2.1) and lower proportion of smaller BBs (B5 
= 256.8 ± 4.7, B6 = 301.0 ± 7.2), while group B lines had a lower 
proportion of B1–B3 (B1 = 10.6 ± 2.4, B2 = 83.4 ± 4.2, B3 = 98.1 ±
1.7) and higher proportion of B5 and B6 (B5 = 268.1 ± 3.8, B6 = 323.0 
±7.9) (p < 0.05). There was no difference in abundance of medium-size 
BBs (B4) between the groups (Table 2). Hence for BBs derived from the 
amylopectin fraction (B1–B6), there was a good balance between dis-
tribution as affected by fructan synthesis activity or suppression of 
starch synthesis, with high fructan synthesis (suppressed starch syn-
thesis) being associated with larger BBs and vice versa. For the buckets 
that contained the linear dextrins (B7–B9), higher proportions, based on 
refractive index (Fig. 4) were found for samples belonging to group A. 

The results of HPAEC analysis complemented those of HPSEC anal-
ysis of BB distribution, with higher resolution. Categorization of BBs into 
groups (G2–6) was performed according to Bertoft, Källman, Koch, 
Andersson, and Åman (2011) and Zhao et al. (2021), but with slight 
modifications (Fig. S3). However, resolving the peaks separately for G5 
and G6 was not possible and therefore BBs belonging to G5 and G6 were 
treated together as G5 + G6. Group G1 was not considered, since it 
mostly contained linear dextrins (glucose, maltose, maltotriose) pro-
duced during BB preparation. 

In agreement with the HPSEC results, PCA revealed two categories 
based on the groups of BBs (Fig. S4). One cluster consisted of samples in 
group A and the other of samples in group B. 

Analysis of the abundance of each group of BB revealed that small 
BBs from G2 were present in high abundance in samples in group B, 
while medium (G3) and larger (G4, G5 + 6) BBs were more abundant in 
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samples in group A (p < 0.05) (Supplementary Table S2). These obser-
vations are in agreement to results from HPSEC analysis. 

3.6. Correlations of BB to other parameters 

Correlations between BB size and other parameters (content of 
amylose, starch, β-Glucan, fructan) were investigated using PCA (Fig. 6) 
and Spearman's rank correlation coefficient analysis (Table 3). A clear 
grouping of samples based on the different parameters was determined, 
where samples in group B (cluster within solid ellipse in Fig. 6) were 
associated with small BBs and high starch content, while samples 
belonging to group A (within dashed ellipse) were associated with me-
dium and large BBs and a high content β glucan, and fructan. These 
associations with each bucket of BBs (as determined by HPSEC analysis) 
were further analyzed based on Spearman's rank correlation coefficients 
(Table 3). 

Interestingly, starch synthesis showed a prominent relationship to BB 
size, with low starch content associated with a higher proportion of 
larger BBs, and vice versa. It is known that regulation of starch synthesis 
is mediated to a large extent by sugar signaling in plants and numerous 
studies have found that genes related to starch synthesis, i.e., ADP- 
glucose pyrophosphorylase, granule-bound starch synthase (GBSSI), 
and branching enzymes (SBEs), are regulated by sugars (Nakata & Okita, 
1995; Wang, Yeh, & Tsai, 2001). According to a recent review by Tetlow 
and Bertoft (2020), BBs are the major structural components of amylo-
pectin. The main enzymes involved in determining the structure of the 
BBs are soluble starch synthases (SSSI and/or SSSII) and SBEII isoforms 
(Tetlow & Bertoft, 2020). Hence, SUSIBA transcription factor-based 
selective breeding could affect one or all of those enzymes or their 
combined complex, thereby affecting the structure and/or size of the 
BBs. These results suggest that SUSIBA transcription factor-based cross- 
breeding can allow breeding programs to achieve novel types of starch 
with tailored structure at the BB level. It has been reported previously 
that genetic background has a direct link to BB size in barley starch 
(Källman et al., 2015; Zhao et al., 2021). However, to the best of our 
knowledge, this study is the first to report an effect on starch structure at 
BB level as affected by SUSIBA-based sugar regulation for fructan 
synthesis. 

Interestingly, there was a strong association between amylose con-
tent and B7, B8, and B9 buckets considered to represent maltotriose, 
maltose, and glucose, respectively (Table 3). In the method used for 
isolating BBs, β-LDs are produced from branched amylose during the 
first β-amylolysis, and continuing α-amylolysis converts β-LD to α-LD. 
This α-LD is converted into glucose, maltose, and maltotriose during the 
second β-amylolysis (Zhao et al., 2021). As reviewed by Bertoft (2017), 

the linear part of amylose is completely hydrolyzed into maltose during 
the first β-amylolysis and the branched component of amylose partly 
forms maltose and β-LD. During α-amylolysis, further linear dextrins are 
produced by cleaving the internal chain segments between the BBs 
(Zhao et al., 2021). Considering the steps associated with production of 
BBs from amylose, the origin of B7 and B8 can be linked to both the 
linear and branched fraction of the amylose component. Although 
branches from the amylose fraction account for only 1–2 % of total 
branches in normal starch (Zhu, Bertoft, & Seetharaman, 2013), around 
10–70 % of amylose molecules (depending on the botanical source) are 
branched and contain 5–20 chains (Kong, 2020). The strong positive 
association of B7, B8, and B9 with amylose in the present study reveals 
the connection between the selective breeding technique applied and 
the amylose component in barley starch. Studies focused in under-
standing amylose fine structure by approaches such as model fitting of 
chain length distributions has become a recent research interest to better 
understand the starch biosynthesis-structure-property relations (e.g., Li, 
Yu, Dhital, Gidley, & Gilbert, 2019; Yu et al., 2019). Hence, future work 
to study the fine structure of amylose as affected by SUSIBA activity 
would be advantageous for the knowledge platform which connects 
starch biosynthesis-structure-property relations, since our results indi-
cate a possible correlation of amylose fine structure as affected by 
SUSIBA activity. 

The correlations between β-glucan content and different categories 
of BBs opposed to the correlations observed for starch content and 
different categories of BBs. This observation is supported by the fact that 
β-glucan content and starch content had a negative relationship. Cor-
relations between the different categories of BBs and fructan content 
were observed for B1, B2 and B5 of the BB distribution groups as 
determined by HPSEC analysis. 

4. Conclusions 

A recent study adopted a new strategy for cross-breeding of barley 
based on SUSIBA transcription factor to generate barley lines with high 
fructan content. The present study revealed that these high fructan lines 
also had elevated content of β-glucan with decreased proportions of DP3 
and DP4 structural units and increased proportions of longer structural 
units. Starch content and the molecular structure of amylopectin were 
also altered in the high-fructan lines. Upregulation of fructan synthesis is 
likely to suppress starch synthesis and is furthermore associated with 
larger building blocks in amylopectin. These results provide insights to 
plant breeders regarding in planta modification of starch and glucan to 
fit with the intended end use. Further detailed characterization of 
amylose fine structure would improve understanding of the effect of 

Fig. 4. Building block distribution in starch from the 
experimental barley lines (samples 1–10) after normali-
zation for the peak area between 13 and 17.5 mL, as 
determined by HPSEC. The variety Gustav (sample 11) is 
included for reference. The distribution was bucketed as: 
B1: elution volume 11.49–12.99 mL, B2: 13.00–14.79 mL, 
B3: 14.80–15.27 mL, B4: 15.28–15.94 mL, B5: 
15.95–16.49 mL, B6: 16.50–17.46 mL, B7: 17.50–18.08 
mL, B8: 18.09–18.99 mL, B9: 19.00–20.15 mL. Refractive 
index signal is proportional to the concentration (weight/ 
volume). 1–11 refer to different genotypes used in the 
study and for descriptions, see Table 1.   
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upregulating fructan synthesis on starch synthesis. 
Supplementary data to this article can be found online at https://doi. 

org/10.1016/j.carbpol.2023.121030. 
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