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A B S T R A C T   

Modelling crop yield loss due to pathogens remains a challenge due to the complex and dynamic interactions 
involved. Here, we develop a parsimonious dynamic yield loss simulation model that couples a simple epide-
miological model of late blight disease with a basic model of potato crop growth. The model is parameterized 
using 17 years of field data on disease progress of potato late blight and potato yield in southern Sweden. 
Simulated actual yields (yields obtained under the presence of Phytopthora infestans) correlated well (R2 = 0.66) 
with the actual yields observed in field trials, using a few widely accessible meteorological variables. The results 
also underline the impact of disease growth rate and the time of infection on yield losses, with relatively low 
rates and early onset of the epidemic producing large yield reductions. In addition, the importance of increasing 
temperature due to climate change on both potato crop and Phytophthora infestans development was simulated, 
suggesting that higher temperatures may be more detrimental for the pathogen than for the crop. Additional 
ways to expand the model are discussed, and the inclusion of other diseases and pests are encouraged, indicating 
the potential to improve disease management in potato production.   

1. Introduction 

Increased food security is at the heart of the UN 2030 Agenda for 
sustainable development (IPBES, 2019; UN, 2015). However, the growth 
in global population, the depletion of vital natural resources used in 
agriculture and environmental stress associated with the ongoing 
climate change undermine the achievement of this goal. Primary food 
production must be increased without use of additional resources such 
as energy and arable land (Davis et al., 2016; Godfray et al., 2010). In 
addition, crop pests and diseases (CPDs) cause up to 40% production loss 
in some of the major crops at global scale, constantly jeopardizing food 
security (Savary et al., 2019). One of the most sustainable ways to 
improve agricultural productivity is to reduce the substantial yield los-
ses caused by CPDs. This could be achieved by formulating better inte-
grated pest management approaches that support a reduction in 
chemical inputs in line with eco-evolutionary principles (Burdon et al., 
2019; He et al., 2021b, 2021a; Zhan et al., 2015). 

Modelling agricultural systems has been extensively used over the 
last decades to better understand the contribution of different compo-
nents (production, land use, natural resources, diseases and human 
factors) and their complex interactions to primary production (Jones 

et al., 2017). In addition, climate change is affecting both crop pro-
ductivity and plant disease epidemiology. The impacts on crop pro-
duction from these two factors are intertwined and hard to separate and 
therefore modelling is an important tool to facilitate the design and 
adoption of efficient disease control strategies (Juroszek and von Tie-
demann, 2015). 

Until recently, statistical models, based on empirical relationships 
between yield and environmental factors over several experimental 
observations in a specific location or region, have been the dominant 
approach when it comes to assessing yield losses (Jones et al., 2017). 
However, these models tend to have a limited use when they are applied 
in locations with environmental conditions different from those where 
the models were originally developed (Donatelli et al., 2017). This be-
comes especially troublesome under the ongoing climate change, since a 
statistical model developed under specific environmental conditions 
may become of no or little use even in the same location/region where it 
was developed. An alternative approach is the use of mechanistic, 
process-based models that rely on the characterization of fundamental 
and dynamic physical and biochemical interactions between the crop 
and its abiotic and biotic environment (Donatelli et al., 2017; Esker 
et al., 2012). 
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Mechanistic simulation models have become important tools to 
quantitatively improve our knowledge of complex biological systems 
such as crop-pathogen-environment systems by integrating the knowl-
edge derived from decades of empirical research into key processes and 
mechanisms that determine the behaviour of the system of interest 
(Wallach et al., 2019). Because of this integrating and assimilatory ca-
pacity, mechanistic models are able to simplify the complexity that 
characterizes the interplay between crops, the environment and their 
pests and diseases. Simulating crop losses through mechanistic models 
allows the quantification of damages caused by one or several stressors 
(biotic and/or abiotic) in a given agroecosystem (Donatelli et al., 2017; 
Esker et al., 2012; Savary et al., 2018), thus enabling the adoption of 
tactical (as part of decision support systems; Isard et al., 2015, Magarey 
et al., 2002) and strategic decisions for disease and pest management 
(van Oijen, 1992; Willocquet et al., 2004). Paramount in this type of 
modelling is the concept of damage mechanisms, i.e., in what way a 
given harmful organism (CPDs and also weeds) affects the host plant’s 
physiological status to support its growth and development (Boote et al., 
1983; Gaunt, 1995; Rouse, 1988). 

Potato is among the most important food crops in the world in terms 
of human consumption (Devaux et al., 2020). However, potato pro-
duction is continually threatened by both abiotic factors (soil fertility, 
water supply, frosts and droughts) and biotic factors (CPDs), the latter 
causing up to 20% losses of the global potato production (Savary et al., 
2019). The oomycete Phytophthora infestans (Mont.) de Bary, the causal 
agent of the late blight disease in potato, is considered to be the most 
harmful pathogen in potato crops due to its rapid evolution, high 
adaptability and short epidemic cycle (Leesutthiphonchai et al., 2018). 
Potato late blight was one of the main factors involved in the infamous 
famine in Ireland in the mid nineteenth century (Bourke, 1955; Yoshida 
et al., 2013). Under favourable weather conditions, P. infestans can 
destroy the entire canopy of a potato crop within 10–15 days, resulting 
in total yield losses (Rakotonindraina et al., 2012). Because of this, late 
blight control today largely relies on repeated fungicide applications. 
This dependence has detrimental effects on the environment, and 
greatly threatens agricultural sustainability. 

Many potato growth models are currently available. However, the 
majority of these models only describe the direct impacts of abiotic 
factors on the growth and development of the potato plants and the 
associated yield losses, but overlook the effects of biotic CPDs on yield 
reduction (Raymundo et al., 2014). Only very few potato 
agro-physiological models have incorporated CDPs routines in their 
structure. For example, Johnson (1992) incorporated two diseases and 
one pest in a potato growth model, but did not include the effect of 
P. infestans. Kaukoranta (1996) and Rakotonindraina et al. (2012) 
simulated potato yield losses caused by P. infestans, but the pathogen’s 
damage mechanisms was only partially characterized. On the other 
hand, van Oijen (1992) and Skelsey et al., (2010, 2009a, 2009b) used 
more comprehensive approaches to characterize the damage mecha-
nisms of P. infestans on potatoes. However, limitations in the empirical 
modelling used to represent potato growth confine the extrapolation of 
their forecasts. 

These modelling gaps in the characterisation of potato yield loss 
constitute the rationale for the work presented here. The objectives of 
this study were to (i) develop and test a flexible, user-friendly and 
simplified mechanistic model for the assessment of potato yield losses 
caused by P. infestans as a primary pathogen on this crop, (ii) determine 
the importance of the rate of disease growth and the time of the onset of 
the epidemic on the yield reduction caused by P. infestans, and (iii) 
evaluate the model sensitivity to changes in meteorological variables in 
relation to near-future climatic change. The ultimate aim is to develop 
and validate an accessible potato yield loss model that can be used to 
improve current integrated pest management (IPM) strategies against 
late blight by incorporating other biotic (i.e., emerging diseases) and 
abiotic (i.e., environmental factors) for a more sustainable global food 
production. 

2. Material and methods 

2.1. Field trials and database 

The yield loss simulations and statistical analyses conducted in this 
study were based on a database consisting of 71 field trials performed in 
three different locations (Lilla Böslid, Mosslunda and Borgeby) in 
southern Sweden during 1993–2017. Treatments in the field trials 
comprised different fungicide application programs with the objective to 
test their efficacy in controlling P. infestans. Certified seed of the cultivar 
Bintje, a cultivar that is highly susceptible to late blight, was used in all 
trials. Standard agronomical practices were followed, including com-
pound fertiliser and manganese applications, irrigation, and control of 
weeds, insect pests and early blight (Alternaria solani). 

In each trial, basic agronomical data such as date of planting, 100% 
plant emergence and chemical desiccation was recorded. Date of 50% 
plant emergence was also recorded in 31 out of the 71 trials. The dif-
ference between date of 100% and 50% plant emergence was calculated 
in these trials and the average was used to estimate the date of 50% plant 
emergence in the trials where it was not recorded. An untreated control 
where no fungicides to control late blight were applied was also 
included in all trials. The yield obtained from the most effective fungi-
cide treatment was considered to represent the attainable yield, that is, 
the yield produced by a crop free (usually above 99%) of disease, grown 
with optimal supply of soil nutrients and water (Rabbinge, 1993; Zadoks 
and Schein, 1979). The yield from the untreated control plots repre-
sented the actual yield, and the yield loss was computed as the difference 
between the attainable and the actual yield. Actual yield here therefore 
differs from the yield that farmers obtain applying any control measure 
(e.g., fungicides) to minimize the detrimental effects of CPDs. Recorded 
yield values, in tons fresh matter ha-1, were converted into grams dry 
matter m-2 using a 20% conversion factor. 

Plots were monitored for late blight severity usually once a week 
during each growing season, generally starting in June. Date of observed 
disease and its severity (% leaf area infested) was scored following the 
assessment key by Syrén and Wiik (1993), which is a version adapted to 
Swedish conditions of the widely used EPPO scale that allows for a more 
precise estimation of the start of the infection. The same person made all 
the disease severity assessments across all years and treatments, mini-
mizing variability in the disease assessments. The field trials were 
naturally infected by local strains of P. infestans. A more detailed 
description of the field trials can be seen in Wiik (2014). 

2.2. Model description 

2.2.1. General specifications 
The model used in this study, named POTATOPEST, is an adapted 

version of WHEATPEST and RICEPEST, two mechanistic, process-based 
models originally developed for wheat (Willocquet et al., 2008) and rice 
(Willocquet et al., 2004, 2002, 2000), respectively. Like its predecessors, 
POTATOPEST is a simplified simulation model in which only the main 
agro-physiological processes that define the development of the potato 
plant are taken into account (such as radiation interception, canopy 
development, tuber initiation and bulking, etc.), leaving out other pro-
cesses that contribute little to the behaviour of the system (such as stem 
population density or canopy architecture) (Savary et al., 2018). At the 
same time, POTATOPEST allows the incorporation of damage mecha-
nisms caused by one or more potato diseases and/or insect pests. 
Damage mechanism refers to the physiological processes of the crop that 
are impaired by a harmful organism (Boote et al., 1983; Savary and 
Willocquet, 2014). There are two damage mechanisms that P. infestans 
inflict on potato plants; (1) it reduces the green leaf area available for 
photosynthesis (Bangemann et al., 2014; Haverkort and Bicamumpaka, 
1986; Rossing et al., 1992; Waggoner and Berger, 1987); and (2) it ac-
celerates leaf senescence in the remaining, lesion-free area of the leaf, 
thus indirectly reducing the green leaf area able to intercept radiation 
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(Bangemann et al., 2014; Skelsey et al., 2009b; van Oijen, 1991a). 
Hence, the rationale in this model is to compute, as a first stage, the 
growth, development and yield of the potato plant in absence of injuries 
caused by P. infestans (attainable yield), followed by the quantification 
of the yield reduction caused by the pathogen (actual yield). The time 
step in the model is 1 day and the unit of mass (grams) refers to dry 
matter (DM). 

The computation of the growth and development of the potato plant 
and the effects of pests and diseases is grounded in the principles of 
stocks, flows, feedbacks and delays of system dynamics theory (Savary 
and Willocquet, 2014; Sterman, 2000). Stocks represent the amount of 
important state variables (such as the biomass of the different plant 
organs) and can only be modified by in-flows (rate at which the stock is 
increasing over time) and out-flows (the rate at which the stock is 
decreasing over time). They represent the accumulation (integration) of 
the net flow and can be expressed as a set of differential equations: 

d(stock)
dt

= inflow(t) − outflow(t)

2.2.2. Attainable yield modelling 
The main variables of the POTATOPEST model and their units are 

described in Table 1 and its graphical structure is shown in Fig. 1. A full 
account of the model variables and details of the equations can be seen 
in the Supplementary Fig. 1 and Supplementary Table 1, as well as the R 
script with the code to implement the model. Unlike plant growth, which 
is a continuous physiological process, the development stage (DS) of the 
plant refers to the plant age and phenological development, which de-
termines the partitioning of photoassimilates to the different plant or-
gans as well as the natural leaf senescence. The DS variable in 
POTATOPEST takes discrete unitless values, with 0 at 50% plant 
emergence, 1 at tuber initiation and 2 at plant desiccation and harvest 
(Kooman et al., 1996; Penning de Vries and Laar, 1982). 

Temperature was considered the only environmental factor driving 
potato phenological development in POTATOPEST. Short photoperiods 

(ca. 10 h) promote tuber initiation, while longer photoperiods (ca. 15 h) 
have little or no effect on plant development (Streck et al., 2007). 
Therefore, the effect of photoperiod in plant development was not 
included in POTATOPEST due to the long photoperiods occurring in 
northern Europe during mid-spring and summer when potato crops are 
grown (Pulatov et al., 2015). 

Development stages (DS) in POTATOPEST are simulated based on 
growing degree-days, as the sum of effective temperature that the plant 
needs to accumulate to move from one phenological stage to another. 
The effective temperature was calculated following a nonlinear function 
as: 

ET =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

0, Td < Tmin

(
Td − Tmin

Topt − Tmin

)(
Tmax − Td

Tmax − Topt

)

(
Tmax − Topt
Topt − Tmin

)

(
Topt − Tmin

)
, Tmin <Td <Tmax

0, Td > Tmax

(1)  

where ET is the effective temperature, Td is the daily average tempera-
ture obtained from weather stations, and Tmin, Topt and Tmax are the 
minimum, optimum and maximum temperatures, respectively, that 
determine the range of temperatures under which potato plant develops, 
and are set to 2 ◦C, 22 ◦C and 35 ◦C (Pulatov et al., 2015). The use of a 
nonlinear function offers a realistic description of the relation between 
growing degree-days and the development rate, as the detrimental ef-
fects of temperatures that are above the optimal temperature are taken 
into account (Zhou and Wang, 2018). Growing degree-days was set to 
217 ◦C-day for the onset of tuber initiation (DS=1) (Kaukoranta, 1996), 
while for the desiccation and harvest stage (DS=2) it was set as a 
function of the length of the growing period as follows: 

GDDM = 134.6+(12.8 • GS) (2)  

where, GDDM represents the Growing degree-days at maturity (◦ C-day), 
GS is the growing periods (from 50% plant emergence to dessication, in 
days). 

Biomass production is represented in the model as a pool of assimi-
lates (PA) produced daily by the photosynthetic activity, and is based on 
the Monteith (1977) approach, by which biomass production is pro-
portional to the radiation intercepted by the canopy: 

GR = PAR •
(
1 − e− k•LAI) • RUE (3)  

where GR is the growth rate, PAR is the photosynthetically active ra-
diation, and was assumed to be 50% of the total radiation reaching the 
crop canopy (Monteith and Unsworth, 2013), k is the coefficient (con-
stant) of light extinction and was set to 0.55 (Kaukoranta, 1996), RUE is 
the radiation use efficiency and represents the rate at which the inter-
cepted radiation is converted into biomass (Monteith, 1977). 

RUE is considered to be constant when crops are grown under good 
agronomic conditions (no water nor soil nutrient limitations) (Madden 
et al., 2007). LAI is the leaf area index and is determined as: 

LAI = LB • SLA (4)  

where LB is the leaf biomass and SLA represents the specific leaf area, 
with a constant value of 0.03 m 2 g-1 (Kabat et al., 1995). The pool of 
assimilates (PA) is partitioned to the different plant organs (leaves, 
stems, tubers and roots) on a daily basis (no delay assumed), constituting 
the leaf biomass (LB), stem biomass (SB), tuber biomass (TB) and root 
biomass (RB) stocks. Their rates (LA, SA, TA and RA, respectively) at 
which they are filled are computed as the product of the PA and their 
coefficients of partitioning (CPL, CPS, CPT and CPR, respectively), 
which in turn depend on the DS. The values of these coefficients were 
taken from Kabat et al. (1995), and are available in the Supplementary 
Table 1. 

Table 1 
Description of the main variables of the model.  

Acronym Definition Unitsa Value 

State variable    
PA Pool of assimilates g  
LB Leaf biomass g  
SB Stem biomass g  
TB Tuber biomass g  
RB Root biomass g  

Flows    
GR Growth rate g d-1  

LA Leaf allocation g d-1  

SA Stem allocation g d-1  

TA Tuber allocation g d-1  

RA Root allocation g d-1  

LS Leaf senescence g d-1  

Auxiliary variables    
DS Development stage − 0–2 
PAR Photosynthetically active radiation MJ m-2 d-1  

k Coefficient of light extinction − 0.55 
LAI Leaf area index −

RUE Radiation use efficiency g MJ-1  

SLA Specific leaf area m2 g-1 0.03 
CPL Coefficient of partitioning to leaves − f(DS)b 

CPS Coefficient of partitioning to stems − f(DS)b 

CPT Coefficient of partitioning to tubers − f(DS)b 

CPR Coefficient of partitioning to roots − f(DS)b 

RLS Rate of leaf senescence d-1 f(DS)b 

ST Carbohydrates in seed tuber g d-1 1, 0c 

S Disease severity of late blight − 0–1  

a Biomass units (grams) refer to dry matter; 
b Values depend on the development stage and are available in the Supple-

mentary Table 1. 
c Value of ST is 1 g DM for the first 20 days after plant emergence, then 0; 
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LB is further modified by the dynamics of natural leaf senescence rate 
(LS) as follows (Kabat et al., 1995): 

LS =

{
LB⋅RLS, LAI ≤ 4

LB • {RLS + (0.03 • (LAI − 4)/4 ) }, LAI > 4 (5)  

where RLS is the relative rate of leaf senescence and is a function of DS. 
Eq. 5 accounts for the effect of shelf-shading so that when the plant is 
fully developed (LAI > 4) the rate of leaf senescence is accelerated due to 
the lack of light reaching the lower leaves. 

To account for the remobilization of carbohydrates contained in the 
seed tubers (ST) during the early stages of growth, an average addition 
to the PA of 1 g d-1 for the first 20 days after plant emergence is intro-
duced in the model (Johnson et al., 1986). Carbohydrate remobilization 
from stems or leaves of mature plants was not included in the model as 
chemical desiccation is usually applied both in field trials and in com-
mercial production when the plant is still (partially) green. Based on 
this, it is assumed that there was no redistribution of carbohydrates from 
these organs to the tubers. 

Initial values of 1, 1, 1, 0 and 1 g are assigned to the PA, LB, SB, TB 
and RB respectively to start the modelling process, representing the 
approximate weight that could be expected for the different plant organs 
at 50% plant emergence. The model operates at 1 m2 surface of potato 
crop. Simulations start at 50% plant emergence and ends when potato 
plants are desiccated prior to harvest. 

2.2.3. Actual yield modelling 
POTATOPEST incorporates the two-damage mechanism for 

P. infestans described earlier. Stem lesions are not included in the model 
because of their negligible effect on yield loss compared to the leaf le-
sions (van Oijen, 1991a). The reduction in green area of leaves caused by 
P. infestans is proportional to the disease severity (fraction of leaf area 
covered by lesions) and the impact on LAI is calculated as: 

LAI = LB • SLA • (1 − S) (6)  

where S is the disease severity recorded in the untreated plots, expressed 
as the leaf area in a proportion scale, with values ranging from 0 to 1 as 
the epidemic develops. In order to compute the second damage mech-
anism of P. infestans in potato plants (LS accelerator), and based on 
experimental results (van Oijen, 1991a), S was set to cause a propor-
tional reduction in the lesion-free area of LB as follows: 

LS =

{
LB • (RLS + S), LAI ≤ 4

LB • ((RLS + 0.03 • (LAI − 4)/4 ) + S ), LAI > 4 (7)  

2.2.4. Model calibration and sensitivity analysis 
For the attainable yield, the model was calibrated separately for the 

years 2001–2017 using, for each year, daily temperature, daily global 
solar radiation and the number of days from 50% plant emergence to 
desiccation as the main model inputs. Daily temperature and solar ra-
diation data were obtained from automatic weather stations belonging 
to the Swedish Meteorological and Hydrological Institute (SMHI) and 
the Lantmet consortium weather stations network. RUE or any of the 
other model variables related to it (LAI, radiation intercepted) were not 
assessed in any of the field trials as their main goal was to test the ef-
ficacy of different fungicide mixtures and dosages in controlling late 
blight. Thus, RUE values were adjusted manually so that the simulated 
attainable yield equalled the attainable yield measured in the treated 
plots of the field trials, that is, RUE was set at values that resulted in 
matching simulated yield and measured attainable yield. The purpose of 
this is to use the calibrated model to produce yield estimations when the 
disease is present (actual yield) and to compare those estimations with 
the actual yield measured in the field. 

A set of 100 simulations were conducted to assess the sensitivity of 
the model to variations in temperature and solar radiation. Each simu-
lation was run using a thermal time of 1340 ◦C-day (representing the 
average thermal time at maturation obtained from the field trials in the 
calibration process) to set the end of simulation (DS=2), and tempera-
ture and PAR were the only variables left to vary from one simulation to 
another. In order to determine realistic ranges for temperature and solar 

Fig. 1. Simplified stock and flow diagram of POTATOPEST. Stocks (rectangles) represent state variables; flows (material channels joining two rectangles, or 
rectangle-cloud) are rates of change of state variables with time; blue lines represent information channels which convey information that is not stored; red lines are 
information channels representing the two damage mechanisms of P. infestans on potato plant; clouds are sources or sinks and represent the boundaries of the system. 

J. González-Jiménez et al.                                                                                                                                                                                                                    



Field Crops Research 299 (2023) 108977

5

radiation (PAR) to be used in the sensitivity analysis, a seasonal mean 
temperature (mean of the daily average temperatures during the 
growing season of a given year) and a seasonal mean PAR (mean of the 
daily average PAR during the growing season of a given year) were 
calculated for 2001–2017. The Latin Hypercube Sampling (LHS) was 
then used as a sampling method to generate 100 data sequences, each 
sequence consisting of a pair of seasonal mean temperature and seasonal 
mean PAR values (Ford and Flynn, 2005). Prior to the sensitivity anal-
ysis, regression analyses between seasonal mean temperature, seasonal 
mean PAR and RUE were conducted to check for interdependencies 
between these three input variables since independent inputs are 
required for the percentile intervals generated by the model after the 
100 simulations to be trusted (Duggan, 2019; Ford and Flynn, 2005). 
Since a negative correlation was found between RUE and seasonal mean 
PAR (RUE = -(− 0.4192 *PAR) + 6.2852, r2= 0.61), LHS was used to 
generate 100 sets of values for the seasonal mean temperature and 
seasonal mean PAR variables only, and RUE values were obtained from 
the equation shown above. 

A second, casual sensitivity analysis was performed to assess the 
effect of the rate of disease growth and the time of infection on tuber 
yield reduction (Supplementary Fig. 2 and Supplementary Table 1). 
Simulations were conducted at different rates of disease growth and 
times of infections, at an average temperature of 16.5 ◦C, average PAR of 
8.5 MJ d-1 and 94 days for the growing period. 

The accuracy and precision of the model was evaluated by visually 
comparing the measured versus actual yields upon the 1:1 line (which 
represents the perfect match) in a scatterplot (Penning de Vries and Laar, 
1982), and by a linear regression between the measured and actual pair 
values. 

2.2.5. Rate of disease growth and time of infection analysis 
Statistical analyses were performed to assess the impact of the dis-

ease severity and the time of infection on the yield loss using the yield 
loss model. The disease progress curves (DPC) for each year 
(1993–2017) and location were fitted using a linearized form of the 
logistic function defined as: 

ln
(

y
1 − y

)

= ln
(

y0

1 − y0

)

+ r • t (8)  

where y is the disease severity (in a proportion scale, ranging from 0 to 
1); y0is the disease severity at the onset of the epidemic; r is the rate of 
disease growth (d-1) and is sometimes called “apparent infection rate” 
(Van der Plank, 1963), and t represents the time (days after 50% plant 
emergence) (Madden et al., 2007). 

The effect of time of plant infection (onset of epidemic) on yield 
reduction was characterized using a nonlinear least squares regression 
model: 

ζ(t) = α • e− γ•t (9)  

where ζ(t) is the loss function representing the relative yield loss, 
defined as the difference between attainable yield and the actual yield 
divided by the attainable yield; α is the maximum relative yield loss at 
plant emergence (t = 0) when the crop is infected; and γ is the tolerance 
of the plant to disease (d-1), that is, the ability to withstand the harmful 
effects caused by a given pathogen when it is present in the plant 
(Madden et al., 2000). Time of infection (t) was estimated following  
Table 2. For example, if the observed disease severity in the first 
assessment was 0.01%, the onset of the epidemics was estimated to be 5 
days before the first assessment day (see Wiik, 2014 for details). 

2.3. Scenario analysis 

We used POTATOPEST model to generate estimations of potential 
yields and yield losses (absolute and relative) caused by P. infestans 
under different climate scenarios and time periods. Temperature is 

decisive in disease development (Chaloner et al., 2020), and was used as 
the sole climate indicator to run the scenario analysis. Thus, rt (rate of 
disease growth) was made dependant of temperature using a nonlinear 
function (similar to the one used to simulate DS) as follows: 

rt =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

0, Td < TPmin

(
Td − TPmin

TPopt − TPmin

)(
TPmax − Td

TPmax − TPopt

)

(
TPopt − TPPmind
TPmax − TPmin

)

(
rOpt

)
, TPmin <Td <TPmax

0, Td >TPmax

(10)  

where, TPmin, TPopt and TPmax were the minimum, optimal and maximum 
temperatures, respectively, at which P. infestans develops, and corre-
spond with values of 4.2 ◦C, 20.2 ◦C and 27.7 ◦C (Bebber et al., 2020; 
Chaloner et al., 2020). The parameter rOpt represents the maximum rate 
of disease development at TPopt , and represents a theoretical or experi-
mentally established value, rather than the maximum value obtained in 
a specific experiment (Yan and Hunt, 1999). It was set to 0.43 d-1 as the 
average r value of the DPCs from the 1993–2017 field trials (see Section 
3.3. Disease progress curves and time of infection below). 

Temperature projections at regional scale (southern Sweden) were 
generated from an ensemble of several different regional climate models 
forced with several different global climate models (https://www.smhi. 
se/en/climate) for this scenario analysis (Table 3). These temperature 
projections were used to estimate rates of disease growth, which in turn 
were used to simulate yield losses at the different time windows and 
climatic scenarios. 

Under two greenhouse gas emissions scenarios (RCP4.5 and RCP8.5), 
the increase in temperature for three-time windows (2011–2040, 
2041–2070 and 2071–2100) for the growing season (June-August) were 
obtained from the ensemble for southern Sweden (Skåne county). This 
increase was calculated by comparison to a reference period 
(1971–2000) of observational data. The period 2001–2017, which is the 
period used for the calibration of POTATOPEST model in this study, was 
also included in the scenario analysis, and is referred to as the baseline 
period. All the scenario analyses were conducted at a fixed growing 
season of 94 days, an average PAR of 8.3 MJ m-2 d-1, a RUE of 2.8 g MJ-1 

and an onset of epidemics at 35 days after 50% plant emergence with an 
initial disease (y0) of 0.001 (Eq. 8). 

The simulation model for potato yield loss was first developed in 
Vensim PLE+ 8.2 (Ventana Systems, Inc.), then implemented in the R 
environment (R Core Team, 2021). To solve the ordinary differential 
equations, deSolve (Soetaert et al., 2010) was used, and the FME package 
(Soetaert and Petzoldt, 2010) allowed the implementation of the Latin 
Hypercube Sampling algorithm for the comprehensive sensitivity anal-
ysis. Function nls was used to fit Eq. (9). 

3. Results 

3.1. Attainable yield modelling 

A preliminary analysis of measured attainable tuber yield (DW) 
showed that there was a large variation across the period 1993–2017, 

Table 2 
Estimation of the onset of the first attack of Phytopthora infestans based on the 
observed severity of the first assessment day.  

% Observed disease severity Number of days adjustmenta 

0.001% 1 
> 0.001–0.0099 3 
0.01–0.099 5 
0.1–1.0 7 
> 1.0 9  

a Reduction of days that was applied to estimate the onset of the epidemic 
(first attack). See text for details 
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ranging from 700 g m-2 to 1600 g m-2, with an average and standard 
deviation of 1160 and 186 g m-2, respectively. Calibrated average RUE 
(and their standard deviations) was 2.9 ( ± 0.6), 2.7 ( ± 0.5) and 2.8 
( ± 0.6) g MJ-1 for Lilla Böslid, Mosslunda and Borgeby locations, 
respectively (average 2.8 g MJ-1, Table 4). Seasonal mean temperature 
ranged between 14.7 and 18.3 ◦C, and seasonal mean PAR varied be-
tween 5.8 and 10 MJ m-2 d-1 (Table 4). 

In general, simulated LAI values (data not shown), taken as a proxy 
for canopy growth, increased rapidly after plant emergence to reach a 
maximum value between 4 and 5.5, followed by a steady decrease until 
the desiccation day when the haulm was killed. 

The comprehensive sensitivity analysis of the tuber yield conducted 
to assess the influence of meteorological input variables on the simu-
lated attainable yields is shown in Fig. 2. Most of the 100 simulations 
ranged within 900–1200 g m-2. Half of the simulations were clustered 
within a small range (1100–1200 g m-2) whereas the other half varied in 
a wider range (900–1100 g m-2). Increasing the number of simulations 
to 200 or even 400 did not substantially change the range of attainable 
yield substantially (data not shown). Overall, mean temperature and 
radiation had a moderate effect on the simulated attainable yield under 
optimal supply of water and soil nutrients. 

3.2. Actual yield modelling 

In general, simulated actual yields for the period 2001–2017 showed 
good agreement when compared to the actual yield measured in the field 
for the same period (Fig. 3). 

The linear regression analysis showed that simulations accounted for 
66.6% of this variation (r2), with a slope of 0.76 and an intercept of 
206.1 g DM m-2 (p < 0.001, n = 47, d.f. = 45). Standardized residuals 
were randomly distributed around zero over the range of simulated yield 
(data not shown), with a slightly higher number of positive values (low 
predictions) compared to negative values. There were two points (Bor-
geby, 2014; Mosslunda, 2015) where the difference between simulated 
and actual was more pronounced (with values around 2.5). 

The casual sensitivity analysis carried out to assess the effect of 
disease growth rate and time of infection on the actual yield showed a 
marked response to both variables (Fig. 4). 

Simulations showed that even at relatively small r, yield reductions 

(difference between the attainable yield and the actual yield) were 
substantial but, as r values increased, the magnitude of the reduction 
decreased (Fig. 4A and B). On the other hand, the magnitude of yield 
reductions remained constant as the time of infection (onset of 
epidemic) took place earlier in the growing season (Fig. 4C and D). 

3.3. Disease progress curves and time of infection 

All DPCs recorded in the untreated plots (period 1993–2017) 
reached 100% severity, with variations in the start of the infection and 
in the slope of the curve. The logistic model fitted most of the DPCs well, 
with coefficients of determination (r2) above 0.9 in 88% of the total 
DPCs, and the remaining cases with values above 0.8 (except one single 
case, with a r2 of 0.73). The rate of disease growth parameter (r) ranged 
from 0.17 d-1 to 0.77 d-1, with an average and standard deviation of 0.43 

Table 3 
Historical (reference and baseline) temperatures measured in southern Sweden. Temperature increases projections under two emission scenarios (RPC4.5 and RPC8.5) 
and different time windows. Different periods refer to the following time windows: Reference (1971–2000); Baseline (2001–2017); 2025 (2011–2040); 2055 
(2041–2070); 2085 (2071–2100). rt represents the simulated rate of disease growth as a function of projected temperatures at the different time windows.   

Reference Baseline RCP4.5 RCP8.5  

2025 2055 2085 2025 2055 2085 

Temperature (◦ C) 15.4 16.6 16.7 17.5 18.0 16.8 18.0 19.7 
r (d-1) 0.582 0.580 0.579 0.562 0.546 0.577 0.546 0.462  

Table 4 
Summary statistics of the four input variables obtained in the model calibration 
(2001–2017).   

Seasonal mean 
Temperature (◦C) 

Seasonal mean 
PAR (MJ m-2 d- 

1) 

RUE (g 
MJ-1) 

Growing 
Period (d) 

Average 16.57 8.30 2.80 94.21 
Standard 

deviation 
0.79 1.04 0.56 6.74 

Maximum 18.27 9.95 4.50 107.00 
Minimum 14.73 5.75 1.85 74.00 
Quartiles     

1st (25%) 16.05 8.15 2.45 90.00 
Median 16.54 8.50 2.70 95.00 
3rd (75%) 17.14 8.83 2.98 99.00 

Skewness 0.10 -0.84 0.96 -0.51 
Kurtosis 0.11 0.28 0.88 0.51  

Fig. 2. Simulated tuber attainable yield. Each line represents one simulation 
out of 100 with a specific pair of temperature and PAR values varying within 
the ranges set in Table 4, with 94 days as a simulation time and RUE dependent 
on PAR. Percentages represent percentile intervals so that 50% represents the 
median of all the simulations. Yield units are in grams tuber dry matter per 
square meter. 

Fig. 3. Comparison of the simulated and the measured tuber yield (g DM m-2) 
for the period 2001–2017 in untreated plots (actual yield). Each dot represents 
one year at the specified location (see legend). Dashed line represents the 1:1 
line. Solid line represents the regression line. 
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d-1 and 0.16 d-1, respectively. There was one single extreme case with a r 
value of 0.95 d-1, corresponding with the epidemic of 2006. In this year 
and location, disease severity recorded at the second assessment day was 
nearly 3%, followed by a 99% severity in the next assessment, after only 
6 days. 

There was a large variation in the time of infection, with epidemics 
starting as soon as the plant emerged and others as late as 80 days after 
plant emergence. For example, the epidemic in 2014 in Borgeby was 
estimated to start two days before the day when 50% plants emergence 
was recorded, meaning that the plants were infected by the pathogen at 
emergence. The impact of the time of infection on yield loss decreased 
exponentially with the delay in the time of infection (Fig. 5), although 
there was a high variability. The negative exponential equation pro-
vided a reasonable fit, with an α of 0.73 and a γ of 0.015 d-1. 

3.4. Scenario analysis 

Model estimates showed a decrease of attainable yields (Fig. 6) as 
projected temperatures increase towards the end of the century for both 
emissions scenarios (Table 3), although this decrease in attainable yield 
was more pronounced for the more drastic scenario RPC8.5. The in-
crease in temperature accelerates the phenological development rate of 
the potato crop, with an earlier maturation and onset of natural senes-
cence and therefore less time for the plant to build up canopy and 
photoassimilates production. 

Yield losses (absolute and relative) caused by P. infestans (when 
fungicides are not applied) also decreased as the projected rise in tem-
perature towards the end of the century makes r decrease from its op-
timum following the nonlinear distribution function (Table 3). This 
decrease in yield loss is again more pronounced at later time windows 
when temperature projections are higher and for the more drastic 

emission scenario. Despite the reduction in projected attainable yields, 
projected actual yields (attainable yields minus losses) tended to in-
crease. This can be explained by the better ability of the potato plant to 
tolerate higher temperatures compared to P. infestans, which causes 
projected losses to be less pronounced as time progresses. 

4. Discussion 

This study presents a simulation model able to provide estimations of 

Fig. 4. Simulations showing a varying rate of disease growth, time of infection and their associated yields. Fig. 4A represents simulated DPCs at different rates of 
disease growth (but all starting at 25 days after plant emergence), while Fig. 4C represents simulated DPCs at different starting days of the epidemic (but all with the 
same rate of disease growth of 0.2 d-1). Fig. 4B and D show the simulated yields associated to the different DPCs in 4A and 4C, respectively. 

Fig. 5. Tuber yield loss as a function of the time of infection by P. infestans for 
the period 1993–2017 in potato cultivar Bintje. Points represent the different 
locations and years. Solid curve represents the predicted values from the loss 
function (Eq. 9). 
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yield loss in potato crop caused by P. infestans. The model allows for the 
quantification of the effects of some of the epidemiological traits for late 
blight commonly determined at field scale such as the rate of disease 
growth and the start of the epidemics on yield reduction and exhibits the 
potential of any disease control measure aimed at reducing these factors 
to reduce yield losses. 

Radiation use efficiency in potato crop tends to be higher than in 
other crops due to the low energy content of the starch of the tubers 
(Murchie and Reynolds, 2013). Estimates of RUE for potato crops grown 
in optimal conditions (attainable yield) have been reported to vary from 
1.81 to 3.17 g MJ-1 in The Netherlands (van Oijen, 1991b), 3.4 g MJ-1 in 
Finland (Kaukoranta, 1996), 2.0–4.0 g MJ-1 in Denmark (Zhou et al., 
2017), 3.2 g MJ-1 in Israel (Waggoner and Berger, 1987) and 3.5–3.9 g 
MJ-1 in the United Kingdom (Jefferies and Mackerron, 1989). Except for 
one single extreme value of 4.5 g MJ-1 (Table 4), the variation in cali-
brated RUE values obtained during the attainable yield modelling lay 
within the range reported in the literature obtained from empirical 
studies under optimal agronomic conditions, indicating that the model 
structure performs well. The negative relationship between RUE and 
PAR detected as a preliminary step before conducting the sensitivity 
analysis has been calculated elsewhere (Wolf and Van Oijen, 2003), 
supporting the inclusion of RUE as a dependent variable of PAR and 
therefore allowing the exploration of the effect of only the variables 
temperatures and PAR on the attainable yield in the sensitivity analysis 
(Fig. 2). Seasonal mean temperature varied by nearly 4 ◦C and PAR more 
than 4 MJ m-2 d-1 during the calibration years (2001–2017), pointing out 
the range of average temperatures and solar radiation that can be ex-
pected in a short-term climatic future and the associated potential yield 
(Table 4, Fig. 2). 

The large variability in both the attainable and actual tuber yield 
observed in the field trials is largely due to the interaction of the 
meteorological variables promoting the spread of the pathogen and 
shifts in the local pathogen population itself, with some strains more 
aggressive than others. Disease progress curves can be used to describe 
this interaction, with years showing a delayed and less steep DPC and 
other years with very steep curves starting early in the growing season. 
The POTATOPEST model incorporates the effect of the pathogen on 
yield in two different ways; first by reducing the green leaf area in a 
proportional way to the development of the DPC, and then by increasing 
the natural leaf senescence, also proportional to the DPC. The relatively 
small differences between simulated actual yield and the observed 
values (Fig. 3) indicate that the model satisfactorily incorporates these 
two damage mechanisms and that they explain a large proportion of the 
variation in yield reduction. This close match between observed and 
simulated actual yield in untreated plots is a robust criterion for the 

validity of the POTATOPEST model (Rykiel, 1996). 
However, there may be room for further improvement of the model if 

other damage mechanisms for P. infestans are documented and param-
eterized. Apart from the two mechanisms already described in this 
study, there are two other injury mechanisms characteristic of foliar 
diseases. The first of these mechanisms is the formation of virtual lesions 
adjacent to the visual lesions, where the photosynthetic activity is 
diminished despite the fact that the tissue remains symptom-free at 
naked eye (Bastiaans, 1991). To the best of our knowledge, no such 
effect has been documented for P. infestans in potato. Should this dam-
age mechanism be confirmed and experimentally quantified, its effect 
could be introduced in POTATOPEST as a reduction in LAI (and there-
fore a reduction in the radiation intercepted by the crop canopy) addi-
tional to the effects currently quantified in the model by the formation 
and development of visual leaf lesions. The second potential mechanism 
affecting yield reduction is the diversion of the host plant’s photo-
assimilates to the infected sites for the development and dissemination 
of the pathogen (Hohl and Stössel, 1976; Hohl and Suter, 1976). Again, 
no quantification or estimates of the fraction of the host’s assimilates 
diverted to the pathogen development has been reported to our 
knowledge. In very susceptible potato cultivars like Bintje these two 
processes may not be significant in terms of their contribution to yield 
reduction as the other two processes parameterized in the model already 
account for a large variation in yield loss. However, in more resistant 
cultivars, these mechanisms may explain a greater variation in yield 
reduction and warrants future research. 

In addition, P. infestans can also infect potato tubers during or after 
harvest by the spores produced in the foliage, leading to important re-
ductions in yield quality (Guenthner et al., 2001). Recently, injuries of 
the harvestable organs have been proposed as an additional damage 
mechanism (Savary and Willocquet, 2020) to be added to the already 
documented damage mechanisms that should be considered in future 
yield loss assessments. However, modelling of this specific damage 
mechanism has been sparsely studied, with inconsistent results (Nyan-
kanga et al., 2011; Wiik, 2014). Among others, epidemiological traits 
such as the level and duration of foliage blight (and therefore inoculum 
density) have been reported to influence the occurrence of tuber blight 
(Nyankanga et al., 2011). Epidemiological H-L-I-R models (Healthy, 
Latent, Infectious, Removed) are the equivalent to S-E-I-R (Susceptible, 
Exposed, Infectious, Removed) models in human and animal epidemi-
ology (Diekmann and Heesterbeek, 2000), and describe the dynamics of 
the infectious process at individual level (Madden et al., 2007). There-
fore, coupling POTATOPEST with H-L-I-R epidemiological dynamic 
models would be highly desirable, in a similar way as previous works did 
to characterise P. infestans dispersion and risk of infection at landscape 
level (Skelsey et al., 2010, 2009b), and it would allow a better charac-
terisation of tuber blight and post-harvest yield loss estimation. 

Simulated tuber yields in POTATOPEST model are very sensitive to 
changes in both rate of disease growth and time of the start of the 
epidemic; small changes in any of these parameters entail a considerable 
effect on yield reduction and therefore, from a practical disease control, 
any action that delays time of infection and reduces rate of disease 
growth can have significant reductions in yield losses. To our knowl-
edge, no attempt to characterize potato yield loss as a function of the 
time of infection by P. infestans has been done before. The parameters (α,
γ) from the loss function (Eq. 9) are usually considered to represent a 
measure of the tolerance of a plant species or cultivar to a disease. 
Mathematically, γ represents the decay rate (slope) of the yield loss 
caused by the pathogen with the time of onset of the epidemic. This 
means that at larger γ, yield losses diminish faster as the onset of the 
epidemic occurs later, whereas at smaller γ the reduction in yield re-
mains large (Madden et al., 2000). In our study, the estimation of the 
tolerance level in Bintje (α and γ parameters) was based on the data from 
25 years, during which the local pathogen population is likely to have 
changed from being dominated by a few clonal strains to a highly var-
iable sexual population (Yuen and Andersson, 2013). Therefore, this 

Fig. 6. Actual yield (with late blight), yield loss caused by P. infestans and 
relative yield loss (yield loss divided by the attainable yield, in relative units) 
estimations for two emission scenarios and different time windows Reference 
(1971–2000); Baseline (2001–2017); 2025 (2011–2040); 2055 (2041–2070); 
2085 (2071–2100). The height of each column (actual yield + losses) represents 
the attainable yield. 
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mathematical evaluation of the tolerance of Bintje can be considered as 
a good proxy of the aggressiveness of the local populations of 
P. infestans. Breeding programmes where tolerance to P. infestans is 
implemented may have a large potential to improve current plant pro-
tection strategies by breaking the co-evolutionary cycle between the 
crop resistance and the adaptation of the pathogen (Masini et al., 2019; 
Rausher, 2001). Knowledge of the population structure and adaptation 
in pathogens is important when evaluating disease tolerance and yield 
loss in field trials, which is evident from the recent rapid population 
turnover in P. infestans (Wu et al., 2020; Yuen and Andersson, 2013) and 
in other pathogens (Berlin et al., 2012; Karlsson et al., 2017). 

The estimated values for r agree with other studies. For example, 
Hannukkala et al. (2007) found an average r of 0.45 d-1 in field trials in 
Finland with cultivar Bintje. A possible explanation for the early out-
breaks, like the one recorded in 2014 in Borgeby, is the presence of 
oospores in the soil that germinated with the emergence of the first 
plants, allowing a very early onset of the disease (Hannukkala et al., 
2007; Lehsten et al., 2017; Wiik, 2014). Several studies have confirmed 
the occurrence of oospores in Sweden due to the presence of both mating 
types of P. infestans (Andersson et al., 1998; Sjöholm et al., 2013). 

In our scenario analysis, increases in the average temperature led to 
moderate reductions in attainable yield. This analysis is limited by two 
factors; 1) POTATOPEST model does not consider the stimulating effect 
of atmospheric CO2 on crop growth and tuber production. Several 
studies on potato production and climate change (elevated atmospheric 
CO2 and temperatures) suggested that elevated CO2 may offset the 
detrimental effects of high temperatures on crop development and 
yields, although there are contradicting results (Jennings et al., 2020; 
Raymundo et al., 2018), and 2) our analysis considered a fixed average 
growing season of 94 days (equivalent to 1340 ◦C-day to reach matu-
ration). Longer growing seasons with earlier planting dates have been 
proposed as a strategy to compensate for the detrimental effects of 
higher temperatures on the phenological development of potato crop in 
future climate scenarios (Naz et al., 2022; Skelsey et al., 2016), provided 
that crops are grown in nonlimiting conditions with optimal water and 
nutrients supply. On the other hand, our scenario analysis suggests that 
the rise in temperatures may push P. infestans far from its optimum 
development and therefore decrease the rate of disease growth and 
subsequent yield losses. However, this analysis is limited by two factors; 
1) the large uncertainties in projected relative humidity (RH) towards 
the end of the century diminishes the value of this parameter to deter-
mine reliable disease growth estimates. In fact, a recent study suggests 
that temperature alone was sufficient to model fungal and oomycete 
activity satisfactorily without using RH (Chaloner et al., 2021), and 2) 
P. infestans can adapt to increasing temperatures in laboratory condi-
tions (Wu et al., 2020; Yang et al., 2016), although pathogen adaptation 
in field conditions is slow compared to the increase in temperature ex-
pected in the ongoing climate change (Bebber et al., 2013). 

Despite the limitations of this scenario analysis, the approach is 
useful to inform more detailed studies and to guide potato production 
for adaptation to climate change. Traditionally, early planting in higher 
latitudes is seen as a way to adapt to warming growing season, thus 
maximizing crop production. The ongoing increase in temperatures is 
likely to reinforce this trend. However, the results of the scenario 
analysis suggest that maintaining current planting dates with late har-
vests may alleviate the impact of late blight as a consequence of the 
narrower tolerance to higher temperatures of the pathogen compared to 
the plant. Starting the growing season earlier in the year due to milder 
springs might favour the disease development and the subsequent 
decrease in tuber yield, therefore requiring prolonged fungicide appli-
cations to maintain high yields. 

In conclusion, the POTATOPEST model presented here allows the 
assessment of the damage caused by P. infestans in potato crops. The 
model produced reasonable estimates of tuber yield and its reduction 
caused by P. infestans based on relatively small number of agronomical 
input variables. The model allowed the assessment of the role that the 

rate of disease growth and the time of the start of the infection play in 
yield reduction. In addition, the effect of rising temperatures was also 
evaluated, suggesting that P. infestans might cause less yield loss as the 
pathogen deviates from its optimum development. The model can be 
adapted to other cultivars and regions, especially at high latitudes. Late 
blight is currently controlled mainly by repeated fungicide application. 
POTATOPEST could be used to analyse productivity, resistance and 
tolerance of new potato cultivars in the continuous quest of the scientific 
and growers’ community to reduce the use of fungicides due to their 
negative effects on the environment. In this context, the predictive 
model output may be used by agricultural advisors as part of IPM pro-
grams. As a mechanistic model, POTATOPEST allows the incorporation 
of other pests and diseases in future studies. In this way, it is possible to 
use the model to analyse a specific (present or future) combination of 
multiple pests and diseases characteristic of a given region of interest, 
and to evaluate improved and efficient management options. 
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J. González-Jiménez et al.                                                                                                                                                                                                                    

http://refhub.elsevier.com/S0378-4290(23)00170-3/sbref3
http://refhub.elsevier.com/S0378-4290(23)00170-3/sbref3
http://refhub.elsevier.com/S0378-4290(23)00170-3/sbref3
https://doi.org/10.1038/nclimate1990
https://doi.org/10.1038/nclimate1990
https://doi.org/10.1094/PHYTO-03-12-0041-R
https://doi.org/10.1094/PHYTO-03-12-0041-R
http://refhub.elsevier.com/S0378-4290(23)00170-3/sbref6
http://refhub.elsevier.com/S0378-4290(23)00170-3/sbref6
http://refhub.elsevier.com/S0378-4290(23)00170-3/sbref7
http://refhub.elsevier.com/S0378-4290(23)00170-3/sbref7
http://refhub.elsevier.com/S0378-4290(23)00170-3/sbref7
http://refhub.elsevier.com/S0378-4290(23)00170-3/sbref7
http://refhub.elsevier.com/S0378-4290(23)00170-3/sbref7
https://doi.org/10.1093/biosci/biz149
https://doi.org/10.1093/biosci/biz149
https://doi.org/10.1038/s41467-020-16778-5
https://doi.org/10.1038/s41467-020-16778-5
https://doi.org/10.1038/s41558-021-01104-8
https://doi.org/10.1038/s41558-021-01104-8
https://doi.org/10.1016/j.gloenvcha.2016.05.004
https://doi.org/10.1007/978-3-030-28683-5_1
http://refhub.elsevier.com/S0378-4290(23)00170-3/sbref13
http://refhub.elsevier.com/S0378-4290(23)00170-3/sbref13
http://refhub.elsevier.com/S0378-4290(23)00170-3/sbref13
https://doi.org/10.1016/j.agsy.2017.01.019
https://doi.org/10.1002/sdr.1638
https://doi.org/10.1002/sdr.1638
http://refhub.elsevier.com/S0378-4290(23)00170-3/sbref16
http://refhub.elsevier.com/S0378-4290(23)00170-3/sbref16
http://refhub.elsevier.com/S0378-4290(23)00170-3/sbref17
http://refhub.elsevier.com/S0378-4290(23)00170-3/sbref17
https://doi.org/10.1146/annurev.py.33.090195.001003
https://doi.org/10.1126/science.1185383
https://doi.org/10.1126/science.1185383
https://doi.org/10.1007/BF02410098
https://doi.org/10.1111/j.1365-3059.2006.01451.x
http://refhub.elsevier.com/S0378-4290(23)00170-3/sbref22
http://refhub.elsevier.com/S0378-4290(23)00170-3/sbref22
http://refhub.elsevier.com/S0378-4290(23)00170-3/sbref22
https://doi.org/10.1016/S2095-3119(21)63627-4
https://doi.org/10.1016/S2095-3119(21)63627-4
https://doi.org/10.3390/pathogens10101311
https://doi.org/10.1139/b76-094
https://doi.org/10.1139/b76-209
http://refhub.elsevier.com/S0378-4290(23)00170-3/sbref27
http://refhub.elsevier.com/S0378-4290(23)00170-3/sbref27
http://refhub.elsevier.com/S0378-4290(23)00170-3/sbref27
https://doi.org/10.1093/jipm/pmv013
https://doi.org/10.1016/0378-4290(89)90061-0
https://doi.org/10.1016/0378-4290(89)90061-0
https://doi.org/10.3389/fsufs.2020.519324
https://doi.org/10.3389/fsufs.2020.519324
http://refhub.elsevier.com/S0378-4290(23)00170-3/sbref31
http://refhub.elsevier.com/S0378-4290(23)00170-3/sbref31
https://doi.org/10.1016/0308-521X(86)90052-1
https://doi.org/10.1016/0308-521X(86)90052-1
https://doi.org/10.1016/j.agsy.2016.05.014
https://doi.org/10.1007/BF03356525
https://doi.org/10.1016/j.ijfoodmicro.2017.04.011
https://doi.org/10.23986/afsci.72749
https://doi.org/10.1016/S1161-0301(96)02032-1
https://doi.org/10.1094/PHYTO-04-18-0130-IA
https://doi.org/10.1094/PHYTO-04-18-0130-IA
https://doi.org/10.1371/journal.pone.0177580
https://doi.org/10.1371/journal.pone.0177580
https://doi.org/10.1094/PHYTO.2000.90.8.788
https://doi.org/10.1094/9780890545058
https://doi.org/10.1094/9780890545058
https://doi.org/10.1094/PDIS.2002.86.1.4
https://doi.org/10.1094/PDIS.2002.86.1.4
https://doi.org/10.1002/ece3.5057
https://doi.org/10.1002/ece3.5057
https://doi.org/10.1098/rstb.1977.0140
https://doi.org/10.1098/rstb.1977.0140
https://doi.org/10.1016/B978-0-12-386910-4.00008-1
https://doi.org/10.1007/978-1-4614-5797-8_171
https://doi.org/10.1016/j.eja.2021.126404
https://doi.org/10.1016/j.cropro.2010.11.019
https://doi.org/10.1007/BF03041383
https://doi.org/10.1007/BF02358033
https://doi.org/10.1007/BF02358033
https://doi.org/10.1007/BF01998073
https://doi.org/10.1007/BF01998073
https://doi.org/10.1016/j.agrformet.2015.08.266
https://doi.org/10.1016/j.agrformet.2015.08.266
https://www.R-project.org/
http://refhub.elsevier.com/S0378-4290(23)00170-3/sbref53
http://refhub.elsevier.com/S0378-4290(23)00170-3/sbref53


Field Crops Research 299 (2023) 108977

11
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