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a b s t r a c t

EU energy and climate policies continue to drive interest in biomass fuel pellets which can be produced
from a wide variety of feedstock. The use of multi-criteria decision analysis (MCDA) to support
feedstock selection has the potential for more transparent and better decision-making. This study
applies the behavioural TOPSIS, a prominent MCDA technique, to rank pellets for energy use in Sweden
produced from under-utilised forest and agricultural biomass. Seven criteria were used to assess and
rank the biomass pellets. The alternatives include 88 types of pellets from 11 biomass materials.
Possible attitudes of an expert towards the risk of losses (risk averse, risk neutral and risk-seeking)
were combined with six sets of criteria weights obtained using six weighting methods – a total of
18 input settings (scenarios). Despite having different input settings, almost identical results were
obtained in all scenarios, meaning that the rankings were stable and consistent. Across all 18 scenarios,
pellets produced from a reference spruce/pine sawdust blend are ranked ahead of other pellet types.
Pellets produced from Scots pine bark exhibited stable and consistent rankings across all scenarios;
and thus this biomass is the second-best overall. The next best materials overall are poplar, reed
canary grass and wheat straw, whereas torrefied pellets (torrefied beech, poplar and wheat straw)
were ranked last in all scenarios. Combining behavioural TOPSIS and a variety of criteria-weighting
methods is a meaningful way of improving decision-making with respect to producing a more valid
and reliable ranking of biomass fuel pellets for energy use in Sweden.

© 2023 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Between 2010 and 2017, the production of biomass fuel pellets
rew from approximately 10 to 30 million tonnes (Thrän et al.,
017). Key drivers of this growth include: the realisation of re-
ewable energy targets both in the EU and globally, the adoption
f circular-economy approaches by the wood-processing indus-
ry, and greater utilisation of inland energy sources. Growth is
xpected to accelerate in the coming decades as a result of EU
nergy and climate policies targeting 40% emission reductions
y 2030 (European Commission, 2014) and the European Green
eal’s (European Commission, 2019) pursuit of carbon-neutrality
n the EU by 2050.

Given existing infrastructure realities, biomass fuel pellets en-
ble a transition from fossil coal to biomass fuel pellets in existing
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coal power plants (van Loo and Koppejan, 2002). This transition
is via direct co-firing or complete fuel replacement, depend-
ing on pellet properties and boiler designs. Running existing
coal power plants with torrefied wood pellets, for example, is
an economically attractive option (Agar and Wihersaari, 2012).
Notwithstanding the move to more sustainable energy sources,
coal-fired plants continue to be common in Europe and especially
China (Van der et al., 2017), which represents 50% of the global
market for coal production (IEA).

A fundamentally important property of any fuel is its energy
density (as received): i.e. the amount of energy per unit volume
of fuel (GJ m−3). High energy density translates to more energy
being contained in less space, which has benefits for transport ef-
ficiency, including lower associated emissions from shipping, and
storage (Agar et al., 2015). One of the main advantages of fossil
fuels is their inherently high energy density relative to renewable
fuels. Sub-bituminous coal commonly used in pulverised-fuel
boilers typically has an energy density in the range of 12.8–
17.8 GJ m−3 (ECN, 2020), whereas the achievable energy density
for state-of-the-art torrefied fuel pellets has been shown to be in

−3
the range of 11.9–13.2 GJ m (Agar et al., 2021).
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The Swedish pellet industry is an example of successful sec-
or whose capacity has exhibited continuous growth and now
eeds a large domestic and European market. Industrial-scale
roduction commonly uses rotating ring-die mills to produce
uel pellets, with pellet standards (ENplus) playing an impor-
ant role in ensuring high quality (Obernberger and Thek, 2010).
hese standards specify various types of pellet, depending on the
nd-user, but they can also limit the feedstock types used in
roduction, sometimes due to inflexible criteria that may not nec-
ssarily be problematic in use (e.g. high-ash content fuels). Wood
ellets conform to quality standards most easily but non-wood
eedstocks are the targets of future increased biomass utilisation.
tandards are primarily for the combustion market but take into
ccount both large and small-scale users. Naturally, producers
ould prefer to minimise production costs while satisfying all
uality standards.
In the case of conventional wood-pellet production, the

ecision-making related to which feedstock materials (biomass)
o select for use is simple and straightforward. However, when
here is a variety of feedstocks to choose from, evaluating them
n multiple criteria explicitly leads to better decisions, but such
ultiple criteria decision-making inevitably involves consider-

ng trade-offs between the criteria, which is relatively complex.
ulti-criteria decision-analysis (MCDA), a sub-discipline of op-
rations research, is available to support such decision-making
Belton and Stewart, 2002; Mendoza and Martins, 2006). MCDA
s concerned with formally structuring and solving decision prob-
ems, typically involving the explicit weighting of criteria and
he trade-offs between them to represent the preferences of the
ecision-makers (DMs) (and, potentially, other stakeholders). The
bjective of MCDA is to support DMs to make valid and reliable
ecisions in a consistent and transparent fashion.
MCDA is used in many decision making problems related to

nergy from biomass (Sultana and Kumar, 2012), energy stor-
ge technology (Murrant and Radcliffe, 2018), biomass conver-
ion (Kheybari et al., 2019), micro hydropower potential (Eshra
t al., 2021), renewable energy investments (Karatop et al., 2021),
ower generation (Pavlović et al., 2021; Asakereh et al., 2022;
anirambona et al., 2022), microgrid energy management

Raghav et al., 2022), hydropower plants (Singh et al., 2021)
nd wind farms investments (Ziemba, 2022). Sultana and Kumar
2012) used a MCDA technique, the Preference Ranking Organi-
ation Method for Enrichment and Evaluation (PROMETHEE), to
ank five fuel-pellet types produced from wood, straw, switch
rass, alfalfa and poultry litter. Three modelling scenarios were
valuated, with conventional wood pellets found to be the best
verall. Kheybari et al. (2019) used MCDA to evaluate tech-
ologies converting biomass to biofuels. They used an analytical
ierarchy process (AHP) - one of MCDA methods — to obtain
eights of criteria used for evaluation of technologies. Pavlović
t al. (2021) used MCDA for assessing the potential of renew-
ble energy sources for electricity generation in Serbia with
espect to the economic, technical, environmental, and socio-
olitical criteria. Similarly, for that purpose they used only one
CDA method named the fuzzy analytical hierarchy process

FAHP). Eshra et al. (2021) assessed in a multi-criteria context
he potential of mini and micro hydropower for Egypt’s main
rid areas, by using a single MCDA method, named Simple ad-
itive weighting (SAW). Karatop et al. (2021) used two MCDA
ethods, TOPSIS (Technique for Order Preference by Similar-

ty to Ideal Solution) and AHP to determine how the optimum
nvestment decisions could be taken in the renewable energy
ector in Turkey. They analysed renewable energy alternatives
hich included hydropower, solar energy, wind energy, geother-
al energy and biomass energy. Manirambona et al. (2022)

pplied a combination of AHP and TOPSIS to evaluate Kenyan
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power technology options using the four sustainable dimen-
sions: economic, social, environmental and technical. The results
showed that solar photovoltaic (PV) and wind are the most
promising technologies in Kenya. Asakereh et al. (2022) used
fuzzy AHP for ranking renewable power generation technologies
(i.e., PV, concentratedsolarpower, anaerobicdigestion, direct com-
bustion and wind energy) in the Khuzestan province of Iran. Their
results showed that, PV, followed by concentrated solar power
are the top priorities for renewable electricity generation. Thus,
it can be stated that the use of only one or two MCDA methods
in literature around renewables is a common approach.

This study applies the behavioural TOPSIS, a prominent MCDA
technique, to rank (from ‘best’ to ‘worse’) 88 types of fuel pellets
produced from 11 biomass materials from under-utilised forest
and agricultural biomass. Seven criteria, both quantitative and
qualitative in nature, were selected and used for evaluating, and,
ultimately, ranking biomass pellets. These criteria (production
cost, energy density, durability, ash content, sulphur content,
chlorine content and feedstock availability) were selected based
on general requirements and assumptions from the industrial
heat and power sector.

Very important input for behavioural TOPSIS (as for other
MCDA methods too) are the weights of criteria, representing their
relative importance. Therefore, careful attention should be paid
to how the weights are determined. As there is currently no
consensus in the MCDA literature as to which criteria-weighting
method is the best (Lienert et al., 2016), six widely used weight-
ing methods were applied and combined with behavioural TOPSIS
and the results compared. Five of the criteria-weighting methods
are based on expert knowledge and the subjective preferences of
the DM and one method is a quantitative (statistical) method.

In addition, this study incorporates DM’ behavioural tenden-
cies into the MCDA by using the behavioural TOPSIS method,
which, in short, applies the important finding from behavioural
economics that DMs typically feel differently about gains vis-à-
vis losses (Kahneman and Tversky, 1979, 1984; Thaler, 1980). The
novelty of the presented approach is as follows:

• The present study uses production data from a large
industrially-relevant investigation directed at large-scale
heat and power use of fuel pellets. Pilot-scale pellet pro-
duction and quality characterisation of 88 types of pellets
produced from 11 biomass materials was performed at the
Biomass Technology Centre of the Swedish University of
Agricultural Sciences in Umeå, Sweden. This highly rep-
resentative data will provide valid and reliable inputs for
behavioural TOPSIS.

• The use of five criteria-weighting methods based on ex-
pert knowledge and subjective preferences of the DM will
minimise bias related to the selection of criteria-weighting
method, something that cannot be said for previous studies
that tend to use only one or two methods in combination.
Using a quantitative (statistical) method will minimise bias
related to subjectivity of experts or decision makers. Thus,
an important contribution of the study is an examination
of the sensitivity of the rankings to the method used to
determine the weights on the criteria.

• This is first application of behavioural TOPSIS – as an ex-
tension of the original TOPSIS – for rankings biomass fuel
pellets. Behavioural TOPSIS uses a loss aversion ratio to
reflect DM attitudes towards the risk of losses when ranking
biomass pellets. Additionally, we used all three loss aversion
ratios (risk averse, risk neutral and risk-seeking) in order to
have more robust and reliable results.

https://www.sciencedirect.com/topics/engineering/concentrated-solar-power
https://www.sciencedirect.com/topics/engineering/anaerobic-digestion
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Fig. 1. Alternative Ai and its distance (D+) from ideal alternative A+ and distance
(D−) from anti-ideal alternative A− (Yoon and Kim, 2017)

• Finally, the objective of this approach is to improve decision-
making by combining six sets of criteria weights (obtained
using six criteria-weighting methods) with three loss aver-
sion ratios (risk averse, risk neutral and risk-seeking) and
to provide 18 input settings (scenarios) for performing be-
havioural TOPSIS. This approach enables the rankings of
biomass pellets to be compared across 18 scenarios, with the
opportunity to produce a more valid and reliable ranking of
biomass fuel pellets for energy use in Sweden and to identify
the top-ranked pellets overall.

2. Material and methods

2.1. Methodology for biomass pellets ranking

A wide range of MCDA methods is available (Belton and Stew-
art, 2002). The present study uses the TOPSIS (Technique for
Order Preference by Similarity to Ideal Solution), which was in-
troduced by Hwang and Yoon (1981) and went on to become a
classic and highly cited method (Yoon and Kim, 2017). The basic
idea of TOPSIS is intuitive and straightforward.

TOPSIS creates two artificial extreme alternatives to be utilised
as reference points — like the polar star in the heavens and the
nadir point in hell (Yoon and Kim, 2017). The ideal alternative,
A+, consists of the best values on the criteria across the alterna-
tives, whereas the anti-ideal alternative, A−, consists of the worst
riteria values. In other words, A+ maximises the benefit criteria
and minimises the cost criteria, whereas A− maximises the cost
criteria and minimises the benefit criteria (Behzadian et al., 2012).
TOPSIS attempts to choose alternatives that simultaneously have
the shortest Euclidean distance from the ideal alternative (D+)
and the farthest Euclidean distance from the anti-ideal alternative
(D−) (Behzadian et al., 2012). Fig. 1 shows how an alternative (Ai)
with three benefit (maximisation) criteria is transformed into two
distances from the ideal and anti-ideal points (Chang et al., 2010).

A common misapprehension is that TOPSIS always selects an
alternative that is closest to the ideal alternative and farthest
from the anti-ideal alternative simultaneously (Yoon and Kim,
2017); instead, TOPSIS calculates a value function defined as

C+

i = D−

i /
(
D+

i + D−

i

)
(1)

and then ranks alternatives according to their C+ values.
According to Olson (2004) and Shih et al. (2007), TOPSIS has

hese five advantages: (i) it is based on a sound logic repre-
enting the rationale of human choice; (ii) a scalar value is gen-

rated accounting for both the ideal and anti-ideal alternatives n
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simultaneously; (iii) TOPSIS’s simple computations are easily pro-
grammable using a spreadsheet; (iv) the alternatives’ perfor-
mance measures on the criteria can be visualised on a polyhe-
dron, at least for any two dimensions; and (v) the only inputs
needed from the DM are weights on the criteria, representing
their relative importance.

These criteria weights are a very important input for TOPSIS
(as for other MCDA methods too) because of their fundamen-
tal role in the final ranking of alternatives produced. There-
fore, careful attention should be paid to how the weights are
determined.

Though statistical methods can be used to determine the
weights, the usual approach is to elicit and quantify DMs’ prefer-
ences based on their expert knowledge and subjective judgement.
A variety of methods are available for doing so, all potentially ca-
pable of producing different weights (Belton and Stewart, 2002).
As already mentioned, there is currently no consensus as to which
method is the best (Lienert et al., 2016), and so six widely used
weighting methods are applied and their results compared.

This study utilises an augmented version of the TOPSIS: the
behavioural TOPSIS (Yoon and Kim, 2017). This technique incorpo-
rates the idea from behavioural economics that DMs typically feel
differently about gains vis-à-vis losses (Kahneman and Tversky,
1979, 1984; Thaler, 1980). Thus, as well as a DM’s preferences
being represented by criteria weights (as discussed above), their
attitudes towards the risk of losses are represented by a loss
aversion ratio to reflect their inclination in this respect when
ranking biomass pellets. The approach herein is to combine six
sets of criteria weights (obtained using six criteria-weighting
methods) with three loss aversion ratios (risk averse, risk neutral
and risk-seeking) to provide 18 input settings (scenarios) for per-
forming behavioural TOPSIS. This approach enables the rankings
of biomass pellets to be compared across 18 scenarios, with the
opportunity of identifying the top-ranked pellets overall.

2.1.1. Behavioural TOPSIS
Tzeng and Huang (2011) explain that behavioural TOPSIS, as

an extension to (original) TOPSIS, comes from reference-depe-
ndent theory (Kahneman and Tversky, 1979) which is a central
principle in prospecttheory and behaviouraleconomics in general.
Reference-dependent theory posits that consumers evaluate al-
ternatives in terms of gains and losses relative to a subjective
reference point (Kahneman and Tversky, 1979, 1984; Kahneman
et al., 1991).

According to Yoon and Kim (2017), the magnitude of D−

i in
the TOPSIS can be interpreted as the gain that a DM accrues
from taking Ai instead of anti-ideal solution A− ; similarly, the
magnitude of D+

i can be interpreted as the loss (Raiffa and Games,
1968) or opportunity cost incurred from taking Ai instead of ideal
solution A+. Losing something hurts more than gaining some-
hing of the same magnitude. For simplicity, as we explain below,
e assume that this ratio is two, so that losing something makes
person (approximately) twice as unhappy as gaining the same

hing makes them happy. This means that a DM is only willing
o incur one unit of loss in return for two units of gain (Yoon
nd Kim, 2017). Thaler (1980) called this trade-off the endowment
ffect, and Kahneman and Tversky (1984) called it as loss aversion.
In behavioural TOPSIS, the loss aversion ratio is defined as

=
∆D−

∆D+
(2)

where ∆D− is change in gain, ∆D+ is change in loss and the DM’s
hoice behaviour is classified as being loss averse when θ > 1,
eutral when θ = 1 and loss prone (or risk-seeking) when θ < 1.

https://www.sciencedirect.com/topics/computer-science/technique-for-order-of-preference-by-similarity-to-ideal-solution
https://en.wikipedia.org/wiki/Prospect_theory
https://en.wikipedia.org/wiki/Behavioral_economics
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Fig. 2. Two choices with different loss aversion ratios, where first choice (A7)
is highly loss averse and second choice (A8) is less loss averse (Yoon and Kim,
2017).

Instead of using the value function from the original method
Eq. (1)), behavioural TOPSIS implements the loss aversion ratio
into a new value function:

i = D−

i − θD+

i (3)

Fig. 2 illustrates how different loss aversion ratios (values of
θ ) will affect which alternative will be selected as first ranked
(‘best’) off the efficient frontier. A DM who is highly loss averse
(θ > 1, represented by the steep value line) will choose A7,
whereas another DM who is less loss averse (represented by the
flatter line) will choose A8.

In this paper we used θ = 2 because behavioural economists
have estimated, based on field experiments, that the loss aversion
ratio is in the range of 1.5–2.5 (Novemsky and Kahneman, 2005).
In addition, we used θ = 0.1 for a risk-seeking scenario and θ = 1
for risk neutrality. It is worthwhile noting that the original TOPSIS
(i.e. without loss aversion) and behavioural TOPSIS with θ = 1
both produce identical rankings of alternatives (Yoon and Kim,
2017).

The complete behavioural TOPSIS algorithm (Yoon and Kim,
2017) is presented in Steps 1–7, as follows.

Step 1: Define an MCDA problem.
For the number of alternatives (biomass pellets) = n and

umber of decision criteria = m, the decision matrix A = (aij) has
his form:

C1 C2 · · · Cm

A =

⎡⎢⎢⎢⎣
w1 w2 · · · wm

A1 ã11 ã12 . . . ã1n
A2 ã21 ã22 . . . ã2n
. . . . . . . . . . . . . . .

An ãn1 ãn2 . . . ãnn

⎤⎥⎥⎥⎦
(4)

where a11 – anm are criteria values of alternatives (or scores), and
w1 – wm are weights on the criteria, whose sum is 1.

Step 2: Construct the normalised decision matrix R = (rij).

rij =
aij√∑n
i=1 a

2
ij

, i = 1, . . . , n; j = 1, . . . ,m (5)

Step 3: Construct weighted-normalised decision matrix.

vij = wjrij, i = 1, . . . , n; j = 1, . . . ,m (6)

where w is the weight of the criterion j.
j
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Step 4: Determine the ideal alternative (A+) and the anti-ideal
alternative (A−).

A+
=

{
v+

1 , v+

2 , . . . , v+

m

}
=

{(
max

i
vij|j ∈ J1

)
,

(
min

i
vij |j ∈ J2

)
|i = 1, . . . , n

}
(7)

A−
=

{
v−

1 , v−

2 , . . . , v−

m

}
=

{(
min

i
vij |j ∈ J1

)
,

(
max

i
vij |j ∈ J2

)
|i = 1, . . . , n

}
(8)

where J1 is the set of maximisation criteria and J2 is the set of
minimisation criteria. Maximisation criteria are more preferred
by DMs when they have larger criteria values, and minimisation
criteria are less preferred when they have larger criteria values.

Step 5: Calculate Euclideandistances to ideal alternative (D+)
and anti-ideal alternative (D−).

D+

i =

√ m∑
j=1

(
vij − v+

j

)2
, i = 1, . . . , n (9)

D−

i =

√ m∑
j=1

(
vij − v−

j

)2
, i = 1, . . . , n (10)

Step 6: Compute values for each alternative.

(a) For original TOPSIS

C+

i =
D−

i

D+

i + D−

i
, i = 1, . . . , n (11)

(b) For behavioural TOPSIS

Vi = D−

i − θD+

i , i = 1, . . . , n (12)

Where θ is a loss aversion ratio chosen by the DM.
Step 7: Rank alternatives according to C+ or V .

2.1.2. Methods for determining weights on the criteria
Six widely used methods for determining weights on the cri-

teria are applied: five based on DMs’ expert knowledge and
subjective preferences (hereinafter referred to as ‘preference-
based weighting methods’, PWMs) and one based on quantitative
(statistical) methods.

The five PWMs are: direct point allocation (DIRECT), Simple
Multi-Attribute Rating Technique (SMART) (Edwards, 1977; von
Winterfeldt and Edwards, 1986), SWING (von Winterfeldt and Ed-
wards, 1986), Analytic Hierarchy Process (AHP) (Saaty, 1980) and
the Potentially All Pairwise RanKings of all possible Alternatives
(PAPRIKA) method (Hansen and Ombler, 2008).

Possible quantitative methods include the Entropy method
(Shannon and Weaver, 1947; Srdjevic et al., 2004) and the Criteria
Importance Through Inter-criteria Correlation (CRITIC) method
(Diakoulaki et al., 1995). Quantitative methods are less commonly
used than PWMs because they are blind to problem reality:
i.e. the weights are allocated based on the observed level of varia-
tion within each criterion rather than on problem-related values
(Blagojevic et al., 2019). Nonetheless, for comparison purposes,
the Entropy Method (EM) was used.

These six methods – DIRECT, SMART, SWING, AHP, PAPRIKA
and Entropy – are now explained in turn.

The DIRECT method involves the DM allocating a total number
of points, most commonly 100, across the criteria. The allocation
of the points is intended to represent the relative importance,
or weight, of the criteria. Whatever the total number of points
allocated, the weights on the criteria are calculated (normalised)

by dividing each criterion’s points by the total.

https://www.sciencedirect.com/topics/computer-science/technique-for-order-of-preference-by-similarity-to-ideal-solution
https://www.sciencedirect.com/topics/computer-science/euclidean-distance
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Table 1
Saaty’s importance scale.
Definition Importance

Equal importance
Weak dominance
Strong dominance
Demonstrated dominance
Absolute dominance
Intermediate values

1
3
5
7
9
(2, 4, 6, 8)

The SMART method involves the DM, first, ranking the criteria
nd, second, assigning 10 points to the lowest-ranked criterion,
nd then assigning higher point values (with no upper limit)
o the other criteria in proportion to their relative importance
Pöyhönen and Hämäläinen, 2001). Like the DIRECT method, the
eights on the criteria are calculated by dividing each criterion’s
oints by the sum of the points allocated.
The SWING method explicitly incorporates the criteria ranges

n the elicitation questions, which requires that the minimum and
aximum levels for each criterion need to be known before the
rocess starts. The DM is first asked to imagine the ‘‘worst’’ alter-
ative which has the lowest (worst) value on each criterion. They
re then asked to select the criterion that delivers the greatest
mprovement when it ‘swings’ to its best value and to allocate 100
oints to that criterion. Next the DM is asked to choose a criterion
hange from the worst to the best value which he considers to be
he second most desirable improvement and to assign less than
00 points to that criterion change. This procedure is repeated
ith all the remaining criteria. The weights on the criteria are
alculated by normalising the allocated points across the criteria
o sum to one.

Thomas Saaty (1980) wanted to simplify the mental processes
equired in decision-making (Tsagdis, 2008) and for that purpose
eveloped the AHP which can be used in both individual and
roup decision-making. A method of pairwise comparisons (in-
roduced by Thurstone, 1927) is a key feature underpinning the
opularity of AHP (Blagojevic et al., 2020) and it could be reduced
o the following rule of thumb: take two at a time if you are
nable to handle more than that (Koczkodaj, 1993).
The AHP method involves the DM comparing all n criteria in

airs (i.e. n (n − 1) /2 comparisons in total), and assigning a value
ij from the nine-point scale in Table 1 representing the relative
mportance of criterion i over criterion j.

These values are used to define a matrix A in which aii =

for all i and aij = 1/aji for all i and j. The weights of the
riteria are then calculated; in this study we used the logarithmic
east squares prioritisation method (LLS) (Crawford and Williams,
985), where the weights of criteria are the normalised geometric
eans of the rows of matrix A:

i =

n
√∏n

j=1 aij∑n
i=1

(
n
√∏n

j=1 aij
) . (13)

ccording to Schoemaker and Waid (1982), Belton (1986), Pöy-
önen and Hämäläinen (2001) and Blagojević et al. (2023) the
ain difference between AHP and previously described DIRECT,
MART and SWING methods is that AHP produces a larger range
f weights than the other weighting methods.
The PAPRIKA method involves the DM answering a series of

imple pairwise-ranking questions based on choosing between
wo hypothetical alternatives – in the present context, biomass
ellets – defined on just two criteria at a time and involving a
rade-off (the other criteria are assumed the same). Each time the
M answers a question, PAPRIKA adapts by applying the logical

property of transitivity to decide on the next question asked;
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e.g. if the DM ranks alternative A over B and then B over C, then
by transitivity A must be ranked over C, and so a question about
this third pair is not asked. Thus, PAPRIKA is recognised as a type
of adaptive conjoint analysis (Green and Srinivasan, 1978). In the
process of answering a relatively small number of questions, the
DM ends up having pairwise ranked all hypothetical alternatives
defined on two criteria at a time, either explicitly or implicitly
(by transitivity). From the pairwise rankings, the weights on
the criteria are calculated using linear-programming methods;
technical details are in Hansen and Ombler (2008)).

The Entropy method is based on Shannon’s entropy concept
(Shannon and Weaver, 1947), which can be summarised as a
measure of informational uncertainty. This method considers
decision matrix A = (aij) – where the number of alternatives
(biomass pellets) is n and the criteria is m (Eq. (1)) – as a specific
source of information emitted through the criteria to the DM.
Entropy involves measuring indeterminacy in the information
transmitted by the matrix and directly generating weights on the
criteria, based on the mutual contrast of individual values of alter-
natives for every criterion and then for all criteria simultaneously
(Deng et al., 2000; Srdjevic et al., 2004; Vranešević et al., 2017).
The weights are determined as follows.

First, by additive normalisation of each column in matrix A,
new matrix R = (rij) is obtained containing relative values of
lternatives across criteria.

ij =
aij∑n
i=1 aij

(14)

The information contained in matrix R can be considered as
the ‘emission power’ for each criterion and used to compute an
entropy value ej:

ej = −k
n∑

i=1

rij ln rij, j = 1, 2, . . . ,m (15)

Introducing the constant k = 1/ln n ensures that all values of
ej are within an interval [0, 1]. Then, the degree of divergence dj
of the average intrinsic information contained in each criterion is
calculated as dj = 1 – ej (j = 1, 2, . . . , m). Finally, relative weights
for all criteria are obtained by simple additive normalisation:

wj =
dj∑m
j=1 dj

(16)

The larger the divergence of the initial values aij of alternatives
Ai for given criterion Cj, the larger is its dj, which indicates that
the importance of the criterion Cj for the given decision-making
problem is larger. Consequently, if all alternatives have similar
values for a given criterion, this criterion is less important for
the decision-making problem. If all values of the alternatives for
a given criterion are the same, that criterion can be eliminated
because it does not provide any new information to the DM
(Srdjevic et al., 2004; Vranešević et al., 2017).

The entropy method is called ‘unbiased’ or ‘objective’ because
the weights on the criteria are computed directly from the de-
cision matrix, which means independently from the DM and
their expert knowledge and subjective preferences. However, this
property does not necessarily mean that the weights are more
valid or reliable than weights obtained from the five PWMs.

2.2. Characteristics of the biomass pellets

2.2.1. Raw materials
The 11 types of biomass feedstocks used for pelleting are:

a reference Norway spruce/Scots pine sawdust blend (55%–60%
Picea abies and 40%–45% Pinus sylvestris) (REF), beech stem wood
chips (Fagus ssp.) (BCH), whole stem willow chips (Salix ssp.)
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Fig. 3. The flow chart representing the pellet production process (left side) with the contributions to production cost criteria (centre) and the other six criteria used
in the study (right side). All criteria are coloured green. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version
of this article.)
Table 2
Average production costs of biomass fuel pellets based on pilot-scale experiences.
Feedstock Supply Dryinga Pelletinga Torrefaction Total costa

et−1 et−1 et−1 et−1 et−1

Reference 31.30 2.17 3.29 0.00 36.76
Beech 45.00 15.55 3.84 0.00 64.39
Salix 42.00 20.32 3.75 0.00 66.07
Poplar 40.00 11.99 3.53 0.00 55.52
Reed canary grass 48.00 1.06 2.96 0.00 52.02
Wheat straw 51.46 1.36 2.39 0.00 55.21
Forest residues 35.05 26.25 2.35 0.00 63.65
Scots pine bark 25.00 20.12 2.64 0.00 47.76
Torrefied beech 59.00 15.55 4.66 10.00 89.21
Torrefied poplar A 52.00 11.99 4.83 10.00 78.82
Torrefied poplar B 54.00 11.99 3.23 10.00 79.21
Torrefied wheat straw 66.90 1.36 4.91 10.00 83.16

aThese costs are based on averages for each feedstock type.
w
t

f
p
s
t

(SLX), poplar stem wood chips (Poplar ssp.) (POP), reed canary
grass (Phalaris arundinacea) (RCG), wheat straw (Triticum ssp.)
(WST), forest residues (FRS), and Scots pine bark (PBK). Three
varieties of torrefied materials are also used for pelleting: beech
torrefied (BTF), poplar torrefied (PTF) and wheat straw torrefied
(WTF).

2.2.2. Production and cost data
As represented in Fig. 3, pilot-scale pellet production and qual-

ity characterisation was performed at the Biomass Technology
Centre of the Swedish University of Agricultural Sciences in Umeå,
Sweden (see Table 2).

Feedstock cost
The reference supply cost was 31.30 =Ct−1 (Thek and Obern-

berger, 2004). Wheat straw and forest residue costs were taken
from the recent H2020 Mobile and Flexible Industrial Processing
of Biomass Project deliverables (Report on raw material availabil-
ity, costs and demand) and other costs were based on relative
estimates. The large surplus of pine bark in existing industries
in Sweden was taken into account when estimating its supply
cost. For torrefied pellets, a 30% greater supply cost was mod-
elled, which represents the typical mass loss due to thermal
degradation in existing torrefaction processes (Agar et al., 2015).

Drying cost
Drying cost were calculated using a fixed drying energy price

of 0.06 =CkWh−1 and a heat demand of 1000 kWh per tonne
of evaporated water, which is within the modelled range of
commercial driers (865 to 1100 kWh t−1) used in wood-pellet
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production (Thek and Obernberger, 2004). The required drying
energy (amount of water evaporated) was calculated using the
difference between the determined as-received moisture content
of the feedstock and the moisture content used in pelleting.

Torrefaction cost
The cost of torrefaction was modelled as a fixed extra cost

of 10 =Ct−1 on top of the average drying cost. This is justifiable
based on the production cost difference (7.45 =Ct−1) between
ood pellets and torrefied pellets in an established pilot-scale
orrefaction process (Agar, 2017).

Pelleting cost
Pelleting costs are a function of feedstock type, the frictional

orces they induce and the pelleting energy used in extruding the
ellets from the die. Pelleting energy requirements with all feed-
tocks and 88 pellet samples was in the range of 31.3-102 kWh
−1. Pelleting cost was calculated using a fixed energy (electricity)
price of 0.06 =CkWh−1.

2.2.3. Pellet quality characterisation
All pellet batches produced were tested according to ENplus

quality standards (Table 3). European standard (EN) methods for
solid biofuels were used to characterise pellet bulk density (EN
15103), mechanical durability (EN 15210) and moisture content
(EN 14774) 24 h after production.

The property values presented are averages of three replicated
measurements. The as-received heating value of pellets LHV ar (MJ
kg−1) was calculated using Eq. (17), from the European standard
for determination of calorific value (EN 14918), in which M (%)
ar
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Table 3
ENplus pellet quality requirements (ENplus).
Property Unit ENplus A1 ENplus A2 ENplus B

Diameter mm 6-8
Length mm 3.15 < L ≤ 40
Moisture Content % a.r ≤10
Ash Content % a.r ≤0.7 ≤1.2 ≤2.0
Mechanical Durability % a.r ≥98.0 ≥97.5
Fines (< 3.15 mm) % a.r ≤1.0
Net calorific value MJ kg−1 a.r ≥16.5
Bulk density kg m−3

≥600
Additives % a.r ≤2.0
Nitrogen % d.b ≤0.3 ≤ 0.5 ≤1.0
Sulphur % d.b ≤0.04 ≤0.05
Chlorine % d.b ≤ 0.02 ≤ 0.03
Ash Deformation Temperature ◦C ≥1200 ≥1100

a.r: as received, d.b: dry basis.
Table 4
Criteria used for ranking biomass pellets in Sweden.
Criteria Unit Range Type of criteria

Production cost (PC) (et−1) 34.84–89.88 Minimisation
Energy density (ED (GJ m−3) 7.05–13.29 Maximisation
Durability (DU) (%) 77.32–98.75 Maximisation
Ash content (AC) (%) 0.50–10.00 Minimisation
Sulphur content (SC) (%) 0.00–0.13 Minimisation
Chlorine content (CC) (%) 0.00–0.46 Minimisation
Feedstock availability (FA) Descriptive or qualitative low (l), low-med (lm), med

(m), med-high (mh), high (h)
Maximisation
is the as-received moisture content and LHV dm (MJ kg−1) is the
lower heating value (dry mass). The pellet energy density (as
received) σar (MJ m−3) was calculated using Eq. (18) using the
bulk density of pellet (as received) ρar (kg m−3).

LHVar = LHVdm × (1 − 0.01Mar) − 24.43Mar (17)

ar = LHVar × ρar (18)

.2.4. Emissions from end use
Flu gas emissions (e.g. SOx and NOx) from small-scale combus-

ion of biomass fuels can have significant environmental impacts.
erein, however, it is implicitly assumed that produced pellets
ill be combusted at large-scale heat and power plants, including
o-firing of pellets with fossil coal. As the amounts of biomass are
echnically limited in co-firing applications to approximately 5%–
0% (van Loo and Koppejan, 2002) and due to the more significant
missions from coal, the emission contributions from the pellets,
ncluding any variation in boiler efficiency with their use, are
ssumed to negligible and within the routine operation of the
ower plants.

.3. Decision-making problem (decision-maker, criteria and alterna-
ives)

Decision-making was carried out by a recognised expert in
iomass fuel pellet production. Five PWMs (DIRECT, SMART,
WING, AHP and PAPRIKA) were used in defining the weights of
riteria.
Seven criteria were selected and used for analysis and rankings

f biomass pellets (Table 4): production cost (PC), energy density
ED), durability (DU), ash content (AC), sulphur content (SC),
hlorine content (CC) and feedstock availability (FA). The first six
riteria are quantitative in nature and the seventh is descriptive
or qualitative) because obtaining quantitative information for it
as impossible. Also, as detailed in Table 4, four of the criteria are
inimisation criteria (where minimal values are ideal and max-

mal values are anti-ideal) and three are maximisation criteria
maximal values are ideal and minimal values are anti-ideal).
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Eleven biomass materials are used for pellets, with a total of
88 types of biomass pellet: REF – 8 types; BCH – 8 types; SLX –
8 types; POP – 8 types; RCG – 8 types; WST – 8 types; FRS – 8
types; PBK – 8 types; BTF – 7 types; PTF – 13 types; and WTF – 4
types. Each type represents a biomass pellet (or ‘alternative’) for
MCDA analysis. These 88 biomass pellets are listed in Table A.1.
(An alternative approach would be to use average values for each
of the 11 biomass materials but then the MCDA analysis would
be less accurate and valuable information would be lost.)

3. Results and discussion

The weights on the criteria from applying the six weighting
methods are reported in Table 5. It can be seen that the most im-
portant criterion to the expert is production costs (PC), with the
five PWMs (DIRECT, SMART, SWING, AHP and PAPRIKA) generat-
ing weights for this criterion in the range of 0.300 (PAPRIKA) to
0.408 (SWING). The second most important criterion is durability
(DU), with weights in the range of 0.200 (DIRECT and PAPRIKA)
to 0.280 (AHP). Energy density (ED) was ranked third, with a
mean weight of 0.117. Four of the five PWMs (DIRECT, SMART,
SWING and AHP) ranked the sulphur content (SC) criterion as
least important.

These results with respect to PC and ED in particular have
face validity, as PC and ED are always important for the heat
and power sector given that minimising PC and maximising ED
contribute directly to profitability. Utilising low-cost fuels is also
the prime objective of power plants where high- and low-quality
fuels are often blended in the fuel yard so that boiler combus-
tion efficiency remains constant; a high ED therefore enables
greater operational utility and generally outweighs consideration
of emissions (e.g. SOx and NOx) which are routinely managed at
large-scale facilities.

Overall, the PWM weights revealed that the expert had sta-
ble and consistent preferences across the different weighting
methods used. With respect to future multi-criteria analyses, this
finding suggest that these methods produce reliable weights.

In contrast to the PWMs, the Entropy method generated very
different results. Approximately equal weights are given to four of
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Table 5
Weights on the criteria and their ranks (in parenthesis) from using the six weighting methods.

PC ED DU AC SC CC FA
(e/t) (GJ/m3) (%) (%) (%) (%) descriptive
min max max min min min max

DIRECT 0.367 (1) 0.133 (3-4) 0.200 (2) 0.067 (5-6) 0.033 (7) 0.067 (5-6) 0.133 (3-4)
SMART 0.357 (1) 0.107 (3-5) 0.214 (2) 0.107 (3-5) 0.036 (7) 0.071 (6) 0.107 (3-5)
SWING 0.408 (1) 0.082 (5) 0.204 (2) 0.122 (3-4) 0.020 (7) 0.041 (6) 0.122 (3-4)
AHP 0.384 (1) 0.061 (5) 0.280 (2) 0.153 (3) 0.027 (7) 0.063 (4) 0.032 (6)
PAPRIKA 0.300 (1) 0.200 (2-3) 0.200 (2-3) 0.042 (7) 0.142 (4) 0.050 (6) 0.067 (5)
Average of PWM 0.363 (1) 0.117 (3) 0.220 (2) 0.098 (4) 0.052 (7) 0.058 (6) 0.092 (5)
Entropy 0.150 (3-4) 0.151 (1-2) 0.151 (1-2) 0.143 (5) 0.133 (6) 0.123 (7) 0.150 (3-4)

∗ PC-production cost, ED-energy density, DU-durability, AC-ash content, SC-sulphur content, CC-chlorine content, FA-feedstock availability.
the criteria: ED (0.151), DU (0.151), PC (0.150) and FA (0.150). Last
ranked was CC with a weight of 0.123. The scenario with different
weights of criteria (i.e. the one excluding expert opinion) was
effective because of the stability of biomass rankings it generated.

The results from ranking the biomass-pellet types using be-
avioural TOPSIS with three behavioural tendencies (risk averse,
isk neutral and risk-seeking) combined with six criteria weight-
ng methods – i.e. 18 input settings (scenarios), in total – are
resented in Table B.1 and Fig. 4. It can be seen that in the
isk-averse scenario, pellet type REF3 is ranked first four times
for weights using DIRECT, SMART, SWING and AHP), and REF2
s ranked first when weights are obtained using Entropy and
APRIKA. In the risk-neutral scenario, the results for the first-
anked alternatives are almost identical. The only difference is
hat REF1 is first ranked when Entropy-derived weights are used.
n the risk-seeking scenario, the dominant alternative is REF4: it is
irst ranked in all scenarios using the five PWMs (DIRECT, SMART,
WING, AHP and PAPRIKA). REF3 is ranked first when the Entropy
eighting method is used.
In all 18 input settings, all pellets produced using the reference

lend are ranked ahead of the other pellets. This means that REF1
o REF8 are ranked between 1st and 8th (Table B.1). Therefore,
t can be concluded that REF (reference wood pellets) has the
est properties for biomass-pellet production. This result is not
urprising given the importance of production cost (REF are the
owest price pellets because they are produced from low cost
y-products from the wood processing sector).
Biomass pellets produced from pine bark (PBK) are charac-

erised by stable and consistent rankings in all 18 scenarios. Pellet
ypes PBK1-8 are all ranked between 9th and 16th. Therefore, it
an be concluded that pine bark has the second-best properties
or biomass-pellet production.

POP, RCG and WST are the three next best pellets material
n all 18 scenarios. Adjacent rankings of RCG and WST could
e expected based on the fact that they are both non-woody
lants, with similar physical properties, comparably high sulphur
nd chlorine contents, and the rely on the same harvesting and
rocessing methods (and therefore have similar supply costs).
Beech pellets (BCH1-8) are higher ranked than the other non-

onventional feedstocks considered. Torrefied pellets – beech
orrefied (BTF1-7), poplar torrefied (PTF1-13) and wheat straw
orrefied (WTF1-4) – are lowest ranked (from 65th to 88th, or
ast, place) in all 18 scenarios. The question for torrefied fuels
as always been: Does the extra cost of torrefaction justify the
enefits? In this study, it would seem not.
However, this study largely ignored combustion end-use sce-

arios, other than assuming they are routine and large-scale. The
verwhelmingly predominant application of torrefied fuels is to
ffset coal in existing pulverised-fuel boilers. It is only in such
oilers that torrefaction enables larger co-firing rates (up to 100%
eplacement) without infrastructure modifications (Agar et al.,
021). The significance of this is a huge emission reduction po-
ential that is not considered herein simply because non-torrefied
713
fuels cannot enable the same emission reduction potential at coal
plants.

As we mentioned, MCDA is used in many decision making
problems related to renewable energy. Sultana and Kumar (2012)
used PROMETHEE method to rank five fuel-pellet types produced
from wood, straw, switch grass, alfalfa and poultry litter. Three
modelling scenarios were evaluated, with conventional wood
pellets found to be the best overall. Unfortunately, this study
suffered from a lack of systematic data on pellet-production
methods, especially with respect to non-conventional feedstock
types and so data from a wide variety of studies employing
different methods and pellet characterisations had to be used.
In contrast, the present study uses industrially-representative
production data from a large industrially-relevant investigation
directed at large-scale heat and power use of fuel pellets, which is
a significant advantage. Another weakness of Sultana and Kumar
(2012) is its assumptions about problematic combustion emis-
sions and the emission data from the literature that were used but
without considering the relevant boiler technologies and scales
of production. A proper evaluation of pellets that enables the
influence of feedstock choices to be validly compared requires
consideration of their production methods based on relevant
technologies (ring-die pellet mills) and production scale.

This study was design for a single decision maker to partici-
pate in the process of defining weights of criteria. There were two
main reasons for this choice:

• Saaty and Özdemir (2014) examined the question of how
many DMs are needed to obtain valid and consistent judge-
ments when using the MCDA. They highlighted that if a
DM is experienced and well versed in an area, efforts to
add additional experts can in fact compromise the accuracy
of a study if their expertise is not well balanced. It can
be concluded that expert-based analyses do not need a
large number of responses because they are not based on
frequentist methods (Saaty and Özdemir, 2014).

• The role of the DM in this study was only to define the
weights of criteria using five PWMs. In addition, MCDA
was used in the scenarios with very different weights of
criteria (for instance weights obtained by PWMs compared
to weights obtained by the Entropy method). Despite that,
almost identical rankings of biomass pellets were obtained
which means that adding new DMs will most likely not
produce any significant changes in the final ranking. There-
fore it is concluded that one DM with proper expertise and
experience is sufficient for this analysis.

4. Conclusion

This study applies the behavioural TOPSIS combined with a
variety of criteria-weighting methods, to rank pellets for en-
ergy use in Sweden produced from under-utilised forest and
agricultural biomass. With the lack of consensus as to which
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Fig. 4. Behavioural TOPSIS: rankings of biomass pellets.

criteria-weighting method is best, this study applied six different
weighting methods in order to compared the resulting rankings of
88 biomass fuel pellets types in large-scale power generation. Five
of the criteria-weighting methods are based on expert knowl-
edge and the subjective preferences of the decision maker and
one method is a quantitative (statistical) method. The different
weights on the criteria and the different behavioural tendencies
(risk averse, risk neutral and risk-seeking) did not significantly
change the rankings of the pellets; therefore, we can conclude
that our results were very stable and consistent. On the other
hand, if different criteria were to be used, then different rankings
could arise.

We chose the used criteria because we had reliable data for
hem, which strengthens confidence in our findings. However,
hese criteria may not be the best ones in future as alterna-
ive data in the field may be found to be more relevant. For
714
example, environmental impact criteria determined through life-
cycle assessment and policy towards resource use (especially
from forests) will surely grow in importance. These are likely,
and positive, developments given the need for renewable fuels
to satisfied future energy and climate goals.

Nomenclature

AC ash content (%)
BCH beech
BTF beech torrefied
CC chlorine content (%)
DU durability (%)
ED energy density (GJ m−3)
FA feedstock availability
FRS forest residues
PBK Scots pine bark
PC production costs (=Ct−1)
POP poplar
PTF poplar torrefied
PWM preference-based weighting method
RCG reed canary grass
REF reference
SLX salix
SC sulphur content (%)
WST wheat straw
WTF wheat straw torrefied
LHV ar heating value of pellets, as received (MJ kg−1)
LHV dm lower heating value, dry mass (MJ kg−1)
Mar moisture content, as received (%)
σar energy density, as received (MJ m−3)
ρar bulk density, as received (kg m−3)
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See Table B.1.
Table A.1
The 88 types of biomass pellets and their values on the six criteria.
Alternatives Criteria

Biomass materials Number of
types

Name of pellet
types

PC
(et−1)

ED
(GJ m−3)

DU
(%)

AC
(%)

SC
(%)

CC
(%)

FA
descriptive

Reference
(55-60% Picea
abies and
40-45% Pinus
sylvestris)

8

REF1 38.79 11.78 96.93 0.5 0.01 0 mh
REF2 37.71 10.96 96.93 0.5 0.01 0 mh
REF3 36.64 10.02 96.33 0.5 0.01 0 mh
REF4 34.97 9.03 94.13 0.5 0.01 0 mh
REF5 38.06 10.60 93.23 0.5 0.01 0 mh
REF6 36.94 10.06 93.93 0.5 0.01 0 mh
REF7 36.10 9.43 93.44 0.5 0.01 0 mh
REF8 34.84 8.62 92.07 0.5 0.01 0 mh

Beech stem
wood chips
(Fagus ssp.)

8

BCH1 65.55 9.49 87.62 0.8 0 0.02 lm
BCH2 64.74 9.44 93.47 0.8 0 0.02 lm
BCH3 64.27 9.13 96.51 0.8 0 0.02 lm
BCH4 63.33 9.14 96.76 0.8 0 0.02 lm
BCH5 65.47 9.55 91.87 0.8 0 0.02 lm
BCH6 64.55 9.27 93.60 0.8 0 0.02 lm
BCH7 64.06 8.90 96.20 0.8 0 0.02 lm
BCH8 63.12 8.44 95.47 0.8 0 0.02 lm

Whole stem
willow chips
(Salix ssp.)

8

SLX1 67.85 10.94 96.13 2.3 0.03 0 m
SLX2 68.08 10.82 95.80 2.3 0.03 0 m
SLX3 67.91 10.73 97.20 2.3 0.03 0 m
SLX4 65.44 10.10 98.40 2.3 0.03 0 m
SLX5 66.13 9.23 93.73 2.3 0.03 0 m
SLX6 65.20 9.21 95.67 2.3 0.03 0 m
SLX7 64.42 8.91 97.33 2.3 0.03 0 m
SLX8 63.52 8.52 97.33 2.3 0.03 0 m

Poplar stem
wood chips
(Poplar ssp.)

8

POP1 57.45 10.58 96.47 2.8 0 0 m
POP2 56.51 10.03 97.40 2.8 0 0 m
POP3 55.20 9.47 98.40 2.8 0 0 m
POP4 54.73 9.15 98.73 2.8 0 0 m
POP5 56.16 9.13 90.91 2.8 0 0 m
POP6 55.57 9.03 94.28 2.8 0 0 m
POP7 54.71 8.79 96.95 2.8 0 0 m
POP8 53.83 8.19 97.52 2.8 0 0 m

Reed canary
grass
(Phalaris
arundinacea)

8

RCG1 53.18 8.08 85.15 6.6 0.08 0.06 m
RCG2 51.94 8.26 90.92 6.6 0.08 0.06 m
RCG3 51.50 7.99 92.94 6.6 0.08 0.06 m
RCG4 50.87 7.42 93.00 6.6 0.08 0.06 m
RCG5 52.68 8.71 92.37 6.6 0.08 0.06 m
RCG6 52.51 8.51 92.96 6.6 0.08 0.06 m
RCG7 51.82 7.89 93.74 6.6 0.08 0.06 m
RCG8 51.67 7.48 93.44 6.6 0.08 0.06 m

Wheat straw
(Triticum ssp.) 8

WST1 56.38 8.77 86.01 9.3 0.13 0.46 h
WST2 55.22 7.88 84.22 9.3 0.13 0.46 h
WST3 55.38 8.32 93.55 9.3 0.13 0.46 h
WST4 54.50 7.42 92.16 9.3 0.13 0.46 h
WST5 55.98 8.12 83.12 9.3 0.13 0.46 h
WST6 55.49 8.10 89.05 9.3 0.13 0.46 h
WST7 54.92 7.49 90.95 9.3 0.13 0.46 h
WST8 53.82 7.05 90.95 9.3 0.13 0.46 h

Forest residues 8

FRS1 64.69 9.63 84.59 2.2 0.03 0 h
FRS2 64.05 9.05 80.85 2.2 0.03 0 h
FRS3 63.10 8.55 83.34 2.2 0.03 0 h
FRS4 62.10 8.05 78.21 2.2 0.03 0 h
FRS5 65.22 10.36 91.16 2.2 0.03 0 h
FRS6 64.19 9.76 90.47 2.2 0.03 0 h
FRS7 63.34 9.00 85.55 2.2 0.03 0 h
FRS8 62.48 8.54 84.63 2.2 0.03 0 h

Scots pine bark
(Pinus sylvestris) 8

PBK1 49.33 12.45 92.13 2.8 0.03 0.08 h
PBK2 48.33 12.05 92.47 2.8 0.03 0.08 h
PBK3 46.96 11.54 93.20 2.8 0.03 0.08 h
PBK4 45.98 10.94 92.73 2.8 0.03 0.08 h
PBK5 49.50 12.73 94.23 2.8 0.03 0.08 h
PBK6 48.68 12.48 94.59 2.8 0.03 0.08 h
PBK7 47.20 11.85 94.36 2.8 0.03 0.08 h
PBK8 46.05 11.18 94.24 2.8 0.03 0.08 h

(continued on next page)
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Table A.1 (continued).
Alternatives Criteria

Biomass
materials

Number of
types

Name of pellet
types

PC
(et−1)

ED
(GJ m−3)

DU
(%)

AC
(%)

SC
(%)

CC
(%)

FA
descriptive

Beech torrefied 7

BTF1 89.68 12.18 98.75 1 0 0 lm
BTF2 89.33 11.40 98.32 1 0 0 lm
BTF3 89.43 10.79 97.46 1 0 0 lm
BTF4 88.73 10.34 95.26 1 0 0 lm
BTF5 88.55 11.88 98.23 1 0 0 lm
BTF6 88.85 11.56 97.23 1 0 0 lm
BTF7 89.88 10.74 94.73 1 0 0 lm

Poplar torrefied 13

PTF1 77.70 13.29 77.61 3 0 0 m
PTF2 78.85 13.01 80.53 3 0 0 m
PTF3 78.61 12.58 77.32 3 0 0 m
PTF4 78.64 12.29 78.42 3 0 0 m
PTF5 78.64 13.24 87.53 3 0 0 m
PTF6 79.54 12.78 87.47 3 0 0 m
PTF7 79.78 12.63 85.80 3 0 0 m
PTF8 78.87 12.36 90.24 3 0 0 m
PTF9 79.01 12.12 92.70 3 0 0 m
PTF10 79.32 11.64 92.22 3 0 0 m
PTF11 79.11 11.05 91.00 3 0 0 m
PTF12 79.35 12.17 95.60 3 0 0 m
PTF13 79.62 11.36 93.53 3 0 0 m

Wheat straw
torrefied 4

WTF1 83.38 12.91 85.67 10 0.13 0.23 h
WTF2 82.47 12.31 86.60 10 0.13 0.23 h
WTF3 84.23 11.88 94.47 10 0.13 0.23 h
WTF4 82.57 10.88 91.20 10 0.13 0.23 h

∗ PC-production cost, ED-energy density, DU-durability, AC-ash content, SC-sulphur content, CC-chlorine content, FA-feedstock availability.
Table B.1
Rankings of biomass pellets for 18 input settings (scenarios).

Behavioural TOPSIS

Risk averse (θ = 2) Risk neutral (θ = 1) Risk seeking (θ = 0.1)

D SM SW A P E D SM SW A P E D SM SW A P E

REF1 4 4 6 3 3 2 3 3 3 3 2 1 7 7 8 7 7 4
REF2 2 2 3 2 1 1 2 2 2 2 1 2 6 5 6 5 5 3
REF3 1 1 1 1 2 3 1 1 1 1 3 3 3 3 3 3 3 1
REF4 3 3 2 4 4 4 4 4 4 4 5 5 1 1 1 1 1 2
REF5 8 8 8 8 7 7 7 7 7 7 7 6 8 8 7 8 8 8
REF6 6 6 5 5 5 5 5 5 5 5 4 4 5 6 5 6 6 7
REF7 5 5 4 6 6 6 6 6 6 6 6 7 4 4 4 4 4 6
REF8 7 7 7 7 8 8 8 8 8 8 8 8 2 2 2 2 2 5

BCH1 61 61 60 60 61 61 61 61 60 61 61 61 61 61 61 61 61 63
BCH2 53 53 53 50 51 50 53 53 53 50 52 50 54 54 53 52 54 50
BCH3 46 46 47 45 45 46 46 46 47 45 45 46 47 48 47 46 46 46
BCH4 42 42 42 42 41 40 42 42 42 41 41 40 41 41 42 41 41 41
BCH5 58 57 59 57 57 53 58 57 59 57 57 54 59 58 59 57 58 56
BCH6 52 49 52 48 48 48 52 50 52 48 48 49 51 52 52 50 50 49
BCH7 45 44 46 44 44 44 45 44 46 44 44 44 46 45 46 44 44 45
BCH8 41 41 41 41 42 42 41 41 41 42 42 42 42 42 41 43 43 43

SLX1 63 63 63 63 63 58 63 63 63 63 63 58 63 63 63 63 63 59
SLX2 64 64 64 64 64 60 64 64 64 64 64 60 64 64 64 64 64 61
SLX3 62 62 62 62 62 57 62 62 62 62 62 57 62 62 62 62 62 53
SLX4 55 54 55 49 52 47 54 54 55 49 50 47 53 51 54 47 49 47
SLX5 60 60 61 58 58 55 60 60 61 58 58 55 60 60 60 59 60 54
SLX6 54 55 54 52 53 49 55 55 54 52 53 48 55 55 55 51 53 48
SLX7 47 47 50 46 46 45 48 47 50 46 46 45 48 47 48 45 45 44
SLX8 43 43 43 43 43 41 43 43 43 43 43 41 43 43 43 42 42 42

POP1 38 37 38 36 37 30 38 37 38 36 37 30 38 38 39 35 38 30
POP2 34 34 34 31 34 28 34 34 34 31 34 28 34 34 34 32 34 28
POP3 28 27 29 27 27 23 28 27 29 27 27 23 29 27 29 27 27 20
POP4 25 25 25 25 25 19 25 25 25 25 25 19 25 25 26 25 25 18
POP5 36 36 36 35 36 31 36 36 36 35 36 31 37 37 37 37 36 35
POP6 32 31 31 30 30 29 32 31 31 30 30 29 33 31 32 31 31 29
POP7 26 26 26 26 26 24 26 26 26 26 26 24 27 26 28 26 26 24
POP8 24 24 24 23 24 17 24 24 24 23 24 17 24 24 24 22 24 17

(continued on next page)
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Table B.1 (continued).
Behavioural TOPSIS

Risk averse (θ = 2) Risk neutral (θ = 1) Risk seeking (θ = 0.1)

D SM SW A P E D SM SW A P E D SM SW A P E

RCG1 30 30 28 34 32 36 30 30 28 34 33 36 26 28 25 29 29 34
RCG2 21 21 21 22 22 27 21 21 21 22 22 27 21 21 21 21 21 26
RCG3 18 18 18 18 18 21 18 18 18 18 18 21 18 18 18 18 18 23
RCG4 17 17 17 17 17 18 17 17 17 17 17 18 17 17 17 17 17 19
RCG5 23 23 23 24 23 26 23 23 23 24 23 26 23 23 23 24 23 27
RCG6 22 22 22 21 21 25 22 22 22 21 21 25 22 22 22 23 22 25
RCG7 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 21
RCG8 19 19 19 19 19 22 19 19 19 19 19 22 19 19 19 19 19 22

WST1 39 39 39 39 39 38 39 39 39 39 39 38 40 40 40 40 40 39
WST2 37 38 37 38 38 39 37 38 37 38 38 39 36 36 36 38 37 38
WST3 33 32 33 32 31 32 33 32 33 32 31 32 32 33 33 33 32 33
WST4 29 29 30 29 29 33 29 29 30 29 29 33 30 30 30 30 30 32
WST5 40 40 40 40 40 43 40 40 40 40 40 43 39 39 38 39 39 40
WST6 35 35 35 37 35 37 35 35 35 37 35 37 35 35 35 36 35 37
WST7 31 33 32 33 33 35 31 33 32 33 32 35 31 32 31 34 33 36
WST8 27 28 27 28 28 34 27 28 27 28 28 34 28 29 27 28 28 31

FRS1 59 59 58 59 59 62 59 59 58 59 59 62 58 59 57 60 59 62
FRS2 57 58 56 61 60 64 57 58 56 60 60 64 56 56 56 58 57 64
FRS3 50 52 49 54 54 59 50 51 49 54 54 59 49 49 49 54 51 60
FRS4 48 50 45 55 55 63 47 48 45 55 55 63 44 44 44 49 48 57
FRS5 56 56 57 56 56 52 56 56 57 56 56 52 57 57 58 56 56 55
FRS6 51 51 51 51 49 51 51 52 51 51 49 51 52 53 51 55 55 51
FRS7 49 48 48 53 50 56 49 49 48 53 51 56 50 50 50 53 52 58
FRS8 44 45 44 47 47 54 44 45 44 47 47 53 45 46 45 48 47 52

PBK1 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16
PBK2 14 14 14 14 14 15 14 14 14 14 14 15 13 14 13 14 14 14
PBK3 12 12 11 12 12 12 12 12 12 12 12 12 11 11 11 12 12 12
PBK4 10 10 10 10 10 11 10 10 10 10 10 11 10 10 10 10 10 10
PBK5 15 15 15 15 15 14 15 15 15 15 15 14 15 15 15 15 15 15
PBK6 13 13 13 13 13 13 13 13 13 13 13 13 14 13 14 13 13 13
PBK7 11 11 12 11 11 10 11 11 11 11 11 10 12 12 12 11 11 11
PBK8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

BTF1 86 86 87 86 85 85 83 82 83 81 82 76 81 80 82 78 79 68
BTF2 84 84 85 84 84 84 84 83 84 82 83 77 83 82 83 80 82 71
BTF3 87 87 86 87 87 86 86 85 86 84 85 82 85 85 86 82 84 75
BTF4 85 85 84 85 86 87 87 87 87 86 87 84 87 86 87 85 86 79
BTF5 82 82 82 82 82 81 81 81 82 80 80 74 82 81 81 79 81 70
BTF6 83 83 83 83 83 82 85 84 85 83 84 79 84 84 85 83 83 74
BTF7 88 88 88 88 88 88 88 88 88 87 88 85 88 88 88 86 88 81

PTF1 65 69 65 72 72 74 67 71 66 72 72 73 67 71 67 72 72 78
PTF2 74 75 75 74 74 75 75 76 75 75 74 78 75 76 75 76 75 82
PTF3 75 76 74 77 76 77 73 74 73 76 75 81 73 73 73 74 74 83
PTF4 73 74 73 75 75 76 74 73 74 74 76 80 74 74 74 75 76 84
PTF5 69 68 67 71 68 71 69 72 69 71 71 71 72 72 69 71 71 76
PTF6 76 73 76 73 73 72 76 75 76 73 73 72 76 75 76 73 73 77
PTF7 77 77 77 76 77 73 77 77 77 77 77 75 77 77 77 77 77 80
PTF8 68 67 68 67 67 69 68 67 68 69 67 69 68 69 68 70 69 72
PTF9 66 66 66 66 66 66 66 66 67 66 66 66 66 66 66 66 66 66
PTF10 71 71 71 68 70 68 70 68 71 68 69 68 69 68 70 68 68 69
PTF11 70 70 70 69 69 70 71 70 70 70 70 70 71 70 71 69 70 73
PTF12 67 65 69 65 65 65 65 65 65 65 65 65 65 65 65 65 65 65
PTF13 72 72 72 70 71 67 72 69 72 67 68 67 70 67 72 67 67 67

WTF1 81 81 81 81 81 83 82 86 81 88 86 88 86 87 84 88 87 88
WTF2 79 79 79 79 79 80 80 80 79 85 81 87 80 83 80 87 85 87
WTF3 80 80 80 80 80 79 79 79 80 79 79 83 79 79 79 81 78 85
WTF4 78 78 78 78 78 78 78 78 78 78 78 86 78 78 78 84 80 86

D-DIRECT, SM-SMART, SW-SWING, A-AHP, P-PAPRIKA, E-Entropy;
REF- reference (55-60% Picea abies and 40-45% Pinus sylvestris), BCH-beech stem wood chips (Fagus ssp.), SLX-whole stem willow chips (Salix ssp.), POP-poplar stem
ood chips (Poplar ssp.), RCG-reed canary grass (Phalaris arundinacea), WST-wheat straw (Triticum ssp.), FRS-forest residues, PBK-Scots pine bark, BTF-beech torrefied,

PTF-poplar torrefied, WTF-wheat straw torrefied.
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