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Because of an increasing interest in crossbreeding between dairy breeds in dairy cattle herds, farmers are requesting breeding
values for crossbred animals. However, genomically enhanced breeding values are difficult to predict in crossbred populations
because the genetic make-up of crossbred individuals is unlikely to follow the same pattern as for purebreds. Furthermore, sharing
genotype and phenotype information between breed populations are not always possible, which means that genetic merit (GM) for
crossbred animals may be predicted without the information needed from some pure breeds, resulting in low prediction accuracy.
This simulation study investigated the consequences of using summary statistics from single-breed genomic predictions for some
or all pure breeds in two- and three-breed rotational crosses, rather than their raw data. A genomic prediction model taking into
account the breed-origin of alleles (BOA) was considered. Because of a high genomic correlation between the breeds simulated
(0.62-0.87), the prediction accuracies using the BOA approach were similar to a joint model, assuming homogeneous SNP effects
for these breeds. Having a reference population with summary statistics available from all pure breeds and full phenotype and
genotype information from crossbreds yielded almost as high prediction accuracies (0.720-0.768) as having a reference population
with full information from all pure breeds and crossbreds (0.753-0.789). Lacking information from the pure breeds yielded much
lower prediction accuracies (0.590-0.676). Furthermore, including crossbred animals in a combined reference population also
benefitted prediction accuracies in the purebred animals, especially for the smallest breed population.
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INTRODUCTION

Crossbreeding is the central breeding strategy in commercial
poultry and pig production, due to the benefits of heterosis.
However, except for New Zealand, crossbreeding between dairy
cattle breeds has been rarely utilized worldwide. Nevertheless,
crossbreeding has shown positive effects, primarily on functional
traits, such as fertility and health (Serensen et al. 2008; Shonka-
Martin et al. 2019), which can be economically beneficial in dairy
herds (Clasen et al. 2020). As a result, the interest in crossbreeding
in dairy herds is increasing, and farmers request genomically
enhanced breeding values (GEBVs) for crossbred animals (Clasen
et al. 2021).

Genomic evaluation has revolutionized dairy cattle breeding
within the last decade and has become the primary way of
selecting dairy cattle sires in commercial dairy breeding (Hutch-
ison et al. 2014; Méntysaari et al. 2020). With GEBVs for purebred
dairy cattle, it is possible to select future breeding sires at a very
young age, with prediction accuracies nearly as high as accuracies
for daughter-proven Al bulls for any trait. Also, genomic testing of
virgin heifers is a valuable tool for the farmers to select future
replacement heifers more accurately (Hjortg et al. 2015; Calus et al.
2015). As the cost of a genomic test has reduced rapidly in the last
few years, genomic selection of females in individual dairy herds is
becoming increasingly attractive for farmers (Wiggans et al. 2017;

Bengtsson et al. 2020). However, estimating GEBVs for crossbred
animals is not as straightforward as for purebred animals.

Crossbred animals may have genomic breed proportions (GBP)
different from breed proportions estimated from pedigrees,
especially if they are crossbred through many generations, e.g.,
in a rotational crossbreeding system (Wu et al. 2020). Thus, the
genetic makeup of crossbred animals may differ substantially even
when pedigree-based breed proportions are the same, and
crossbred animals may differ too much amongst each other to
be treated as an individual breed as a whole.

There are different suggestions on how to estimate GMs for
crossbred animals. Combining data from several breeds in a
multibreed reference population often considers homogeneous
SNP effects across all breeds (Hayes et al. 2009). For this approach to
benefit (purebred) GMs, the genetic correlation between the breeds
for the given trait needs to be high (Brendum et al. 2011; Lund et al.
2011; Karoui et al. 2012). Including crossbred animals in the
combined reference population for multibreed prediction has
benefited GMs (Khansefid et al. 2020). However, different breeds
and their crosses do not necessarily have the same effects of
quantitative trait loci (QTL). Furthermore, even if the QTL effects are
the same, the linkage disequilibrium (LD) between genome-wide
single nucleotide polymorphisms (SNPs) markers and QTL may differ
(Hayes et al. 2009; Vandenplas et al. 2016). Therefore the multibreed
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prediction model without accounting for the difference in SNP
effects between breeds may not be accurate, especially if the breeds
are relatively distant (Brendum et al. 2011; Erbe et al. 2012).

Another approach to genomic evaluation of crossbred is to
estimate SNP effects for individual pure breeds and then weigh
them accordingly with the crossbred GBP. This method is described
by VanRaden et al. (2020) and is the basis for crossbred GMs
implemented in the US dairy cattle breeding evaluation since April
2019 (Wiggans et al. 2019). VanRaden et al. (2020) evaluated the
method, and estimated accuracies of genomic predicted transmit-
ting ability up to 0.52 for milk yield. However, a limitation of this
method is that it cannot exploit crossbred animals in the reference
population. Furthermore, the methods assume the same GBP for
each SNP, which does not reflect the diverse genomic profile of
crossbreds (lbanéz-Escriche et al. 2009; Sevillano et al. 2017).

Tracing each allele back to its breed origin (BOA) and using the
estimated SNP effect for that breed yields a potentially higher
prediction accuracy for crossbred animals than assuming homo-
geneous SNP effects (Vandenplas et al. 2016; Sevillano et al. 2018).
In a simulation study, Karaman et al. (2021) proposed a multibreed
model that can accommodate a reference population of both
purebred and crossbred animals considering BOA for simulta-
neous evaluation of purebred and crossbred selection candidates.
The prediction accuracies for three-breed crosses in a rotational
crossbreeding system were similar to or higher than the traditional
multibreed predictions, which combined data from all animals and
assumed homogeneous SNP effects across all breeds. The benefit
of their approach depended on the underlying QTL correlation
between the main breeds.

Another issue for estimating GMs in crossbred animals is the
limited availability of genotype and phenotype data on purebreds if
foreign sire breeds are used in the crossbreeding system. A real
example is a three-breed rotational system, crossing Holstein, Swedish
Red, and French Montbéliarde (ProCross; www.procross.info). The first
two breeds have populations in the Nordic countries (Denmark,
Finland, and Sweden) and Montbéliarde is primarily found in France.
The Nordic countries and France may have the advantage of having
breed populations of two breeds, while any other country may only
have a population of Holstein cattle. Sharing information between
countries may be the most optimal (Lund et al. 2011; Jorjani et al.
2012), but political barriers and different handling of SNP information
make it challenging (Tenopir et al. 2011; Liu and Goddard 2018).
Hence, the prediction of GMs for crossbred animals may need to be
done without SNP and phenotypic data from one or several
purebreds in the crossbreeding strategy.

In human genetics, large amounts of data from a single
population are rarely available for genomic predictions of, e.g.,
inheritable diseases. Instead, summary statistics obtained from
separate populations are joined into a meta-analysis, which makes
it possible to utilize information of multiple populations without
the necessity of sharing individual data (e.g., Maier et al. 2018;
Lloyd-Jones et al. 2019). In livestock, genomic prediction using
summary statistics including estimated allele substitution effects
of markers and the prediction error variances (PEV) has shown
promising results (Vandenplas et al. 2018) in a combined analysis
of multiple breeds. In dairy cattle, such an approach is being under
development in the Interbull SNPMace project (Jighly et al. 2019).

In this simulation study, we performed genomic prediction using a
breed-of-origin model proposed by Karaman et al. (2021) and
investigated the consequences of using summary statistics in
contrast to having full data or lacking information from some of
the breeds in two- and three-breed rotational crossbreeding systems.

MATERIALS AND METHODS

Data simulation

The simulation of data was described in Karaman et al. (2021) and data
were generated using the same base population individuals. Briefly,
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genotype data were available at 51,477 loci for three populations, of which
we created a subset of 1050 Danish Holstein (HOL), 1050 Swedish Red
(RDC), and 220 Danish Jersey (JER). However, we only considered SNPs on
the first five chromosomes (12,664 SNPs) to reduce the computational
demand. Twelve generations of purebreds were created by randomly
mating 1000 (HOL and RDC) and 200 (JER) females with 50 and 20 males in
each generation, respectively (Fig. 1). The 50 HOL and RDC sires were
mated each with 20 females, while the 20 JER sires were mated each with
10 females. The dams were randomly assigned to the sires. Each mating
resulted in one offspring, except for one mating per sire that yielded two
offspring, to keep the population sizes constant across the generations.
Hence, each generation consisted of 1050 (HOL and RDC) and 220 (JER)
animals. In each generation, 1000 of all HOL and RDC offspring were
randomly identified as female and 50 as males. Correspondingly, for JER,
200 were identified as female and 20 as males.

Two different crossbred populations were created based on the
purebred animals initially generated (Fig. 1). A three-breed rotational
crossbreeding system was used to create an admixed HOL x JER x RDC
population (MIX), starting with mating 1000 HOL females with 20 JER
males from the base generation (generation 0). At the next generation,
1000 MIX females (all with a JER sire) were crossed with respectively 50
RDC males. In the last stage of the rational system, 1000 MIX females (all
with a RDC sire) were mated with 50 HOL males. This cycle continued and
resulted in 1050 animals in each generation in the MIX population.
Similarly, a two-breed rotational crossbreeding system was used to create
JER X HOL crossbreds (JXH), alternating between 20 JER and 50 HOL sires.
The JXH population also consisted of 1050 animals per generation.
Consequently, all MIX and JXH animals in the 12th generation were sired
by HOL. A similar strategy as in the pure breeds was applied to keep the
population sizes constant across generations of MIX and JXH. When MIX
and JXH females were mated to HOL males, each HOL male was mated to
20 females of each MIX and JXH. The same applied to RDC males in the
MIX population. When MIX and JXH females were mated to JER males, each
JER males were mated to 50 females to keep the population size.

All animals had known breed of origin of alleles traced back to the base
population at generation 0. To generate phenotypes, 500 QTL were selected
randomly among the SNPs with minor allele frequencies (MAF) across the
breeds between 0.01 and 0.30, as described by Karaman et al. (2021). The
genetic value (g;) of individual i were simulated following a similar strategy
as Akdemir et al. (2017) as follows. First, a principal component (PC) analysis
was performed using the genotypes of all animals at the 500 QTL, and the
first two PCs were normalized, and used as indicators of the genetic
background, with which all QTL effects interacted. Three coefficients, ay, by
and ¢, were introduced to account for genetic background together with
PCA. The a, accounted for differences among the breeds on PC1, and by and
¢k on PC2. Second, genotypic values were simulated using:

if PC1<0

500
g, = Z(x,-k * A + Xik * PC2;  by)
k=1

else

500

g; = Z(x,-k * A + Xik * PC2; * ¢x)
k=1

where x; is the genotype at locus k, ax ~ N(0, 1), b, ~ N(0, 0.2) and ¢, ~ N(O,
0.2) (values of the parameters for N(.) were inferred from Duenk et al.
2020). Thus, with this setting, each individual had a unique set of QTL
effects, ay = a,+ PC2; x by or ay = a,+ PC2; * Cy

The mean value of aj was used to compute breed-specific QTL
substitution effects at each locus, a, which were used to compute additive
genetic values for the base population individuals. The ay, by, ¢, and
accordingly, ay were scaled such that the mean of the within-breed
variances of the additive genetic values was 100.

All animals had an environmental effect, sampled from a normal
distribution These environmental effects are then added to their genotypic
value to form the phenotype, hence both males and females had
phenotypes generated. The broad sense heritability of the simulated trait
varied slightly among the breeds but was around 0.42, averaged over the
base populations. In total 25 replicates were generated.

The simulated genetic correlations (see Karaman et al. (2021) for
computations) between the breeds were 0.87 between HOL and RDC, 0.62
between HOL and JER, and 0.68 between RDC and JER, for the base
populations (generation 0).

Heredity (2023) 131:33-42
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Fig. 1 Simulation of mating in three pure breed populations. Danish Holstein (HOL), Danish Jersey (JER), and Swedish Red (RDC), a two-

breed rotational crossbred population (JXH), and a three-breed rotational crossbred population (MIX). For each generation, 1000 females of
each breed (200 in JER) and crossbred are randomly mated to 50 males (20 in JER). Crossbred populations uses males from the pure breed

populations, and crossbred males are not used for breeding.

Employing different reference populations and statistical models, we
investigated several scenarios for genomic prediction of five test
populations.

Reference and test populations

Animals from generations 9, 10, and 11 from each pure breed and
crossbred population were used to form the reference populations. Thus,
660 JER animals and 3150 animals from each of the four other populations
were utilized. Putting together animals from all five populations, the
combined reference population consisted of 13,260 animals, but in other
scenarios animals from only some of the five populations were considered
in the reference population, as detailed below.

The animals used in the test population were all from generation 12, i.e.,
220 JER and 1050 animals of each of the four other populations. The GBP
of crossbred animals were computed from alleles traced back to the breed
of origin (Table 1).

Statistical models for estimation of SNP effects
Homogeneous SNP effect model. We used the following statistical model
to estimate SNP effects, separately within each population:

yi = T + MiB; + e M
where i stands for the breeds HOL, JER, and RDC. When data from multiple
populations (J) were analyzed jointly, the combined reference population
was treated as a single homogeneous population using the following
model:

y, =1y, + Xb, + MB, + e, (2)

In models (1) and (2), y is the vectors of phenotypes, 1 is a vector of 15, u
is the overall means, X is the matrix of (centered) estimated genomic breed
proportions computed from genomic data, b, is the vector of fixed breed
effects, M is the matrices of centered genotypes where centering was
based on the column means, B, is the vectors of SNP effects, and e is the
vectors of residuals.

Heredity (2023) 131:33-42

Table 1. Average genomic breed proportions of Danish Holstein
(HOL), Swedish Red (RDC), and Danish Jersey (JER) in test populations
(generation 12) of three-breed rotational crosses (MIX) and

Jersey x Holstein rotational crosses (JXH), and in MIX, JXH, and
combined?® reference populations (generations 9, 10 and 11) with
standard deviations in subscript.

HOL RDC JER

Reference population

MIX 0.3350.189 0.3330.188 03310190

JXH 04420171 = 0.5580.171

Combined 04229415 03160385 02610312
Test population

MIX 0.5730.046 0.282¢,074 0.145¢ 063

JXH 0.6670.069 = 0.333¢.069

#Combined reference population including 3150 of each HOL, RDC, MIX,
JXH, and 660 JER.

Heterogeneous SNP effect model. For the BOA approach, model (2) was
extended with a genetic component for each breed instead of one joint
(Karaman et al. 2021), as follows:

Y = Tugon + Xbgoa + M1Bgoa oL + MaBgon ser + M3Bgoasoc +€soa  (3)
where y, 1, ugoa and X are as described in models (1) and (2), M;, M,, and
M; are the matrices of breed-specific allele content of SNPs for HOL, JER,
and RDC, respectively. For example, the value at a locus in M; is the
number of counted (0, 1, or 2) reference alleles originating from HOL, and
the same logic was applied to M, and Ms. The matrices were column-
centered before the analysis. The Bs are the vectors of SNP effects for HOL,
JER, and RDC, respectively, and e is the vector of residuals.

We used a Bayesian approach for estimating the dispersion and location
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parameters, which required assigning prior distributions to the unknowns
of the model. For models (1) and (2) a normal distribution with null mean
and a common variance was assigned for all SNPs, Bi\oé ~ N(0, Ioé) or

ﬂ,|0‘231 ~ N(0, Ioéj). For model (3), a normal distribution prior was assigned
to the vectors of SNP effects for each breed: ﬂBOA_i|cs[§wAi ~ N(0, Ioémi),

where i stands for the breeds HOL, JER, and RDC. Residuals were assumed
to follow a normal prior distribution, N(0, R) where R was a diagonal matrix
of residual variances, in all models. For all models, SNP and residual
variances were assumed to follow a scaled inverted chi-square prior with
degrees of freedom (df) and scale (S) parameters. For the SNP variances,
priors were of [df, S; ~ x~*(df, ),

O'éj‘dfh SﬁJ ~ X_z(df, SBJ) 0ro—f$BOA.i|dfﬂ SBBOA,i ~ )(_2 (df7 SBBOA,i)

for models (1), (2), or (3), respectively. For the residual variances, priors
for model (1) was 6 |df, S, ~ x~2(df, S, ), and the priors for models 2 and
3 were, 0 [df, Se, ~ X 2(df,Se,), and 02, |df, Sey,, ~ X 2(df, Seyy ), respec-

€BoA
tively. The value of degree of freedom parameter (df) was set to 4 in all
cases. The values of scale parameters (S) were derived from the expected

value of a scaled inverted chi-square distributed random variable using
S= % (Habier et al. 2011) where the 0® can be an estimate of the

variance of SNP effects or residuals (Karaman et al. 2021). The fixed effects
were assumed to follow a flat prior distribution.

Summary statistics. For the analyses using summary statistics, the prior
distributions assigned to the SNP effects in models (2) and (3) were
reformulated with summary statistics obtained from separate analysis
of individual pure breeds (model (1), see Supplementary file 1). To this
end, we only needed prediction error (co)variances (PEC) of SNP effects,
number of animals, and their mean phenotypes, from the individual
pure breed analysis. We assumed that PECs are diagonal matrices
whose diagonal elements were the posterior variances of the SNP
effects from the individual pure breed analysis. Crossbred animals had
always phenotypes and genotypes, whereas the availability of
summary statistics or actual data for the pure breeds varied as
described earlier.

When only the data from crossbred animals (a) are available, model
(2) can be written as

ya:1HJ+xabJ+Mp+ea (4)
Then the information from summary statistics for the pure breeds can be

used to form normal (N) and scaled inverted chi-square (x’z) prior

distributions as follows:

My~ N{m (NHoLYHoL + NiErY jer

Y 1 2
+nRDcyRDC)’ oL F e noc O }

-1 -1

No O 0 NHoLYHoL no O 0
S 2
b, ~N 0 ng O NERYjer || O M O s,
0 0 nproc NRocYRoC 0 0 nproc

By~ n{ [Spece) '~ 0B [Sopece) 8], [ recs) - om0
B~ N(0,13)

e, ~N(0,D,07)

op, ~ X 2(df,Sg,)

02 ~ X 2(df,Se,)
When only the data from crossbred animals are available, model (3) can
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be written as

Beoa oL
Beoaser | + €a (5)

Beon.roc

Ya = THgoa + Xabgoa +[Mai Maz  Ma3]

Then the information from summary statistics for the pure breeds can be
used to form prior distributions as follows:

1 . .
Heoa ~ N{imoﬁnmﬁnm (NHoLYhoL + MERY er
v 1 2
+ nRDcyRDC)’ NHoL +Njer-+NRDC Oe}

-1

-1 _
Not O 0 NHoLYHoL Ny 0 0
Vi 2
bgoa ~ N 0 ng O NerYjer || 0 ner O O
0 0 neoc NRDCYRDC 0 0 neoc

Puons ~ N{ [pec@) " 8| " [pecs) '8, [pecpy ' 8] '}

Bsoni ~ N(0,103,,, )

e, ~ N(0,D,02)

Ofon, ~ X (dﬂ SBBOA..)

Oi ~x (Ve, Se)

In the above equations, B; is the vector of previously estimated SNP
effects, and PEC(B;) is a diagonal matrix whose diagonal elements were the
variances of the posterior samples of SNP effects, as explained above, from
the separate analysis of breed i. The B, is a diagonal matrix with diagonal
elements being the mean of the posterior distribution of SNP variances,
also from the separate analysis of breed i. The parameters for the above
prior distributions defined for the analysis using summary statistics were
set in the same manner as in the previously described corresponding full
data analysis.

Prediction of GM

Genetic merit for each test population were estimated using the SNP
solutions from the separate analysis of individual purebred and crossbred
reference populations (referred to as “within-breed approach”). This was
referred to as within-breed approach because the reference and test
populations are either from the same breed (e.g., predicting HOL GM with
SNP solutions for HOL) or each belonging to a single population (e.g.,
predicting HOL GM with SNP solutions for JER).

The MIX and JXH test populations had also GMs estimated using the
BOA approach based on solutions from each purebred reference
population (HOL, RDC, and JER) and by tracing each SNP allele of the
crossbred test animal back to its (pure) breed of origin (HOL, RDC, or JER)
(referred to as “pure-BOA approach”). Hence, in the analysis using the pure-
BOA approach, MIX, and JXH were not included in the reference
population.

GMs were also predicted with two approaches using SNP estimates from
the combined reference population: assuming homogenous SNP effects
among all breeds using a “joint-breed approach” or assuming different SNP
effects for each of the purebreds using a “BOA approach.” Thus, the joint-
breed approach treated all populations in the combined reference
population as one breed, whereas the BOA approach treated all
populations in the reference as different breeds. In predicting genetic
merit for crossbred animals using the BOA approach, alleles of each SNP
were traced back to its breed of origin, and the SNP effect from the
respective breed was used. See detail of these approaches in Table 2.

Genetic merits for pure breeds in the within-breed, joint-breed, and BOA
approaches were predicted by multiplying SNP effects with the
corresponding allele counts. For prediction of GMs in crossbred animals,
the same procedures were used, with the addition of fixed breed effects
multiplied by genomic breed proportions for joint-breed and BOA models.
In the pure-BOA, the breed-origin of alleles for crossbred animals were

Heredity (2023) 131:33-42
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Table 2. Prediction accuracies and biases (in parenthesis) for Danish Holstein (HOL), Danish Jersey (JER), Swedish Red (RDC), three-breed rotational
crosses (MIX), and JER x HOL rotational crosses (JXH) using individual breeds, all purebreds HOL, JER, and RDC, or all breeds in the reference
population.

Reference population® Test population®

HOL RDC JER MIX JXH Model HOL RDC JER MiX JXH

F = = = = Within breed 0.764, (0.933) 0.149, (0.457) 0.068y, (0.249) 0.546¢ (0.895) 0.595¢ (0.902)
= F = = = Within breed 0.120, (0.386) 0.739, (0.998) 0.075, (0.294) 0.362, (0.782) 0.117; (0.379)
- - F - - Within breed 0.017; (0.131) 0.056; (0.340) 0.644. (1.011) 0.147; (0.556) 0.262, (0.706)
- - - F - Within breed 0.4794 (0.940) 0.542¢ (0.979) 0.5134 (0.971) 0.559 (0.932) 0.5374 (0.938)
- - - - F Within breed 0.549 (0.914) 0.105, (0.348) 0.627¢ (0.991) 0.4734 (0.830) 0.662. (0.939)
F F F - - Pure-BOA - - - 0.663. (0.865) 0.656, (0.840)
F F F F F Joint breed 0.7914 (1.009) 0.7544 (0.976) 0.7344 (1.037) 0.764. (0.962) 0.792. (0.967)
F F F F F BOA 0.798. (1.035) 0.761. (1.021) 0.743. (1.083) 0.7534 (0.927) 0.7894 (0.954)

aF = full genotype and phenotype information.
bStandard errors within test populations HOL, RDC, MIX, and JXH were similar and between 0.004 and 0.018 across reference populations. For the JER test
population, they were between 0.014 and 0.023 across reference populations.

“IAccuracies within test population with no common subscripts differ significantly (p < 0.05).

considered in predictions as in BOA approach, but only the SNP effects
from individual pure breed analysis were used, and a fixed breed effects
multiplied by genomic breed was added.

Samples of each parameter were obtained by sampling from their full-
conditional posterior distribution using the Markov-chain Monte Carlo
algorithm. The chain length for the analyses was 50,000 cycles, the first
10,000 of which were discarded as burn-in. Every tenth sample from the
post burn-in cycles was saved for posterior analysis, resulting in 4000
posterior samples. Each parameter’s estimate was based on the mean
value of the posterior samples. All of the analyses were carried out in Julia
using self-written scripts.

Each scenario was replicated 25 times and the average of prediction
accuracies across all replicates are given as the results. The prediction
accuracies were calculated as the correlation between the simulated true
genotypic value and predicted GM of the test animals. The prediction
accuracies were compared between relevant scenarios by a paired t-test
using a significance level of p < 0.05.

Genomic prediction in three-breed crosses with different sire
breeds

Three alternative test populations were created to investigate the
importance of sire breed in the MIX animals: HOL-sired MIX animals from
generation 12, RDC-sired MIX animals from generation 11, and JER-sired
MIX animals from generation 10. The reference populations were the three
previous generations, i.e.,, generation 9, 10, and 11 for HOL-sired MIX
animals and accordingly generations 8-10 and 7-9 for RDC-sired and JER-
sired MIX animals, respectively. To avoid different breed compositions in
the reference populations, JXH animals were left out of the combined
reference population. Thus, the average GBP was the same regardless of
which generations were used in the reference. The GBP in the combined
reference population (without JXH) was 0.416 HOL and RDC, and 0.168 JER.
The three test populations had genomic predictions obtained from eight
different compositions of reference populations using the BOA approach.
The reference populations were all including MIX, and included all, none,
one, or two of the pure breeds.

Genomic prediction with different numbers of crossbreds in
the reference population

We investigated the effect of reference population size of MIX and JXH
and the difference between selecting dam lines for the reference
population and selecting animals at random. The reference population
included the three pure breeds, MIX and JXH. In four different scenarios,
we selected 1000, 500, 250, and 100 of each MIX and JXH animals from
generation 11 and their dams and grand dams from generations 10 and
9, respectively. In two additional scenarios, 500 and 100 animals from
each of MIX and JXH were selected randomly each of the three
generations (9, 10, 11) for the reference population. These analyses were
made using the BOA approach.
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Genomic prediction using summary statistics

We investigated cases of reference populations with different
combinations of information sources. These combinations were full
genotype and phenotype information was available from all pure
breeds, only on HOL, only HOL and RDC, or only HOL and JER. In the
cases where full information was unavailable for some of the breeds,
those breeds either did not contribute any information or contributed
summary statistics. The last two scenarios were the cases where all
breeds contributed with summary statistics or did not contribute any
information. In all nine scenarios, full information from MIX and JXH
was available in the reference population. These scenarios were
analyzed using the BOA approach. Additionally, we analyzed these
scenarios using the joint-breed approach, results of which are
presented in Supplementary File 2.

RESULTS

Genomic prediction using different reference populations and
models

Using the within-breed approach yielded higher prediction
accuracies using own reference (i.e., using the reference popula-
tion of the same breed) than across breeds (i.e., using a reference
population of another breed) (Table 2). There were significant
differences (p<0.05) in prediction accuracies between the
reference populations used within most of the test populations.
For prediction of JER the difference between accuracies using HOL
(0.068) and RDC (0.075) reference populations was not significant.
The difference between predicting MIX using HOL (0.546) and MIX
(0.559) reference populations was also not significant. Predictions
were generally more biased when based on a reference
population of another breed.

The highest prediction accuracy was achieved for any of the five
test populations when using a combined reference population
that included animals from all five populations (Joint-breed or
BOA) (Table 2). JER and the two crossbred test populations, MIX
and JXH, gained the most by using a combined reference
population compared with using their own reference population
by the within-breed models. For the purebred test populations
(HOL, RDC, and JER), the BOA approach was slightly better
(p < 0.05) than the joint-breed approach, whereas it was vice versa
for MIX and JXH (p < 0.05). For the Pure-BOA models, predictions
of MIX and JXH were more biased than when MIX or JXH were
used as reference populations in within-breed predictions. The
Joint-breed and BOA models provided less biased predictions
than the Pure-BOA model.
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Table 3. Prediction accuracies and biases (in parenthesis) for Danish Holstein (HOL), Danish Jersey (JER), Swedish Red (RDC), three-breed rotational
crosses (MIX) and JER x HOL rotational crosses (JXH) in different scenarios including full phenotype and genotype data (F), summary statistics (S), or
no information (-), using the BOA approach.

Data from reference population® Test population®

HOL RDC JER MiX JXH HOL RDC JER MiX JXH

7 B [ F F 0.798, (1.035) 0.7614 (1.021) 0.7434 (1.083) 0.7534 (0.927) 0.7894 (0.954)
S S S F F 0.752 (1.142) 0.731, (1.252) 0.710, (1.229) 0.720, (1.023) 0.768, (1.068)
F S S F F 0.7954 (0.837) 0.554¢ (1.068) 0.673¢ (1.045) 0.718. (0.816) 0.7824 (0.833)
F S F F F 0.7954 (0.838) 0.553¢ (1.073) 0.748. (0.960) 0.718, (0.807) 0.785¢ (0.816)
F F S F F 0.799. (1.033) 0.762. (1.017) 0.713, (1.050) 0.755. (0.930) 0.791. (0.959)
- - - F F 0.605¢ (1.408) 0.5374 (2.169) 0.6574 (1.290) 0.5904 (1.104) 0.676; (1.162)
F = = F F 0.755, (1.443) 0.528y, (2.806) 0.491; (1.953) 0.6474 (1.208) 0.669; (1.203)
F = F F F 0.759, (1.357) 0.529, (2.530) 0.667¢4 (1.590) 0.655¢ (1.143) 0.693y, (1.133)
B F = F F 0.763. (1.315) 0.743, (1.330) 0.499, (1.786) 0.706, (1.126) 0.679; (1.143)

2F = full genotype and phenotype information; S = summary statistics available on genotype and phenotype information.
PStandard errors within test populations HOL, RDC, MIX, and JXH were similar and between 0.004 and 0.017 across reference populations. For the JER test
population, they were between 0.013 and 0.017 across reference populations.

“Accuracies within test population with no common subscripts differ significantly (p < 0.05).

Genomic prediction using summary statistics

Having full information available (full scenario) from all the breeds
was better than having only the summary statistics from the pure
breeds or having no pure breed information available (Table 3).
The difference between full scenario and summary statistics for all
purebreds was much smaller than differences between summary
statistics and no information from the purebreds. The prediction
accuracies for JER and RDC decreased greatly when reference
population changed from the full scenario to the scenario where
summary statistics or no information was available from both of
those breeds and full information was available from HOL. When
only summary statistics from the respective pure breeds were
available, the decrease in prediction accuracy was largest for the
RDC population (from 0.761 in the full scenario to 0.553. However,
when no information was available from the respective pure
breeds, the JER test population was affected the most (from 0.743
in the full scenario to 0.499).

Genomic prediction in three-breed crosses with different sire
breeds

As shown in Tale 4, when full information was available from all
the pure breeds, the HOL-sired crossbred animals had significantly
higher prediction accuracy (0.731) than RDC-sired (0.709) and JER-
sired crossbred animals (0.672. Interestingly, the prediction
accuracy was significantly highest for JER-sired animals (0.509)
when no information was available from the pure breeds. The
prediction accuracies were positively affected when information
from the same pure breed reference as the sire breed of the MIX
test population was available.

Genomic prediction with different numbers of crossbreds in
the reference population

The number of MIX and JXH animals in the reference population
played a significant role in prediction accuracy, regardless of the
test population (Table 5). The prediction accuracies decreased as
the number of MIX and JXH animals in the reference population
decreased, especially for JER, MIX, and JXH. Except for the MIX
population, there was a significantly favorable effect of selecting
1500 + 1500 MIX and JXH animals based on daughter-dam
relationship in the reference population. However, it was only for
the JXH test population where it was significant to select
300 + 300 MIX and JXH (0.680) based on daughter-dam relation-
ships rather than at random (0.667).
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DISCUSSION

Summary statistics for multibreed genomic prediction

Our results showed that it is essential to involve all breeds in the
crossbreeding system when forming the reference populations,
to gain higher prediction accuracies. Moreover, including
crossbred animals in the reference population will benefit the
genomic prediction of crossbreds (and purebreds) even more.
However, having genotype and phenotype data available from
all pure breeds in a reference population is not always feasible.
Therefore, we investigated genomic prediction of crossbred
animals using a BOA approach with two kinds of information
from the reference population: (i) full information from crossbred
and purebred animals, and (ii) full information from crossbred
animals but summary statistics from all or only some of the pure
breeds.

When using summary statistics from all three pure breeds, the
prediction accuracies were only slightly lower than for the full
scenario, but much higher than for the scenario using no
information from the pure breeds. The differences were most
prominent for the HOL and RDC test populations and smallest for
the JER and JXH test populations. Those differences are probably
due to different breed compositions in the reference populations
and the genetic relationship between reference and test popula-
tions. When only JXH and MIX animals were included in the
reference population, the proportion of JER genes would be 0.44
compared with 0.26 in the scenario when the three pure breeds
were included as well. Hence, the genetic relationship with the
reference population would on average be closer for JER and JXH
test populations, than for HOL and RDC when only MIX and JXH
was included in the reference population.

For JXH, having full information available from HOL in the
reference population and either summary statistics from RDC or
JER or both seemed sufficient to reach the prediction accuracies in
the full scenario. This was likely because all JXH animals in the test
population were HOL-sired, did not share genetic relationship with
RDC, and the added JER reference population was small. If the JXH
test animals were all JER-sired, having full information from JER,
but not HOL, in the reference might not be sufficient because the
size of the JER reference was much smaller than HOL. However, at
small population sizes, the effective population size (N,) is usually
small and thus there are fewer effective chromosome segments to
predict, compared with large populations with high N, (Meuwis-
sen 2009). Thus, the JER reference population might not need to
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increase to the same size as HOL, for JER-sired JXH to achieve
prediction accuracies as high as HOL-sired JXH.

In livestock species, the potential of using summary statistics
from multiple populations is little exploited for genomic predic-
tion, partially because trait definitions, genomic prediction
models, and variance components tend to differ between
populations (Minozzi et al. 2012). In human genetics, however,
the use of genome-wide association summary statistics has
become a common approach to enhance risk assessments of
complex traits and diseases (Spiliopoulou et al. 2015; Maier et al.
2018; Allegrini et al. 2019).

The exchange of semen and embryos internationally has been
done for decades, making it possible to develop crossbreeding
using foreign breeds. However, due to logistics or political barriers
(Tenopir et al. 2011), the exchange of genotype and phenotype
data from an entire breed population between countries is not
always possible. Therefore, genomic prediction in crossbred
animals can become difficult if foreign breeds are involved. Using
summary statistics only requires sharing summarized data but not
full datasets of genotypes and phenotypes. Furthermore, using
summary statistics makes it more practically feasible to run
prediction models based on multiple populations because it does
not require a large amount of data. A base for sharing summary
statistics on dairy cattle breed populations between countries is
under development in the Interbull SNPMace project (Jighly et al.
2019). However, the SNPMace effort currently only accommodates
combining data from different populations of the same breed but
not crossbreeding.

The SNPMace model includes prediction error co-variances
(PEC) between SNPs (Jighly et al. 2019), whereas our model
ignores the correlation of prediction errors between SNPs and
only considers PEV of estimated SNP effects. Thus, the SNPMace
model may be more accurate than our model for summary
statistics. However, complete summary statistic information,
including PEC between SNPs, may not always be possible to
achieve, and in that case, even approximate integration using PEV
may improve prediction accuracies (Vandenplas et al. 2018).

Small breed populations and breed proportions in the
reference population

The current study showed that a small breed population (JER)
gains more from a multibreed reference population than a large
breed population (HOL and RDC). That is in accordance with other
studies (Erbe et al. 2012; Olson et al. 2012; Hozé et al. 2014).
However, the test breed need to be somewhat closely related to
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the breeds in the multibreed reference to gain from it (Breandum
et al. 2011). Therefore, including “any” breed in multibreed
references and assuming equal SNP effects may not always result
in higher prediction accuracy compared with within-breed
predictions, at least not for all traits, and can even cause a loss
in prediction accuracy. Adding crossbred data to the combined
reference population increases the data size, which may help
improve the accuracies for small pure-breed populations (Ver-
oneze et al. 2014). In a simulation study, Karaman et al. (2021)
showed that prediction accuracies increased much more for JER
than HOL when adding crossbreds to a combined reference
population. Thus, adding crossbreds to the reference could benefit
the small breed population, because the marginal value for each
added data is higher for the small breed population than for the
large breed population.

Many previous studies discuss an issue of unbalanced breed
proportions in a combined reference population, causing the
breed with the most contribution to dominate the SNP effects
(Olson et al. 2012; van den Berg et al. 2020; Khansefid et al. 2020).
In our study, JER contributed relatively little to the combined
reference population compared with HOL and RDC, which caused
prediction accuracies to be noticeable smaller for JER than for HOL
and RDC when using the combined reference population. The use
of BOA approach instead of the joint-breed approach can
eliminate the unfavorable effect of unbalanced breed proportions
in the reference population, and thus benefit the small breed. This
probably explains why JER benefitted more from the BOA
approach than the joint-breed approach (Table 2). Additionally,
it was evident that including all pure breeds in the reference
population had a significantly higher effect on HOL-sired MIX than
JER-sired MIX (Table 4).

The pure-BOA, BOA, and joint-breed approaches

The purpose of the pure-BOA approach in the current study was
to evaluate an improved version of the method used by VanRaden
et al. (2020). The main difference from that study was that we used
breed-specific SNP effects per SNP marker by tracing back each
allele to the breed of origin instead of using marker effects of all
breeds and weigh them by a single breed proportion (adjusted
GBP; base breed proportions; BBR, VanRaden et al. 2020) for all
markers.

Because of the close genetic relationship between breeds
(0.62-0.87) in our study, we did not see a considerable difference
in prediction accuracy using the joint versus the BOA approach. If
breeds are highly correlated, the amount of unique SNP effects

Table 4. Prediction accuracies and biases (in parenthesis) for Danish Holstein-sired (MIXyo.), Danish Jersey-sired (MIXgg), and Swedish Red-sired
(MIXgpc) three-breed rotational crosses estimated on full genotype and phenotype information (F) or no information (-) from the respective pure

breeds and MIX in the reference population.

Data from reference population”

HoL RDC JER MIX
F F F F
- - - F
F - - F
- F - F
- - F F
- F F F
F - F F
F F - F

Test population

MiXyoL

.0.731% (0.912)
10.433¢ (1.267)
40.647° (1.208)
(0.542° (1.184)
50.460° (1.164)
«0.550° (1.112)
0.655° (1.143)
10.706° (1.126)

MIXgpoc

0.709° (0.875)
10.458° (1.211)
{0.516° (1.088)
40.655° (1.189)
40.488° (1.094)
0.660° (1.096)
0.532° (1.023)
,0.684° (1.091)

MIXeq

0.672° (0.902)
40.509° (1.586)
0.574° (1.251)
{0.543 (1.320)
40.594 (1.406)
0.611° (1.221)
0.639% (1.180)
40.595¢ (1.140)

@9 Accuracies within test population (column) with different subscripts and accuracies within reference population (row) with different superscripts differ

significantly (p < 0.05).
h F = full genotype and phenotype information.

" Standard errors within test populations were similar and between 0.007 and 0.013 across reference populations.
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Table 5.

Prediction accuracies and biases (in parenthesis) for Danish Holstein (HOL), Danish Jersey (JER), Swedish Red (RDC), three-breed rotational

crosses (MIX), and JER x HOL rotational crosses (JXH) with various numbers of MIX and JXH in the reference population. Full phenotype and genotype
information from all pure breed populations was used in the reference population.

Test population”

No. of MIX + JXH in the reference HOL RDC
3000 -+ 3000 (all) 0.797, (1.035)
1500 + 1500 (selected) 0.783y, (1.032)
1500 + 1500 (random) 0.786. (1.035)
750 + 750 (selected) 0.7764 (1.022)
300 + 300 (selected) 0.769, (1.013)
300 + 300 (random) 0.770. (1.010)

0.759, (1.020)
0.752, (1.026)
0.747. (1.034)
0.745. (1.017)
0.7424 (1.010)
0.7424 (1.011)

JER MiX JXH

0.742, (1.083) 0.751, (0.926) 0.787, (0.953)
0.712;, (1.085) 0.713;, (0.882) 0.749;, (0.922)
0.702. (1.082) 0.709y, (0.885) 0.736. (0.905)
0.6894 (1.059) 0.681. (0.828) 0.7174 (0.880)
0.665, (1.044) 0.6494 (0.781) 0.680, (0.829)
0.658, (1.023) 0.6494 (0.776) 0.667¢ (0.801)

#9Accuracies within test population with different subscripts differ significantly (p < 0.05).
hStandard errors within test populations HOL, RDC, MIX, and JXH were similar and between 0.005 and 0.009 across reference populations. For the JER test

population, they were between 0.014 and 0.015 across reference populations.

from individual breeds will be small, and prediction accuracies,
particularly for the small breed, will be positively affected when
using a joint-breed approach (Karaman et al. 2021). However, if
breeds are genetically distant, assuming homogeneous SNP
effects may neutralize unique SNP effects and cause low
prediction accuracies for the individual test populations. Instead,
considering different SNP effects and tracing each allele back to
the breed of origin will capture SNP effects that were neutralized
in the joint-breed approach. Furthermore, tracing the breed-origin
to allele is easier when breeds are unrelated rather than closely
related (Vandenplas et al. 2016). Thus, using a BOA approach
(versus a joint-breed approach) is most beneficial if the breeds are
genetically distant (Sevillano et al. 2017; Karaman et al. 2021).

Construction of reference population

Except for the simulation scenarios in Table 5, we assumed that the
crossbred reference populations (MIX and JXH) would be as large as
the HOL and RDC reference populations (3150 animals). This
assumption is probably optimistic since the number of (system-
atically) crossbred animals is small in most dairy cattle populations
nowadays, and the number of genotyped crossbreds is even smaller.
When the number of crossbred animals was reduced in the
combined reference population (Table 5), the prediction accuracy
decreased significantly for all test populations, primarily for MIX, JXH,
and JER. This was probably because the proportion of JER-genes
decreased from 25% when 3000 of each MIX and JXH were
included, to 12% when only 300 were included. The proportions of
HOL and RDC did increase from 42 to 45% and 32 to 43%,
respectively, when decreasing the number of JXH and MIX from
3000 to 300. In addition, the relationship between animals in the
reference and the MIX and JXH test populations decreased because
not all dams of the test animals were in the reference.

The genetic relationship between animals in the test and
reference populations was, in previous studies, shown to be of
importance in genomic prediction (Habier et al. 2007; Pszczola
et al. 2012; Clark et al. 2012)—also in the setting of multibreed
genomic prediction (Erbe et al. 2012; Hozé et al. 2014). A strategy
to increase genomic prediction accuracies is to include animals in
the reference population that are related to each other (e.g., sire
lines or dam lines) and to the animals in the test population. For
example, combining reference populations of Holstein, Montbé-
liarde, and Normande, Hozé et al. (2014) investigated the effects of
animal relationships between test and reference populations
(bulls only). For within-breed predictions, prediction accuracies
were considerably higher if sires of the test animals were in the
reference population. However, for multibreed predictions, the
prediction accuracies did not differ notably for animals with sires
in the reference population, while it nearly doubled for those
without. Erbe et al. (2012) also found higher prediction accuracies
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for animals with a sire included in the reference, but the increase
was smaller since the reference population was twice as large as in
Hozé et al. (2014). For small reference populations, the effect of
family relationships has a higher influence on the accuracy of
genomic prediction than the effect of LD, compared with large
reference population (Clark et al. 2012). In our study, the effects of
selecting the reference at random or based on the daughter-dam
relationship on prediction accuracy were different between JXH
and MIX test populations. For the JXH test population, selected
dam lines increased prediction accuracy significantly, but only
slightly for MIX. However, the differences were small, probably
because the relationship between the animals within the
reference population was similar regardless of selection within
the JXH and MIX animals. In the 1500 -+ 1500 scenarios, about 30%
of the animals in the reference were MIX and JXH, while it was
only 8% in the 300+ 300 scenarios. Therefore, the prediction
accuracy for MIX tended to be higher when dams were selected in
the 1500+ 1500 versus picked at random, but not in the
300 + 300 scenario. Both Pérez-Cabal et al. (2010) and Pszczola
et al. (2012) found that, depending on how strictly they were
selected, the relationship between sires selected for the reference
population was the same or even slightly lower than if the sires in
the reference were selected at random.

Limitations in the simulations

A primary reason for crossbreeding is the benefits of heterosis
effects, which we ignored in the simulation of phenotypes and
estimation of GMs in this study. Heterosis effects are caused by
non-additive effects due to dominance between alleles at the
same loci (Wittenburg et al. 2011; Su et al. 2012). In dairy cattle,
heterosis effects tend to favor the most economically important
traits (Serensen et al. 2008; Jonsson 2015; Clasen et al. 2017). If we
had included heterosis effects in the simulation of phenotypes,
the prediction accuracies for GM in MIX and JXH would be lower
than estimated in this study, because the prediction models did
not account fully for non-additive effects. Ignoring non-additive
effects, such as dominance effects, in genomic prediction can
increase the unbiasedness of genomic prediction (e.g., Wittenburg
et al. 2011; Su et al. 2012; Esfandyari et al. 2016). Thus, non-
additive effects should be considered if we apply the current
models for predicting GMs on real animals.

For computational reasons, we simulated only the five first
chromosomes, which is barely a quarter of the bovine genome.
Genomic prediction accuracy for within-breed predictions can be
approximated by knowing the size of the reference population, N,
the heritability of the trait, and the length of the genome (Daetwyler
et al. 2008; Meuwissen 2009; Goddard 2009). To obtain the same
prediction accuracies for an increased length of the genome, by
including more chromosomes, requires a relative increase in the
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number of animals in the reference population, if the heritability and
N, remain constant (Meuwissen 2009). Furthermore, the approxima-
tions need to be corrected for the genetic correlation between the
reference breed and the test breed, which may require a larger
reference population the smaller the genetic correlation between
the breeds is (Wientjes et al. 2015). The results from the within-breed
approach in this study are still valid if the predictions were scaled up
to the whole genome, and the size of the reference population is
increased according to the genetic relationship between breeds. The
BOA approach has the advantage of using individual within-breed
data and enhancing the size of the reference population by
including crossbred animals.

In this paper, using the joint approach, although the same weight
was implicitly given to the summary statistics derived either from a
large breed (HOL and RDC) or a small breed (JER), the differences in
accuracy of the estimated SNP effects from the within-breed
analyses are accounted for by PEVs. Similarly, when using BOA with
summary statistics, the per-breed accuracies of the estimated SNP
effects are also accounted for by their corresponding PEVs.

In this work, we assumed that breed origin of each allele is
known without error. In real life applications, those need to be
estimated from the data, and several steps to achieve this may
challenge BOA models and may limit the benefit from BOA
models (Guillenea et al. 2022).

CONCLUSIONS

In this study, we found a potential of using summary statistics for
genomic prediction in rotationally crossbred dairy cattle using a
multibreed reference population approach and tracing alleles
back to the breed of origin. Combining pure breeds and
crossbreds in a single reference population yielded higher
prediction accuracies for both purebred and crossbred animals.
The combined reference population was also beneficial for the
smallest breed population in this study.

DATA AVAILABILITY

Haplotype data for the base populations of Holstein, Red Dairy Cattle, and Jersey can
be downloaded at: https:/figshare.com/articles/dataset/Base_population_data/
17198534.
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