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A B S T R A C T   

The intensive usage of synthetic fertilisers and pesticides helps Dutch arable farmers to secure high yields at low 
costs. However, this intensive arable production system also results in environmental degradation in terms of 
biodiversity loss and reduced soil and water quality. Adopting sustainable agricultural practices (SAPs) reduces 
arable farmers’ reliance on fertilisers and pesticides. Therefore, SAPs contribute to enhancing farm sustainability 
and resilience. Despite the promising potential of SAPs, their adoption rates remain low. We investigate which 
combinations of SAPs are jointly adopted in portfolios and how the adoption rate of SAP portfolios can be 
improved. Specifically, this paper aims to explore the relationship between knowledge and the adoption of SAP 
portfolios. First, we investigate the SAP portfolios that are jointly adopted using Correlation Explanation. Second, 
we estimate a multivariate probit model to explore if SAP portfolios are complementary or substitutionary to 
each other. Finally, we run a partial least squares structural equation model to investigate how the level of 
knowledge and informal knowledge are associated with the adoption of SAP portfolios. Results show that both 
the level of knowledge and informal knowledge are positively related to the adoption of these SAPs that require 
initial investments or aim to reduce pesticide and fertiliser usage. However, we find no significant relationship 
between knowledge and the adoption of SAPs that are already subsidised by policymakers. We conclude that 
persuading farmers to adopt more SAPs requires policymakers to consider combinations of economic (e.g. 
subsidies) and behavioural policy interventions (e.g. facilitating peer-to-peer knowledge sharing).   

1. Introduction 

Dutch arable farmers are characterised by their intensive usage of 
synthetic fertilizers, pesticides, and other plant protection materials 
(van Grinsven et al., 2019). While this secures high yields and low costs, 
it comes at the price of environmental degradation in terms of biodi-
versity loss and reduced soil and water quality (Pe’er et al., 2020). 
Reversing this trend of environmental degradation requires farmers to 
reduce their fertiliser and pesticide usage. This is also highlighted in the 
European Union’s Common Agricultural Policy (CAP), as a focal policy 
goal is a 20% reduction in fertiliser and a 50% reduction in pesticide 
usage (European Commission, 2020). The adoption of sustainable agri-
cultural practices (SAPs) has the potential to reduce farmers’ reliance on 
fertilisers and pesticides while maintaining current production levels 
(Piñeiro et al., 2020). Therefore, SAPs have the potential to contribute to 
farm resilience and sustainability (Meuwissen et al., 2019; Rockstrom 

et al., 2017). 
We define SAPs as practices with beneficial environmental effects on 

biodiversity, water, soil, landscape, and/or climate change compared to 
conventional farming practices (adapted from Dessart et al., 2019). 
Additionally, the Food and Agricultural Organization (FAO) described 
five features of SAPs: technically appropriate, environmentally 
non-degrading, resource conserving, economically viable, and socially 
acceptable (FAO, 1989). Examples include conservation tillage prac-
tices, cover crops, agroforestry, and improved water management. Due 
to recent technological developments and innovations, farmers now 
have access to a wide range of SAPs. In line with these developments, 
Weltin et al. (2018) and Dicks et al. (2019) recommend adopting a ho-
listic approach when studying SAPs. Such holistic approaches consider 
how multiple SAPs are jointly adopted in portfolios. Although SAPs have 
been popularised and advocated by policymakers, their adoption rates 
remain low. This raises the question of how farmers can be persuaded to 
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adopt combinations of SAPs in a portfolio. Besides being driven by 
economic and environmental factors, the decision to adopt combina-
tions of SAPs also involves behavioural drivers (Baumgart-Getz et al., 
2012; Bopp et al., 2019; Spiegal et al., 2018). One of these key behav-
ioural drivers is a farmer’s knowledge of SAPs. Knowledge about the 
existence of SAPs is required to adopt such practices (Dessart et al., 
2019). It can be understood as the existing level of knowledge or how 
farmers obtain and share knowledge—i.e. either informal or formal 
knowledge sharing. The objective of this paper is to investigate how 
knowledge is associated with the adoption of SAP portfolios. 

Several theories have been applied to empirically investigate 
farmers’ adoption behaviour, such as the theory of planned behaviour 
(Ajzen, 1991) and the reasoned action approach (Fishbein and Ajzen, 
2011). However, these theories do not explicitly capture how knowledge 
transfer influences adoption decisions. Other theories acknowledge the 
importance of knowledge in understanding innovation adoption de-
cisions, such as the diffusion of innovations theory (Rogers, 1962) or the 
behaviour change wheel (Michie et al., 2011). Underlining the impor-
tance of knowledge in adoption decisions, Tensi et al. (2022) recom-
mend farmers and advisors become more active in knowledge sharing to 
increase adoption rates of microbial products among Dutch and German 
arable farmers. Other studies confirmed how acquiring knowledge 
persuades farmers to adopt a specific SAP, such as conservation tillage 
practices (D’Emden et al., 2008), convert to organic farming (Kallas 
et al., 2010; Läpple and Rensburg, 2011), and participate in 
agri-environmental policy schemes (Pavlis et al., 2016). 

While these studies provide valuable insights into how knowledge 
stimulates farmers to adopt individual SAPs, they are silent about how 
the adoption of combinations of SAPs can be supported by improved 
knowledge transfer. There are only a few studies that used portfolio 
approaches to study SAPs. Most of these studies were conducted in 
developing countries (e.g. Bopp et al., 2019; Kassie et al., 2015). A 
notable exception is Weltin et al. (2021), who studied German farmers’ 
adoption of sustainable intensification portfolios. They investigated 
several behavioural drivers of farmers’ intention to adopt these portfo-
lios, including attitudes, values, and perceived benefits. However, 
Weltin et al. (2021) did not consider how knowledge influences the 
adoption of SAP portfolios. 

This study has a threefold contribution. The first contribution is that 
we provide novel insights into the relationship between knowledge and 
the adoption of SAP portfolios. We distinguish between farmers’ level of 
knowledge and how farmers acquire informal knowledge by exploiting 
their social network and capital. Previous studies on the relationship 
between knowledge and SAP adoption focused on single SAP and did not 
consider SAP portfolios. The second contribution is methodological. We 
adjust the three-stage approach proposed by Weltin et al. (2021) to the 
context of Dutch arable farmers. First, we investigate which SAPs are 
often simultaneously adopted based on an unsupervised machine 
learning algorithm. Our methodological contribution is this adjusted 
first stage, where we apply correlation explanation (CorEx) (Ver Steeg 
and Galstyan, 2014), which lets the data speak to endogenously identify 
SAP portfolios. Rather than relying on pre-defined combinations of SAPs 
to construct portfolios, we investigate the adopted combinations of 
SAPs. Second, we assess whether the SAP portfolios are complements or 
substitutes based on a multivariate probit model. Third, we explore how 
knowledge is associated with farmers’ portfolio adoption decisions using 
a partial least squares structural equation model. The third contribution 
is our application to Dutch arable farmers. To the best of our knowledge, 
this is the first case study focusing on Dutch arable farmers. These 
farmers are a suitable population to study SAP portfolios, as the Dutch 
arable production system is characterised as intensive and is subject to 
pesticide and fertiliser overapplication. Hence, adopting SAPs can lower 
farmers’ reliance on pesticides and fertilisers. 

Our results are valuable to European policymakers interested in 
enhancing farm sustainability and resilience. We find that the level of 
knowledge and informal knowledge are heterogeneously associated 

with the adoption of SAP portfolios. This suggests that informing 
farmers about SAP portfolios is helpful to stimulate the adoption of most 
SAP portfolios, but that other incentives, such as subsidies, remain 
important as well to boost SAP adoption. Hence, we recommend poli-
cymakers combine economic and behavioural interventions. 

2. Conceptual framework 

Our conceptual framework explains the relationship between 
knowledge and the adoption of SAP portfolios. We conceptualise SAP 
portfolios as combinations of jointly adopted SAPs. We construct several 
SAP portfolios, as there is a wide range of possible SAPs that can be 
adopted by one or more farmers (Fig. 1). Each portfolio reflects different 
environmental benefits (Weltin et al., 2021). Complementary or sub-
stitutional relationships could exist among different SAP portfolios 
(Kassie et al., 2015). A complementary relationship means that adopting 
more SAPs in a portfolio is positively related to the adoption of more 
SAPs in another portfolio, while substitutional relationships imply that 
adopting more SAPs in a portfolio comes at the cost of adopting fewer 
SAPs in other portfolios. 

There are several factors influencing farmers’ decisions to adopt 
SAPs, ranging from farm(er) characteristics, economic and environ-
mental characteristics of SAPs, exogenous factors—i.e. off-farm influ-
ences—and behavioural factors (Fielding et al., 2008; Foguesatto et al., 
2020; Rodriguez et al., 2008). Our conceptual framework builds on a 
recent literature review on the behavioural factors shaping farmers’ 
adoption decisions (Dessart et al., 2019). In this review, three categories 
of behavioural factors were identified: cognitive, social, and disposi-
tional factors. We focus on cognitive factors because these factors are 
most proximal to the farmer and most directly influence adoption de-
cisions. For instance, Massfeller et al. (2022) found that cognitive factors 
were positively associated with the likelihood of adopting sustainable 
practices. Four cognitive factors influencing adoption decisions were 
identified by Dessart et al. (2019): (i) knowledge, (ii) perceived 
behavioural control, (iii) perceived benefits, and (iv) perceived risk. We 
are specifically interested in the relationship between knowledge and 
the adoption of SAP portfolios. Investigating different portfolios allows 
us to assess whether the relationship between knowledge and the 
adoption of SAP portfolios is heterogeneous across portfolios. We thus 
recognise that adopting different combinations of SAPs may require 
different knowledge sources. 

Previous studies revealed a positive relationship between knowledge 
and the adoption of individual SAPs (Kallas et al., 2010; Läpple and 
Rensburg, 2011; Pavlis et al., 2016). These studies assessed the role of 
knowledge in general, without specifying what form of knowledge is 
related to SAP adoption. Šūmane et al. (2018) argue that a transition 
towards sustainable agriculture requires different forms of knowledge. 
Two important forms of knowledge are (i) the current level of knowl-
edge (Ammann et al., 2022) and (ii) the extent to which informal 
knowledge is acquired (Šūmane et al., 2018). 

First, the level of knowledge reflects farmers’ knowledge about 
different combinations of SAPs. The level of knowledge depends on in-
formation accessibility and the available sources of information (Caffaro 
et al., 2020). Information provision supports farmers in acquiring more 
knowledge (Llewellyn, 2007). In line with Läpple and Rensburg (2011), 
we expect that the level of knowledge is positively correlated with the 
adoption rate of SAPs. Second, we understand farmers’ informal knowl-
edge as the knowledge that is acquired through farmers’ social networks 
or social capital (Šūmane et al., 2018). Examples of these informal 
knowledge practices are attending farmer-to-farmer interactions, 
participating in study clubs, discussing new practices with crop advisors, 
and attending demonstration days (Slijper et al., 2022). These forms of 
informal knowledge have a more experimental character and are closely 
related to farmers’ social norms (Thomas et al., 2020), which often 
result in improved experience-based knowledge (Šūmane et al., 2018). 
Therefore, farmers with higher levels of informal knowledge are 

T. Slijper et al.                                                                                                                                                                                                                                   



Journal of Cleaner Production 417 (2023) 138011

3

expected to adopt more SAPs. 
We introduce two hypotheses: 

H1. The level of knowledge is positively related to the number of SAPs 
adopted in a portfolio. 

H2. Informal knowledge is positively related to the number of SAPs 
adopted in a portfolio. 

We briefly discuss how the three remaining cognitive factors—per-
ceived behavioural control, perceived benefits, and perceived risk—are 
related to the adoption of SAP portfolios. Perceived behavioural control is 
the perceived ability to overcome obstacles in reaching one’s goals 
(Ajzen, 2002). In the context of SAP portfolios, higher levels of perceived 
behavioural control imply that farmers see fewer difficulties to adopt 
different combinations of SAPs. Previous studies found a positive cor-
relation between the level of perceived behavioural control and the 
adoption rate of several individual SAP, such as organic farming or 
agri-environmental practices (Kuhfuss et al., 2016). In line with Bopp 
et al. (2019), we extend this line of reasoning to a SAP portfolio. We 
expect that higher levels of perceived behavioural control are positively 
related to the number of SAPs adopted. 

Higher perceived benefits are expected to result in higher SAP adop-
tion rates. The most important perceived benefits are in the economic or 
environmental domain (Dessart et al., 2019). The economic domain 
mostly focuses on the potential of SAPs to increase profitability, reduce 
costs or receive higher prices. These benefits are positively associated 
with SAP adoption (Villanueva et al., 2016). In the environmental 
domain, perceived benefits were associated with higher SAP adoption 

rates, including improved soil quality (D’Emden et al., 2008), water 
quality (Yeboah et al., 2015), and lower reliance on pesticides and fer-
tilisers (Dessart et al., 2019). 

Sources of risk and uncertainty are inherent to adopting new farming 
practices. Perceived risk reflects a farmer’s domain-specific subjective 
probability of risky events (Hardaker and Lien, 2010). Two key domains 
are financial and environmental risk perception, which reflect how 
economic and environmental uncertainty influence adoption decisions. 
As a higher perceived risk is a barrier to adopting SAPs, perceived risk is 
negatively associated with SAP adoption (Dessart et al., 2019). 

3. Material and methods 

3.1. Survey design and data 

We conducted an online survey among Dutch arable farmers in June 
2021. The survey was distributed by an agricultural market research 
agency. It took approximately 15 min to complete the survey. We used 
convenience sampling. One of the limitations of convenience sampling is 
that agricultural agencies may not have access to all arable farmers. This 
means that our sample may not be a perfect representation of the pop-
ulation. We are convinced that our sample can be used to address our 
study aim because of its explorative nature. However, our findings 
should be interpreted with some caution, as the results cannot be 
generalised to the general population of Dutch arable farmers. 

We sent the survey to about 2,500 Dutch arable farmers, of which 
303 respondents completed at least the first part of the survey on farm 

Fig. 1. Conceptual framework depicting the relationship between knowledge and the adoption of SAP portfolios, where M is the number of portfolios and L is the 
total number of SAPs. 
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(er) characteristics. The response rate is approximately 12%. This low 
response rate may be attributed to the ongoing COVID-19 pandemic at 
the time that the survey was sent out and that the survey was distributed 
by email, which made it easy to ignore the invitation to participate. 
Nevertheless, similar response rates were obtained in other survey-based 
studies on SAP portfolios (e.g. Weltin et al. (2021) reported a response 
rate of 13%) or survey-based studies among Dutch farmers (e.g. Slijper 
et al. (2020) obtained a response rate of 17%). We only included re-
spondents who had completed all relevant sections of the survey in our 
analysis. This resulted in a sample of 180 respondents .To investigate 
whether the high non-completion rate of the survey caused potential 
selection bias, we compare the final sample to the overall population of 
Dutch arable farmers (see Table A2) and compare farmers who have 
completed the survey to the ones that have dropped out (see Table A3). 
Table A2 reveals that our sample is similar to the overall population of 
Dutch arable farmers for most farm characteristics. The survey sample is 
marginally larger in terms of land and labour compared to the average 
Dutch farmer. This is caused by a couple of large farms being present in 
the sample. However, the labour-to-land ratio is comparable. Table A3 
shows that there are no significant differences between the sample of 
farmers who have completed the survey and the sample that has drop-
ped out for nearly all elicited survey items. All in all, we are confident 
that our sample is reasonably representative. 

To determine if this sample was sufficiently large to run a partial 
least square structural equation model (PLS-SEM), we followed the in-
verse square root method proposed by Kock and Hadaya (2018). The 
inverse square root method is a conservative power analysis, which 
indicated that a sample size of 180 can detect coefficients between 0.11 
and 0.20 at a significance level of less than 5%. This suggests that our 
sample is sufficiently large to run a PLS-SEM. 

The survey consists of three main parts1: (i) farm(er) characteristics, 
(ii) SAP adoption, and (iii) cognitive factors. The first part considers 
several farm(er) characteristics, such as age, experience, farm household 
size, agricultural training, gender, education, land, and whether the 
farmer applied organic practices or not. The second part investigates the 
combinations of SAPs adopted by farmers in the last five cropping sea-
sons. A full description of the SAPs can be consulted in the Appendix 
(Table A1). The third part builds on the literature review of Dessart et al. 
(2019) and investigates the four cognitive factors associated with SAP 
adoption: (i) knowledge, (ii) perceived benefits, (iii) lack of perceived 
behavioural control, and (iv) perceived risk. Table 1 presents the full 
statements and descriptive statistics of these factors. 

First, knowledge is measured using three items. The first and second 
items measure individual knowledge and are based on the statements 
presented by Läpple and Rensburg (2011) and Kallas et al. (2010). The 
third item measures farmers’ informal knowledge (Läpple and 
Rensburg, 2011). Second, perceived benefits are measured using four 
items based on the statements of Vanslembrouck et al. (2002) and 
Claudy et al. (2014). Third, the (lack of) perceived behavioural control is 
assessed using two items. Similar statements have previously been used 
by Claudy et al. (2014). Finally, perceived risk is measured by asking 
farmers how they perceived that several risks affected their farm oper-
ations, and in particular their farm’s profitability. We anchor risk per-
ceptions to profitability, as Spiegel et al. (2020) showed that European 
farmers perceived economic risks as most severe. For both perceived 
benefits and risks, we focus on the environmental dimension as SAP 
portfolios have environmental benefits that potentially reduce these 
perceived risks. 

3.2. Methodology – a three-stage approach 

We adapt the three-stage approach proposed by Weltin et al. (2021) 
to the context of Dutch agriculture. The first stage constructs the SAP 
portfolios. The second stage assesses interdependencies across SAP 
portfolios. Finally, the third stage explores the relationship between 
knowledge and the adoption of SAP portfolios. 

3.2.1. Stage 1: Constructing SAP portfolios 
We employ correlation explanation (CorEx) (Ver Steeg and Galstyan, 

2014) to construct SAP portfolios. Each SAP is a dummy variable that 
turns 1 if a SAP has been adopted by a farmer in the past five cropping 

Table 1 
Item wordings and summary statistics (N = 180).  

Name Item Mean St 
dev 

SAP Number of adopted SAPs (ranging from 0 to 14 adopted 
SAPs) 

6.41 3.16  

Knowledge 
Level of knowledge  

To what extent do you agree or disagree with the 
following statements? 
7-point scale ranging from 1 (strongly disagree) to 7 
(strongly agree)a.   

Know1 I lack adequate knowledge about the benefits of using 
multiple SAPs simultaneously 

3.39 1.49 

Know2 I lack knowledge on how to adopt the best combinations 
of SAPs 

3.43 1.48  

Informal knowledge 
Know3 How often did you discuss SAPs with other 

(neighbouring) farmers, agricultural experts or 
extension agents in the last cropping season? 
4-point scale: 1 = never; 2 = rarely; 3 = a few times; 4 =
regularly. 

3.09 0.93  

Risk perception  
When thinking of your farm operations and 
profitability, how concerned are you regarding the 
following issues? 
5-point scale ranging from 1 (not worried at all) to 5 
(extremely worried).   

RP1 Your farm’s soil quality 2.79 1.07 
RP2 The impacts of chemical inputs used in crop farming on 

the environment 
2.57 1.17 

RP3 The impacts of chemical residues in food products on 
consumers’ health 

2.20 1.10  

Perceived benefits  
If you have adopted different combinations of SAPs, 
what are your reasons for doing so? 
7-point scale ranging from 1 (strongly disagree) to 7 
(strongly agree)   

PB1 Increase crop resistance to pests and diseases 5.42 1.52 
PB2 Increase crop resistance to extreme weather and 

extreme climate conditions 
5.54 1.53 

PB3 Decrease the amount of pesticides used on my farm 4.88 1.72 
PB4 Improve biodiversity 4.73 1.70  

Lack of perceived behavioural control  
To what extent do the following factors limit your 
adoption of different (combinations of) SAPs? 
7-point scale ranging from 1 (strongly disagree) to 7 
(strongly agree).   

PBC1 I foresee several difficulties when implementing 
multiple SAPs simultaneously 

4.31 1.61 

PBC2 I am not convinced about the effectiveness and efficacy 
of using multiple SAPs together 

4.69 1.54  

a Reversed scores are presented for farmers’ level of knowledge to ensure that 
these statements follow the same direction as informal knowledge. 

1 The survey included an introduction section containing information about 
the study. The respondents were asked to sign a consent form and could only 
continue the survey if they signed this form. The consent form ensures that the 
ethical aspects of this study are handled well. It has been approved by the Social 
Sciences Ethics Committee of Wageningen University. Twelve respondents 
tested the survey after which some questions were omitted or rephrased. 
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seasons and 0 otherwise. Hence, our dataset is dichotomous and 
high-dimensional. CorEx is a suitable method to reduce dimensionality 
in dichotomous datasets2 (Ver Steeg and Galstyan, 2014). It applies in-
formation theory to run an unsupervised machine learning algorithm, 
which identifies latent factors (M)—in our case SAP portfo-
lios—consisting of individual SAPs (L) (Fig. 1). 

CorEx builds on the concept of total correlation (TC), which is the 
multivariate mutual information among a set of SAPs. The SAPs that 
share most mutual information are clustered into portfolios, meaning 
that a portfolio exists of SAPs that are often jointly adopted or are not 
adopted. Following Ver Steeg and Galstyan (2014), the mutual infor-
mation is the information shared across two SAPs: 

I(Li;La)=H(Li)+H(La) − H(Li, La) (1)  

where i and a refer to different SAPs and H(Li) = − log p(Li) is the 
entropy. 

TC generalises mutual information (Li et al., 2022). It does this by 
allowing n-wise combinations of SAPs while mutual information is 
restricted to pairwise comparison. TC is defined as: 

TC (L1,…,Ln)=
∑n

i=1
H(Li) − H(L1,…,Ln)=DKL

(

p(L1,…, Ln)

⃒
⃒
⃒
⃒
⃒

∏n

i=1
p(Li)

)

(2)  

where L1,…, Ln refers to SAP 1, …, n. DKL is Kullback-Leibler divergence 
of the joint probability density and the product of the marginal densities. 
Fully independent SAPs obtain a TC of zero while higher dependences 
across SAPs increases TC. The conditional total correlation can be ob-
tained by conditioning SAPs L on portfolios K. It builds on the Kullback- 
Leibler divergence of two conditional probability distributions (Li et al., 
2022) and reads as: 

TC(L|K)=
∑

i
H(Li|K) − H(L|K)=DKL

(

p(l|k)

⃒
⃒
⃒
⃒
⃒

∏n

i=1
p(li|k)

)

(3)  

where l and k are the conditional probability distributions of L and K. 
High-dimension datasets lack a straightforward application of TC 

(Ver Steeg and Galstyan, 2014). To overcome this issue, CorEx adopts a 
latent factor modelling approach that constructs several SAP portfolios 
(K). K captures the dependencies across individual SAPs Li. We measure 
the proportion that K explains correlations among L by computing the 
decrease in TC: 

TC(L) − TC(L|K)=
∑n

i=1
I(Li;K) − I(L;K) (4) 

The optimal factor model is obtained by reconstructing m latent SAP 
portfolios Kj (j = 1, …, m). The function that optimises the lower bound 
of equation (4) reads as: 

TC(L)≥ max
p(Kj|L)

∑n

i=1
I(Li;K) − I(L;K)=

∑m

j=1

(
∑n

i=1
αi,jI
(
Li;Kj

)
−
(
Kj;L

)
)

(5)  

where αi,j is a free parameter, which optimal value is obtained by iter-
ating t times. Initialising at t = 0 and updating αi,j is done using: 

αt+1
i,j =(1 − λ)αt

i,j + λα∗∗
i,j (6)  

where α∗∗
i,j = exp

(

γ
(

I(Li,Kj) − max
j

(I(Li,Kj))

))

with λ and γ as con-

stants. We set t to 1,000 iterations and repeat the algorithm 100 times, 
which results in a stable maximisation of TC while limiting computation 
time. The optimal number of portfolios is obtained by running CorEx for 
different numbers of portfolios (for m ranging from 2 to 6 portfolios), 
after which the number of portfolios that maximises TC is selected. We 
use the R library rcorex (Rooney, 2021) to run CorEx. 

3.2.2. Stage 2: Assessing interdependencies across SAP portfolios 
We explore the interdependence of SAP portfolios using a multi-

variate probit (MVP) model (Wooldridge, 2010). MVP simultaneously 
estimates a system of univariate probit equations—i.e. a single equation 
for each of the portfolios—and allows the error terms of these equations 
to be correlated. This correlation may arise if similar farm(er) charac-
teristics are associated with the adoption of multiple SAP across 
different portfolios (Kassie et al., 2015). The existence of positive 
(negative) correlations among error terms indicates complementarity 
(substitutability) across SAP portfolios. 

We define the M-equation MVP as: 

y∗im = β′
mXim + εim m = 1,…,M (7a)  

yim = 1 if y∗im > 0 and 0 otherwise (7b)  

where yim is a dichotomous variable that turns 1 if farmer i adopts at 
least one SAP within portfolio m and 0 otherwise, Xm is a vector of 
explanatory farm(er) characteristics, and εim are the error terms of the 
equations. εim is multivariate normally distributed with a zero condi-
tional mean and a normalised variance to unity—i.e. MVN ∼ (0,Ω). The 
symmetric variance-covariance matrix Ω reads as: 

Ω=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 ρ12 ⋯ ⋯ ⋯ ρ1M
ρ21 1 ⋮
⋮ 1 ⋮
⋮ 1 ⋮
⋮ 1 ρM− 1M

ρM1 ⋯ ⋯ ⋯ ρMM− 1 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

(8)  

where ρ represents the pairwise correlation coefficients of the error 
terms of two equations. We use a likelihood ratio test to determine 
whether the correlations between the error terms are jointly equal to 
zero or not. Estimating separate univariate probit models is inefficient if 
the decisions to adopt SAP portfolios are interrelated. In these cases, 
multivariate models are the preferred specifications3. MVP is estimated 
using simulated maximum likelihood. 100 draws are taken from the 
Geweke-Hajivassiliou–Keane simulator. This number of draws results in 
stable pairwise correlation coefficients: a further increase in the number 
of draws hardly changes the pairwise correlation coefficients (see Ap-
pendix, Figure A1). We use the Stata command mvprobit (Cappellari and 
Jenkins, 2003) to estimate the MVP. 

The explanatory farm(er) characteristics included in the MVP are the 
level of knowledge about SAP, informal knowledge, farmer experience, 
farm household size, diversification, and farmers’ expectations about 

2 We also considered alternative methods to reduce dimensionality, such as 
principal component analysis (PCA) or multiple correspondence analysis 
(MCA). However, PCA is less suitable to reduce dimensionality of dichotomous 
variables as it is designed for continuous variables. MCA could be an alternative 
method to reduce dimensionality of dichotomous dataset but performs less well 
for high dimensional data. 

3 To investigate the robustness of our findings to alternative model specifi-
cations and if our finite sample may bias our findings, we also investigate (i) 
univariate probit models, (ii) bivariate probit models, and (iii) multivariate 
ordered probit models. The univariate probit models estimate a separate 
equation for each SAP portfolio. The bivariate probit models investigate the 
correlations between two selected SAP portfolios. The multivariate ordered 
probit model categorises the number of SAP within a portfolio into multiple 
categories and investigates if these portfolios act as complementary or sub-
stitutes. We use the Stata commands probit, mvprobit (Cappellari and Jenkins, 
2003), and cmp (Roodman, 2007) to estimate these models. 
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the effect of SAPs on farm profitability4. These selected farm(er) char-
acteristics are identified by previous studies as important drivers of SAP 
adoption (Knowler and Bradshaw, 2007; Prokopy et al., 2008) and have 
been included in earlier adoption decision models (e.g. Bopp et al., 
2019; Weltin et al., 2021). We excluded land as a control variable as it 
was often missing. Including land in the main model would reduce our 
sample size to 120 farmers. As a robustness check, we estimate the MVP 
model including land. The descriptive statistics of the farm(er) charac-
teristics are available in the Appendix (Table A2). 

3.2.3. Stage 3: Exploring the relationship between knowledge and SAP 
adoption 

We run a partial least squares structural equation model (PLS-SEM) 
to explore how knowledge is related to the adoption of SAP portfolios. 
We treat the number of SAPs adopted within a portfolio as a continuous 
variable. Most of the measured constructs in our survey are latent, 
implying that they cannot be directly measured. PLS-SEM is a non- 
parametric multivariate technique that is suitable to estimate relation-
ships between latent constructs by combining a structural and mea-
surement model (Hair et al., 2016). 

The structural model investigates relationships among latent con-
structs. It describes how knowledge, risk perception, perceived behav-
ioural control, and perceived benefits are correlated with the adoption 
of SAP portfolios. The measurement model explains how each latent 
construct is measured in a formative or reflective way. On the one hand, 
formative measurement models suggest the existence of a relationship 
pointing from specific items to latent constructs, when changing items 
cause the construct to change (Diamantopoulos and Siguaw, 2006). On 
the other hand, reflective measurement models investigate relationships 
from a latent construct to the items, when changing a latent construct 
causes changes in the items (Diamantopoulos and Siguaw, 2006). 

PLS-SEM is a suitable estimation approach for our study as we 
combine formative (risk perception and perceived benefits) and reflec-
tive measurement models (knowledge and perceived behavioural con-
trol) into a structural model. Traditional covariance-based SEMs 
struggle to combine formative and reflective measurement models. We 
use the R library SEMinR (Ray et al., 2021) to estimate the PLS-SEM. 

4. Results and discussion 

4.1. Stage 1: Correlation explanation (CorEx) 

The optimal number of SAP portfolios is three (Table 2), as this 
number of portfolios maximises the total correlation explained5. These 
SAP portfolios are presented in Table 3. These portfolios consist of 
combinations of SAPs adopted by Dutch arable farmers and do not 
necessarily reflect the optimal SAP portfolios from an agronomic 

perspective. It shows that portfolio 1 consists of five SAPs: integrated 
pest management, land reforming, manure management, precision 
farming, and water management. This is a diversified portfolio that in-
cludes SAPs aimed at improving land or water management. Portfolio 1 
distinguishes itself from the other portfolios as these SAPs require in-
vestments in technology, such as storage systems for manure manage-
ment, investments in precision farming machinery or optimized 
irrigation systems to improve water management. Portfolio 2 contains 
greening measures specified by the CAP—i.e. cover crops, legumes 
(intercropping and rotation)—and genetically improved seeds. In the 
Netherlands, these greening measures are used as cross-compliance to 
obtain decoupled direct payments. Hence, the adoption of most of these 
SAPs is stimulated by agricultural policymakers. Portfolio 3 consists of 
SAPs that reduce chemical fertiliser and pesticide usage, composting, 
microbial applications, mulching, and tillage measures. This portfolio 
represents a specialised combination of SAPs, which are aimed at 
improving soil health and quality and reducing farmers’ reliance on 
chemical fertilisers and pesticides. 

4.2. Stage 2: Multivariate probit model 

Table 4 presents the correlation coefficients of the error terms for 
different probit specifications6. It reveals complementary relationships 
between each of the three portfolios, as there are significant positive 
correlation coefficients for all model specifications. These findings are in 
line with Weltin et al. (2021) and Kassie et al. (2015), who mostly found 
positive correlations between the adoption of different SAP portfolios. 
This means that SAPs from different portfolios are often jointly adopted. 
Hence, farmers are spreading risks by diversifying across different SAP 
portfolios. 

Table 2 
Total correlation explained for different numbers of SAP portfolios.  

Number of portfolios Total correlation explained 

2 0.658 
3 0.676 
4 0.607 
5 0.585 
6 0.550  

Table 3 
The SAP portfolios identified by CorEx. Standard deviations are presented in 
parentheses.  

Portfolio SAP Meana 

Portfolio 1 (investments in technology) 2.239 (1.562)  
Integrated pest management 0.744  
Land reforming 0.228  
Manure management 0.367  
Precision farming 0.506  
Water management 0.394 

Portfolio 2 (cross-compliance of the CAP and genetically improved 
seeds) 

1.483 (1.217)  

Cover crops 0.628  
Genetically improved seeds 0.278  
Legumes intercropping 0.222  
Legumes rotation 0.356 

Portfolio 3 (soil health improvement and pesticide and fertiliser 
reduction) 

2.689 (1.420)  

Reduction of chemical fertiliser and pesticides 0.783  
Composting 0.356  
Microbial applications 0.378  
Mulching 0.522  
Reduced or no tillage 0.650 

Notes. 
a Mean of portfolio 1, 2, or 3 refers to the average number of SAPs adopted 

within a portfolio. Note that portfolio 2 contains four SAPs while portfolios 1 and 
3 contain five SAPs. No standard deviations are presented for individual SAPs as 
these variables are measured dichotomously. 

4 We omitted organic farming as an explanatory variable as it was one of the 
SAPs included in the questionnaire.  

5 This optimal number of portfolios only includes SAPs that are adopted by at 
least 20% of the farmers. As a robustness check, we investigated the number of 
SAP portfolios to an adoption threshold of 10% or to a scenario that includes all 
SAPs. Table A3 shows that the optimal number of SAP portfolios remains three. 

6 The average partial effects of the explanatory variables are omitted for the 
sake of brevity. These can be found, as well as the robustness check for models 
including land, in the Appendix (Table A4). In general, it shows that the 
average partial effects are stable—in terms of magnitude, sign, and sig-
nificance—across the different models. This increases our confidence in the 
presented findings. 

T. Slijper et al.                                                                                                                                                                                                                                   



Journal of Cleaner Production 417 (2023) 138011

7

4.3. Stage 3: Partial least square structural equation model (PLS-SEM) 

We estimate four PLS-SEM: a general model investigating the total 
number of SAPs adopted and three separate models representing each of 
the SAP portfolios. Before discussing the structural model, we first assess 
the reflective and formative measurement models. 

Assessing the reflective measurement model requires an under-
standing of internal consistency reliability, convergent validity, and 
discriminant validity (Hair et al., 2016). The evaluation of the initial 
models shows a lack of internal consistency reliability as the items 
representing perceived behavioural control obtained a Cronbach’s alpha 
smaller than 0.7. Hence, we drop one item that measures perceived 
behavioural control. In the final model, only PBC1 is included. 
Tables A7-A8 show that for the level of knowledge, satisfactory levels of 
Cronbach’s alpha (larger than 0.7), composite reliability (larger than 
0.7), and average variance explained (larger than 0.5) are obtained. 
Finally, we assess discriminant validity using the heterotrait-monotrait 
(HTMT) ratio. The HTMT ratios are significantly lower than 1, indi-
cating that discriminant validity is obtained (Table A9-A12). 

The formative measurement model assessment validates the 
convergent validity, absence of multicollinearity, and significance of 
outer weights and loadings (Hair et al., 2016). We conduct a redundancy 
analysis to assess convergent validity for the two formative constructs in 
our model—i.e. perceived risk and perceived benefits. One or two 

reflective measures of each construct were collected and correlated to 
the corresponding formative items. Table A13 shows that convergent 
validity is obtained as all R2 exceed 0.5. All variance inflation factors 
(VIF) are below 3 (Table A14 and Table A15), indicating that multi-
collinearity is not present at critical levels. Finally, the significance of 
the outer weights and loadings are assessed. Table A14 shows that either 
the outer weights or loadings are significantly different from zero for all 
items. Hence, we conclude that the reflective and formative measure-
ment models are of sufficient quality and proceed to the structural model 
assessment. 

The presented path coefficients (Table 5) are obtained using the 
percentile method for bootstrapping. The order of the f2 effect sizes 
follows the same rank as the bootstrapped parameter estimates 
(Table A16), suggesting that satisfactory effect sizes are obtained and 
are consistent with the parameter estimates. 

The level of knowledge and informal knowledge are significantly 
associated with SAP adoption in the general model and the models 
investigating portfolios 1 and 3. For these models, hypotheses 1 and 2 
are confirmed. The positive relationship between the level of knowledge 
and SAP adoption implies that informing farmers about combinations of 
SAPs could be an effective direction towards increasing farmer knowl-
edge. These findings are in line with previous studies that focused on a 
single SAP. For instance, D’Emden et al. (2008) found that no-till de-
cisions were positively related to adoption decisions. The positive 

Table 4 
Correlation coefficients of the error terms (ρ) for different portfolio equations under various model specifications.   

Multivariate probit Ordered multivariate probit Bivariate probit: portfolio 1, 2 Bivariate probit: portfolio 1, 3 Bivariate probit: portfolio 2, 3 

ρ12 0.270* 0.232** 0.250*   
(0.142) (0.091) (0.148)   

ρ13 0.743*** 0.403***  0.751***  
(0.120) (0.064)  (0.118)  

ρ23 0.567*** 0.315***   0.576*** 
(0.145) (0.080)   (0.158) 

Farm(er) 
characteristicsa 

Yes Yes Yes Yes Yes 

Log-likelihood − 191.574 − 829.330 − 165.981 − 97.397 − 130.340 
Wald test (χ2) 58.27*** 81.16*** 44.26*** 37.17*** 31.67*** 
Wald test (df) 18 18 12 12 12 
N 180 180 180 180 180 

Notes: *p < 0.10, **p < 0.05, ***p < 0.01. Likelihood ratio test of the multivariate probit model: χ2(3) = 22.524, p-value = 0.000. 
a Average partial effects of the farm(er) characteristics and other control variables are omitted for the sake of brevity. “Yes” implies these variables are included in 

the model. 

Table 5 
Path coefficients of the PLS-SEM. Bootstrapped 95% confidence intervals are presented in squared brackets.   

General modela Portfolio 1 Portfolio 2 Portfolio 3 

Bootstrapped 
mean 

95% CI Bootstrapped 
mean 

95% CI Bootstrapped 
mean 

95% CI Bootstrapped 
mean 

95% CI 

Level of 
knowledge 

0.199** [0.009; 
0.389] 

0.160** [0.036; 
0.354] 

0.100 [-0.070; 
0.280] 

0.201** [0.015; 
0.393] 

Informal 
knowledge 

0.319*** [0.190; 
0.438] 

0.357*** [0.228; 
0.476] 

0.095 [-0.040; 
0.223] 

0.237*** [0.099; 
0.367] 

Lack of PBC − 0.019 [-0.218; 
0.171] 

− 0.097 [-0.294; 
0.089] 

− 0.052 [-0.237; 
0.125] 

0.107 [-0.082; 
0.303] 

Risk perception − 0.123* [-0.248; 
0.015] 

− 0.109* [-0.234; 
0.017] 

− 0.077 [-0.231; 
0.118] 

− 0.112 [-0.246; 
0.045] 

Benefits 0.209** [0.040; 
0.358] 

0.042 [-0.103; 
0.172] 

0.219* [-0.050; 
0.366] 

0.307*** [0.166; 
0.438]  

AIC − 38.265  − 36.961  − 1.565  − 30.842  
BIC − 19.108  − 17.804  17.593  − 11.684  
R2 0.242  0.236  0.067  0.211  
Adjusted R2 0.220  0.214  0.040  0.188  

Notes: *p < 0.10, **p < 0.05, ***p < 0.01. The following PLS-SEM settings were used: maximum number of iterations is set to 300 with a stop criterion of 10− 7 and 
10,000 bootstrap repetitions using the path weighting method. The confidence intervals are based on the bootstrapped mean and standard errors. For some path 
coefficients, the confidence intervals are slightly asymmetric as a result of applying a non-parametric method. 

a The general model considers all SAPs in a single portfolio. 
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relationship between informal knowledge and SAP adoption suggests 
that discussing SAPs with others is a successful strategy to increase SAP 
adoption rates in the general model or the models investigating port-
folios 1 and 3. Our findings are backed up by Šūmane et al. (2018) who 
underline the importance of informal knowledge in enhancing farm 
sustainability. Furthermore, D’Emden et al. (2008) found that farmers 
who discuss no-till decisions with others are more likely to adopt no-till 
practices than those who donot. Finally, the importance of knowledge 
sharing has also been highlighted by Lamkowsky et al. (2021) in the 
context of economic productivity and nitrogen pollution in Dutch dairy 
farms, as it may help close the large existing gap between best-practice 
farmers and others. 

Overall, our findings reveal that the path coefficients of the general 
model and the models investigating portfolios 1 and 3 are fairly similar 
in terms of signs and significance. However, both types of knowledge are 
not significantly related to the adoption of SAPs in portfolio 2. A possible 
explanation for this could be that the adoption of several SAPs in port-
folio 2 is stimulated by the CAP. For instance, cover crops and legumes 
are part of the cross-compliance to receive decoupled direct payments. 
Hence, only perceived benefits are significantly correlated to the 
adoption of SAP in portfolio 2. These heterogeneous effects suggest 
would not have been unravelled if only the general model had been 
estimated. This reveals an advantage of analysing multiple SAP portfo-
lios: it helps to design effective policy interventions that could persuade 
farmers to adopt certain combinations of SAPs. For instance, a combi-
nation of knowledge transfer (portfolio 1 and 3) and decoupled direct 
payments (portfolio 2) could persuade farmers to adopt a wide range of 
SAPs. 

We find that a lack of perceived behavioural control is not related to 
farmers’ adoption decisions. This consistently holds for all portfolios, 
suggesting that difficulties to adopt combinations of SAPs are not 
perceived as a barrier. A possible explanation for this surprising finding 
could be that farmers are convinced that adopting SAPs is relatively easy 
and, therefore, not hampered by a lack of perceived behavioural control. 
These findings contradict previous studies describing that perceived 
behavioural control influences farmers’ intention to adopt or their 
actual adoption decisions (Bopp et al., 2019). 

Risk perception is negatively associated with SAP adoption in the 
general model and the model investigating portfolio 1 but unrelated to 
adoption in portfolios 2 and 3. This implies that farmers with higher 
environmental risk perceptions adopt fewer SAPs, suggesting that high 
levels of perceived risk act as a barrier to adopting SAPs. These findings 
contradict previous studies suggesting that higher environmental risk 
perceptions are positively associated with the adoption of sustainable 
practices to mitigate these risks (Arbuckle et al., 2015; Toma and 
Mathijs, 2007). A possible explanation for these contradictory findings 
could be that we anchor our environmental risk perception to farmers’ 
profitability—i.e. we asked farmers to indicate how concerned they are 
about the effect of environmental risks on the profitability of their 
farm—suggesting an indirect relationship to financial risk perception. 
As previous studies found that financial risk perceptions are negatively 
related to the adoption of SAPs (Trujillo-Barrera et al., 2016), this could 
explain the negative association between environmental risk perception 
and SAP adoption. 

Perceived benefits are positively correlated to SAP adoption in the 
general model and the models investigating portfolios 2 and 3. These 
findings are confirmed by studies that describe how higher perceived 
benefits lead to higher SAP adoption rates (Villanueva et al., 2016; 
Yeboah et al., 2015). A possible explanation for the non-significant 
relationship between the perceived benefits and SAP adoption in port-
folio 1 could be that these SAPs require initial investments in technol-
ogies. For these SAPs, access to finance may be a more important factor 
to explain adoption. 

Additionally, we run a series of robustness checks that consider 
different combinations of control variables and a model that includes an 
interaction effect between the level of knowledge and informal knowl-

edge. Fig. 2 presents the 90% confidence intervals7 for alternative model 
specifications. In general, our findings are consistent across alternative 
model specifications as none of the 90% confidence intervals of the level 
of knowledge and informal knowledge contains 0 for the general model 
(Fig. 2A), portfolio 1 (Fig. 2B), and portfolio 3 (Fig. 2D). This means that 
the level of knowledge and informal knowledge are positively correlated 
to SAP adoption in these models. Fig. 2C depicts that individual 
knowledge is not significantly correlated to adopting more SAPs in 
portfolio 2 across all model specifications. However, our results are not 
fully robust to alternative model specifications when inspecting the role 
of informal knowledge. Informal knowledge is only associated with SAP 
adoption in portfolio 2 if perceived benefits are omitted from the model 
(i.e. model specifications 2, 3, 4, and 6). This indicates that the associ-
ation between informal knowledge and SAP adoption in portfolio 2 is 
hampered by perceived benefits. 

4.4. Limitations 

We discuss two limitations of this study. First, the use of convenience 
sampling methods combined with a high non-completion rate of the 
survey may imply that our sample cannot be fully classified as a random 
sample. Caution is required when interpreting our results, as the tech-
niques employed focus on internal validity rather than external validity. 
The generalisation of our findings to other settings may be compro-
mised. Second, the measurement models of perceived behavioural 
control and informal knowledge are only based on a single item. This 
may have decreased the validity of these constructs and disallowed 
assessing the reliability of these constructs. We intended to measure 
perceived behavioural control on a multi-item scale. However, lacking 
reliable internal consistency, one item had to be removed. Using multi- 
item scales could have improved the measurement of perceived behav-
ioural control and informal knowledge. 

5. Conclusions 

This study investigated the relationship between farmers’ knowledge 
and the adoption of different SAPs. Using survey data from 180 Dutch 
arable farmers, we investigated the combinations of SAPs that were 
jointly adopted into portfolios. Three SAP portfolios were identified. The 
first portfolio contained technology-driven SAPs that require an initial 
investment. The second portfolio mostly contained greening measures 
that are part of the CAP’s cross-compliance. The third portfolio was 
aimed at improving soil health and quality and reducing farmers’ reli-
ance on chemical fertilisers and pesticides. Furthermore, we found a 
complementary relationship among the three SAP portfolios. This im-
plies that adopting more SAPs within a portfolio was correlated with 
adopting more SAPs in other portfolios. Finally, our results revealed that 
the level of knowledge and informal knowledge are heterogeneously 
associated with different SAP portfolios. Farmers with more knowledge 
about combinations of SAPs and farmers who acquired more informal 
knowledge adopted more technologically driven SAPs (portfolio 1) and 
SAPs aimed at improving soil health and reducing fertiliser and pesticide 
usage (portfolio 3). However, knowledge was not related to the adoption 
of cover crops and other greening measures (portfolio 2). 

This study has important implications for agricultural policymakers 
who aim at enhancing the sustainability and resilience of arable farmers. 
Policymakers should foster farm sustainability by increasing the adop-
tion rates of SAPs, which could be stimulated by improving knowledge 
about SAPs and sharing knowledge in a social setting. Focusing on 
sharing knowledge through social capital could help policymakers to 

7 We present 90% confidence intervals because we consider significant as-
sociations in Table 4 at a level of α = 0.10. To consistently discuss our results, 
we present 90% confidence intervals. The full model output of these robustness 
checks can be found in the Appendix (Table A.16-A.19). 
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stimulate farm resilience, especially in terms of transformations toward 
sustainable production systems. In line with CAP 2023–2027 reform, we 
recommend policymakers specifically target farm advisory services to 
foster informal knowledge sharing within the Agricultural Knowledge 
and Innovation Systems (AKIS 2.0). It is recommended to share knowl-
edge informally during farm demonstration days, study clubs or other 
extension services. Besides effective knowledge transfer, subsidies may 
also persuade farmers to adopt SAP. Some SAPs are already stimulated 
by the CAP’s cross-compliance to receive decoupled direct payments (e. 
g. cover crops and legumes). Maximising the economic, environmental, 
and social benefits of SAP portfolios, requires a combination of eco-
nomic and behavioural policy instruments. This may be achieved 
through the combined effect of payments for ecosystem services, which 
facilitates informal knowledge sharing to increase SAP adoption rates. 

We have three recommendations for further research. First, re-
searchers could investigate the non-adoption of SAP and its related 
barriers to adoption. Second, neighbourhood effects in the diffusion of 
innovation and knowledge sharing could be studied in the context of 
SAP portfolios. Third, the effectiveness of combined economic and social 
policy interventions to persuade farmers to adopt SAPs could be further 
investigated. 
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Fig. 2. Coefficient plots of the bootstrapped 90% confidence intervals for informal knowledge and the level of knowledge under different model specifications. 
Numbers in parentheses refer to different model specifications. The following constructs are included in these models: 1: original model, 2: informal knowledge (inf 
know) and level of knowledge (lev know), 3: inf know, lev know, and lack of perceived behavioural control (PBC), 4: inf know, lev know, and risk perception (RP), 5: 
inf know, lev know, and perceived benefits (PB), 6: inf know, lev know, PBC, and RP, 7: inf know, lev know, PBC, and PB, 8: inf know, lev know, RP, and PB, 9: inf 
know, PBC, RP, and PB (lev know excluded), 10: lev know, PBC, RP, and PB (inf know excluded), 11: original model including an interaction term between inf know 
and lev know. 
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Appendix  

Table A1 
Full description of the sustainable agricultural practices (SAPs) considered in this study  

SAP Full description SAP 

Portfolio 1 
Integrated pest 

management 
Pest management that combines biological, chemical, physical, and cultural practices. 

Land reforming Reducing surface runoff of water and topsoil through forming terrace, and other slope reducing and stabilizing technologies (e.g. soil and stone bunds). 
Manure Improved manure application practices. Using improved treatment techniques (e.g. solid and urine separation), storage systems and application 

techniques. 
Precision farming Farm management strategy based on measurement, observation, and response to address inter- and intra-field variability through the use of technologies 

such as variable rate nutrient application and variable rate irrigation systems to apply the optimum amount of chemicals/manure and water in the farm, 
respectively. 

Water management Adoption of an optimized irrigation management, also by implementing infrastructures/facilities, in order to minimize irrigation water losses. 

Portfolio 2 
Cover crops Cover crops and green manuring. The use of legumes (e.g. clover), and non-legumes (e.g. rye) by incorporating into the soil as green manures to improve 

soil fertility and reduce erosion. 
Genetically improved 

seeds 
Use of genetically improved wheat or potato varieties such as drought, pest or salt-tolerant varieties. 

Legumes intercropping Intercropping with legumes and/or polyculture farming. Different and less competitive crops grown together with wheat/potato to optimize biomass 
yield and improve soil fertility and environmental quality. 

Legumes rotation System of rotating legume and non-legume crops in the same field to maintain soil fertility. 

Portfolio 3 
Chemical reduction Reduction of the use of chemical fertilizers and pesticides. 
Composting Recycling technique converting waste into nutrient-rich humus with high soil organic matter using microbes. 
Microbial applications Soil addition containing beneficial microorganism-based products such as plant growth promoting rhizobacteria (PGPR) to improve soil health and 

enhance crop resistance to biotic and abiotic stress. 
Mulching Shallow layer of crop residues/straws or grass at the soil/air interface to improve soil quality, improved water retention, and reduce soil erosion. 
Reduced or no tillage Practices of zero tillage or tillage that minimizes the number of tillage passes, where soil aggregate disruption is reduced for reducing soil erosion. 

Excluded by thresholds (i.e. SAPs that are adopted by less than 20% of the farmers in our sample) 
Contour farming The practice of tilling or planting sloped land along lines of consistent elevation in order to conserve rainwater and to reduce soil erosion. 
Agroforestry Integrating trees and shrubs into croplands and/or grassland for forming multifunctional farming systems providing multiple benefits by optimized 

utilization of resources (e.g. nutrients, light, and water). 
Fallow management Using the fallow period for conserving and storing rainfall water into the soil and for reducing soil erosion. 
Organic farming Certified organic farming 
Biochar Soil application of carbon (char) produced by high temperature pyrolysis from organic feedstock biomass, mainly animal manure, food and green wastes, 

and woody residues.  

Fig. A1. Pairwise correlation coefficients of the error terms of different multivariate probit equations for different number of draws   

Table A2 
Descriptive statistics comparing the final sample to the overall population of Dutch arable farmers (based on national statistics)  

Variable Sample National Statistics 

N Mean St dev Mean Source 

Age (year) 167 52.36 10.07 54.86 CBS (2022) 
Main crop 180    CBS (2022) 

Potato  62%  60.04%  
Wheat (incl. other types)  38%  39.96%  

(continued on next page) 
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Table A2 (continued ) 

Variable Sample National Statistics 

N Mean St dev Mean Source 

Organic (%) 180 2.78%  2.81% CBS (2022) 
Total cropland (ha) 120 73.50 74.25 63.36 Agrimatie (2022) 
Total labour (FTE) 103 2.04 3.68 1.55 Agrimatie (2022) 
Labour/land (FTE/ha) 103 0.03  0.03 Agrimatie (2022)   

Table A 3 
Descriptive statistics comparing the final sample to the sample that dropped out of the survey.   

Dropped out Sample 

N Mean St dev N Mean St dev 

Farm(er) characteristics 
Experience (years) 114 31.34 13.51 180 28.61* 11.78 
Age (years) 102 53.86 11.30 167 52.36 10.07 
Farm household size (persons) 107 3.63 1.58 180 3.77 2.13 
Shannon Diversity Index 123 1.18 0.45 180 1.25 0.44 
Sustainable agricultural practices (SAPs) 
Total number of SAPs adopted 57 5.75 4.05 180 6.41 3.60 
Number of SAPs in portfolio 1 57 2.11 1.35 180 2.24 1.57 
Number of SAPs in portfolio 2 57 1.21 1.16 180 1.48 1.23 
Number of SAPs in portfolio 3 57 2.43 1.44 180 2.69 1.44 
Knowledge 
Know1 48 3.76 1.69 180 3.39 1.49 
Know2 48 3.71 1.80 180 3.43 1.48 
Know3 116 2.84 0.99 180 3.09* 0.93 
Risk perception 
RP1 115 2.65 1.16 180 2.79 1.07 
RP2 115 2.57 1.28 180 2.57 1.17 
RP3 115 2.09 1.06 180 2.20 1.10 
Perceived benefits 
PB1 53 5.55 1.64 180 5.42 1.52 
PB2 53 5.39 1.66 180 5.54 1.53 
PB3 53 4.79 1.89 180 4.88 1.72 
PB4 53 4.72 1.76 180 4.73 1.70 
Lack of perceived behavioural control 
PBC1 48 4.19 1.94 180 4.31 1.61 
PBC2 48 4.41 1.98 180 4.69 1.54 

Notes: The asterisks refer to p-values of a t-test, comparing the means of both groups. *p < 0.10, **p < 0.05, ***p < 0.01.  

Table A4 
Total correlation explained by CorEx under different adoption thresholds and different number of SAP 
portfolios  

Scenario Number of portfolios Total correlation explained 

20% adoption threshold 2 0.658 
3 0.676 
4 0.607 
5 0.585 
6 0.550 

10% adoption threshold 2 0.802 
3 0.819 
4 0.810 
5 0.772 
6 0.713 

No adoption threshold 2 0.904 
3 0.952 
4 0.942 
5 0.916 
6 0.902   
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Table A5 
Average partial effects of different probit specifications with robust Newey-West standard errors in parentheses.   

Multivariate 
probit 

Ordered 
multivariate 
probita 

Bivariate probit; 
portfolio 1 and 2 

Bivariate probit; 
portfolio 1 and 3 

Bivariate probit; 
portfolio 2 and 3 

Univariate 
probit, portfolio 
1 

Univariate 
probit, portfolio 
2 

Univariate 
probit, portfolio 
3 

Portfolio 1 
Level of 

knowledge 
0.052*** 0.200*** 0.049*** 0.051***  0.048***   
(0.016) (0.058) (0.016) (0.016)  (0.016)   

Informal 
knowledge 

0.091*** 0.501*** 0.090*** 0.093***  0.091***   
(0.023) (0.089) (0.024) (0.023)  (0.024)   

Experience − 0.002 − 0.006 − 0.002 − 0.002  − 0.002   
(0.002) (0.007) (0.002) (0.002)  (0.002)   

Farm household 0.005 0.067 0.006 0.004  0.004   
(0.016) (0.041) (0.016) (0.016)  (0.015)   

Diversification 0.128** 0.457** 0.126** 0.122**  0.123**   
(0.060) (0.206) (0.057) (0.060)  (0.057)   

Lower 
profitability 

0.002 0.134 0.005 0.006  0.006   
(0.055) (0.172) (0.055) (0.055)  (0.055)   

Portfolio 2 
Level of 

knowledge 
0.020 0.060 0.020  0.020  0.021  
(0.023) (0.059) (0.023)  (0.022)  (0.023)  

Informal 
knowledge 

0.042 0.154* 0.043  0.042  0.043  
(0.036) (0.089) (0.035)  (0.036)  (0.036)  

Experience − 0.006** − 0.005 − 0.006**  − 0.006**  − 0.006**  
(0.003) (0.007) (0.003)  (0.003)  (0.003)  

Farm household − 0.006 0.026 − 0.006  − 0.006  − 0.007  
(0.013) (0.051) (0.013)  (0.013)  (0.013)  

Diversification 0.156** 0.313 0.156**  0.158**  0.159**  
(0.070) (0.201) (0.069)  (0.070)  (0.069)  

Lower 
profitability 

− 0.035 − 0.053 − 0.036  − 0.036  − 0.038  
(0.066) (0.168) (0.066)  (0.066)  (0.066)  

Portfolio 3 
Level of 

knowledge 
− 0.003 0.080  − 0.004 − 0.001   − 0.003 
(0.011) (0.061)  (0.011) (0.011)   (0.011) 

Informal 
knowledge 

0.056*** 0.382***  0.058*** 0.058***   0.060*** 
(0.019) (0.090)  (0.019) (0.019)   (0.020) 

Experience − 0.001 − 0.001  − 0.001 − 0.001   − 0.001 
(0.001) (0.007)  (0.001) (0.001)   (0.001) 

Farm household − 0.002 0.062  − 0.003 − 0.002   − 0.002 
(0.006) (0.045)  (0.004) (0.007)   (0.005) 

Diversification 0.051 0.194  0.050 0.059   0.055 
(0.037) (0.211)  (0.037) (0.038)   (0.038) 

Lower 
profitability 

0.009 0.071  0.019 0.006   0.017 
(0.032) (0.166)  (0.033) (0.035)   (0.035) 

ρ12 0.270* 0.232** 0.250*      
(0.142) (0.091) (0.148)      

ρ13 0.743*** 0.403***  0.751***     
(0.120) (0.064)  (0.118)     

ρ23 0.567*** 0.315***   0.576***    
(0.145) (0.080)   (0.158)    

Log likelihood − 191.574 − 829.330 − 165.981 − 97.397 − 130.340 − 68.095 − 99.110 − 35.631 
Wald test (χ2) 58.27 81.16 44.26 37.17 31.67 25.80 13.99 16.89 
Wald test (df) 18 18 12 12 12 6 6 6 
P value 0.000*** 0.000*** 0.000*** 0.000*** 0.001*** 0.000*** 0.029** 0.010*** 
Likelihood ratio 

test (χ2)

22.524  2.448 12.658 8.802    

Likelihood ratio 
test (df) 

3  1 1 1    

P value 0.000***  0.118 0.000*** 0.003***    
Observations 180 180 180 180 180 180 180 180 

Notes: *p < 0.10, **p < 0.05, ***p < 0.01. a For the ordered multivariate probit model, we present parameter estimates for the sake of brevity as presenting APEs would 
require a separate category for each outcome group. Hence, we cannot directly compare the parameters of this model to the other APEs. However, the direction and 
significance can still be compared.  

Table A6 
Average partial effects of the different probit specifications which include land as additional control variable. Robust Newey-West standard errors are presented in 
parentheses.   

Multivariate 
probit 

Ordered 
multivariate 
probita 

Bivariate probit; 
portfolio 1 and 2 

Bivariate probit; 
portfolio 1 and 3 

Bivariate probit; 
portfolio 2 and 3 

Univariate 
probit, portfolio 
1 

Univariate 
probit, portfolio 
2 

Univariate 
probit, portfolio 
3 

Portfolio 1 

(continued on next page) 
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Table A6 (continued )  

Multivariate 
probit 

Ordered 
multivariate 
probita 

Bivariate probit; 
portfolio 1 and 2 

Bivariate probit; 
portfolio 1 and 3 

Bivariate probit; 
portfolio 2 and 3 

Univariate 
probit, portfolio 
1 

Univariate 
probit, portfolio 
2 

Univariate 
probit, portfolio 
3 

Level of 
knowledge 

0.056*** 0.201*** 0.055*** 0.052***  0.054***   
(0.018) (0.070) (0.018) (0.017)  (0.018)   

Informal 
knowledge 

0.077*** 0.482*** 0.077** 0.082***  0.077**   
(0.029) (0.118) (0.031) (0.030)  (0.031)   

Experience − 0.000 − 0.008 − 0.000 − 0.000  − 0.000   
(0.002) (0.009) (0.002) (0.002)  (0.002)   

Farm household 0.001 0.070* 0.000 − 0.000  0.000   
(0.013) (0.042) (0.013) (0.012)  (0.012)   

Diversification 0.167** 0.475* 0.155** 0.155**  0.151**   
(0.081) (0.262) (0.070) (0.076)  (0.070)   

Lower 
profitability 

0.019 0.179 0.025 0.021  0.027   
(0.064) (0.221) (0.063) (0.064)  (0.063)   

Land − 0.000 0.001 − 0.000 − 0.000  − 0.000   
(0.000) (0.002) (0.000) (0.000)  (0.000)   

Portfolio 2 
Level of 

knowledge 
0.019 − 0.000 0.018  0.019  0.018  
(0.027) (0.070) (0.027)  (0.027)  (0.027)  

Informal 
knowledge 

0.055 0.203* 0.056  0.056  0.056  
(0.045) (0.120) (0.044)  (0.045)  (0.044)  

Experience − 0.002 0.002 − 0.002  − 0.002  − 0.002  
(0.004) (0.009) (0.004)  (0.004)  (0.004)  

Farm household 0.007 0.103** 0.007  0.006  0.006  
(0.014) (0.047) (0.014)  (0.014)  (0.014)  

Diversification − 0.013 0.168 − 0.013  − 0.012  − 0.011  
(0.099) (0.241) (0.100)  (0.100)  (0.100)  

Lower 
profitability 

− 0.023 0.020 − 0.024  − 0.025  − 0.025  
(0.083) (0.223) (0.083)  (0.083)  (0.083)  

Land 0.001 0.001 0.001  0.001  0.001  
(0.001) (0.001) (0.001)  (0.001)  (0.001)  

Portfolio 3 
Level of 

knowledge 
− 0.004 0.096  − 0.005 0.002   − 0.001 
(0.014) (0.076)  (0.011) (0.012)   (0.011) 

Informal 
knowledge 

0.074*** 0.409***  0.078*** 0.080***   0.084*** 
(0.021) (0.111)  (0.023) (0.023)   (0.025) 

Experience − 0.002 0.001  − 0.000 − 0.000   0.000 
(0.002) (0.009)  (0.002) (0.002)   (0.001) 

Farm household − 0.003 0.073  − 0.001 − 0.004   − 0.002 
(0.004) (0.053)  (0.006) (0.005)   (0.006) 

Diversification 0.061 − 0.114  0.050 0.069   0.062 
(0.049) (0.315)  (0.043) (0.045)   (0.046) 

Lower 
profitability 

0.020 − 0.097  0.042 0.007   0.030 
(0.033) (0.220)  (0.037) (0.035)   (0.038) 

Land 0.000 0.000  0.000 0.000   0.000 
(0.000) (0.001)  (0.000) (0.000)   (0.000) 

ρ12 0.113 0.168 0.133      
(0.207) (0.105) (0.201)      

ρ13 0.852*** 0.460***  0.762***     
(0.152) (0.074)  (0.140)     

ρ23 0.535*** 0.277**   0.545**    
(0.172) (0.104)   (0.212)    

Log likelihood − 124.451 − 537.017 − 111.192 − 57.542 − 85.916 − 42.178 − 69.479 − 18.552 
Wald test (χ2) 58.01 67.68 24.21 38.88 34.87 15.57 6.84 23.51 
Wald test (df) 21 21 14 14 14 7 7 7 
P value 0.000 0.000 0.043 0.000 0.002 0.029 0.057 0.001 
Likelihood ratio 

test (χ2)

9.484  0.428 5.874 4.230    

Likelihood ratio 
test (df) 

3  1 1 1    

P value 0.024  0.513 0.015 0.040    
Observations 120 120 120 120 120 120 120 120 

Notes: *p < 0.10, **p < 0.05, ***p < 0.01. a For the ordered multivariate probit model, we present parameter estimates for the sake of brevity as presenting APEs would 
require a separate category for each outcome group. Hence, we cannot directly compare the parameters of this model to the other APEs. However, the direction and 
significance can still be compared.  
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Table A7 
Reflective model assessment: Cronbach’s alpha, composite reliability, average variance explained for level of knowledge   

Cronbach’s alpha Composite reliability Average variance explained 

All SAP 0.915 0.923 0.857 
Portfolio 1 0.915 0.920 0.853 
Portfolio 2 0.915 0.959 0.924 
Portfolio 3 0.915 0.917 0.848   

Table A8 
Indicator loadings for the reflective constructs (level of 
knowledge)   

Indicator loadings 

Know1 Know2 

All SAP 0.841 0.909 
Portfolio 1 0.855 0.907 
Portfolio 2 0.741 0.913 
Portfolio 3 0.877 0.962   

Table A9 
Heterotrait-Monotrait (HTMT) ratios for the general model   

Level of knowledge Informal knowledge Lack of PBC Risk perception Perceived benefits Number of SAP 

Level of knowledge 
Informal knowledge 0.088      
Lack of PBC 0.599 0.083     
Risk perception 0.255 0.178 0.309    
Perceived benefits 0.177 0.297 0.142 0.249   
Number of SAP 0.233 0.413 0.161 0.190 0.250    

Table A10 
Heterotrait-Monotrait (HTMT) ratios for the model explaining portfolio 1   

Level of knowledge Informal knowledge Lack of PBC Risk perception Perceived benefits Portfolio 1 

Level of knowledge 
Informal knowledge 0.088      
Lack of PBC 0.599 0.083     
Risk perception 0.255 0.178 0.309    
Perceived benefits 0.095 0.309 0.113 0.108   
Portfolio 1 0.268 0.409 0.243 0.233 0.116    

Table A11 
Heterotrait-Monotrait (HTMT) ratios for the model explaining portfolio 2   

Level of knowledge Informal knowledge Lack of PBC Risk perception Perceived benefits Portfolio 2 

Level of knowledge 
Informal knowledge 0.088      
Lack of PBC 0.599 0.083     
Risk perception 0.255 0.145 0.233    
Perceived benefits 0.177 0.307 0.156 0.253   
Portfolio 2 0.101 0.158 0.085 0.063 0.187    

Table A12 
Heterotrait-Monotrait (HTMT) ratios for the model explaining portfolio 3   

Level of knowledge Informal knowledge Lack of PBC Risk perception Perceived benefits Portfolio 3 

Level of knowledge 
Informal knowledge 0.088      
Lack of PBC 0.599 0.083     

(continued on next page) 
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Table A12 (continued )  

Level of knowledge Informal knowledge Lack of PBC Risk perception Perceived benefits Portfolio 3 

Risk perception 0.292 0.204 0.351    
Perceived benefits 0.177 0.297 0.142 0.252   
Portfolio 3 0.136 0.333 0.019 0.174 0.312    

Table A13 
Formative measurement model assessment: Redundancy analysis for risk perception (RP) and perceived benefits (PB) under different model 
specifications  

Formative construct Reflective construct R2 

RP (2 item) Statements related to (i) climate change and (ii) consumer health as risk perception 0.613 
RP (3 item) Statements related to (i) climate change and (ii) consumer health as risk perception 0.722  

PB (2 item) Statements related to (i) reduced fertiliser usage and (ii) soil quality as benefits 0.700 
PB (3 item) Statement related to reduced fertiliser usage as benefits 0.517 
PB (4 item) Statement related to reduced fertiliser usage as benefits 0.523   

Table A14 
Formative model assessment: outer weights, outer loadings, and variance inflation factors (VIFs)   

All SAP jointly Portfolio 1 Portfolio 2 Portfolio 3 

Outer 
weight 

Outer 
loadings 

VIF Outer 
weight 

Outer 
loadings 

VIF Outer 
weight 

Outer 
loadings 

VIF Outer 
weight 

Outer 
loadings 

VIF 

Risk perception (RP) 
RP1 0.393 0.608** 1.209 0.467 0.658*** 1.209    0.566 0.699** 1.119 
RP2 0.214 0.588*** 1.518 0.458 0.715*** 1.518 0.349 0.598* 1.406    
RP3 0.419 0.665*** 1.437 0.352 0.649*** 1.437 0.467 0.655** 1.406 0.431 0.621** 1.119  

Perceived benefits (PB) 
PB1 0.039 0.623*** 2.654 0.167 0.685** 2.317 0.116 0.568** 2.351 0.211 0.520*** 2.654 
PB2 0.491* 0.731*** 2.553 0.690 0.820*** 2.317 0.245 0.624** 2.531 0.345 0.589*** 2.553 
PB3 0.332 0.623*** 1.471       0.678*** 0.830*** 1.471 
PB4 0.288 0.655*** 1.516    0.584* 0.748*** 1.374 0.298 0.669*** 1.516 

Notes: *p < 0.10, **p < 0.05, ***p < 0.01.  

Table A15 
Variance inflation factors (VIFs) of the structural model for different model specifications   

All SAP Portfolio 1 Portfolio 2 Portfolio 3 

Level of knowledge 1.516 1.503 1.528 1.520 
Informal knowledge 1.149 1.159 1.120 1.099 
PBC 1.541 1.553 1.524 1.538 
Risk perception 1.127 1.107 1.144 1.103 
Benefits 1.167 1.145 1.222 1.108   

Table A16 
f2 effect sizes for explaining the number of SAP in a portfolio   

All SAP Portfolio 1 Portfolio 2 Portfolio 3 

Level of knowledge 0.035 0.022 0.006 0.035 
Informal knowledge 0.123 0.153 0.008 0.068 
PBC 0.000 0.008 0.001 0.012 
Risk perception 0.011 0.008 0.006 0.095 
Benefits 0.038 0.001 0.036 0.013   
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Table A17 
PLS-SEM path coefficients under different model specifications for the general model. 95% bootstrapped confidence intervals (CI) are presented in squared brackets.   

Full model Model 2 Model 3 Model 4 

Bootstrapped 
mean 

95% CI Bootstrapped 
mean 

95% CI Bootstrapped 
mean 

95% CI Bootstrapped 
mean 

95% CI 

Level of 
knowledge 

0.199** [0.009; 
0.389] 

0.199*** [0.049; 
0.344] 

0.188* [-0.006; 
0.382] 

0.183** [0.035; 
0.329] 

Informal 
knowledge 

0.319*** [0.190; 
0.438] 

0.394*** [0.268; 
0.508] 

0.392*** [0.266; 
0.507] 

0.382*** [0.256; 
0.498] 

Lack of PBC − 0.019 [-0.218; 
0.171]   

− 0.019 [-0.213; 
0.171]   

Risk perception − 0.123* [-0.248; 
0.015]     

− 0.104 [-0.231; 
0.032] 

Benefits 0.209** [0.040; 
0.358]       

Knowledge*Informal knowledge  

AIC − 38.265  − 36.710  − 34.822  − 35.659  
BIC − 19.108  − 27.131  − 22.050  − 22.887  
R2 0.242  0.209  0.209  0.213  
Adjusted R2 0.220  0.200  0.196  0.200    

Model 5 Model 6 Model 7 Model 8 

Bootstrapped 
mean 

95% CI Bootstrapped 
mean 

95% CI Bootstrapped 
mean 

95% CI Bootstrapped 
mean 

95% CI 

Level of 
knowledge 

0.226*** [0.073; 
0.371] 

0.181* [-0.010; 
0.373] 

0.206** [0.010; 
0.397] 

0.209*** [0.061; 
0.355] 

Informal 
knowledge 

0.338*** [0.212; 
0.456] 

0.381*** [0.255; 
0.497] 

0.335*** [0.208; 
0.453] 

0.320*** [0.194; 
0.439] 

Lack of PBC   − 0.004 [-0.199; 
0.185] 

− 0.036 [-0.238; 
0.156]   

Risk perception   − 0.103 [-0.231; 
0.038]   

− 0.125* [-0.251; 
0.010] 

Benefits 0.195** [0.040; 
0.335]   

0.197** [0.036; 
0.343] 

0.208** [0.045; 
0.352] 

Knowledge*Informal knowledge  

AIC − 40.056  − 33.690  − 38.313  − 40.183  
BIC − 27.284  − 17.725  − 22.349  − 24.218  
R2 0.233  0.213  0.234  0.242  
Adjusted R2 0.220  0.195  0.216  0.225    

Model 9 Model 10 Model 11 

Bootstrapped mean 95% CI Bootstrapped mean 95% CI Bootstrapped mean 95% CI 

Level of knowledge   0.219** [0.014; 0.418] 0.202** [0.011; 0.392] 
Informal knowledge 0.329*** [0.200; 0.446]   0.315*** [0.177; 0.437] 
Lack of PBC − 0.131* [-0.280; 0.020] − 0.033 [-0.245; 0.172] − 0.018 [-0.218; 0.174] 
Risk perception − 0.133* [-0.256; 0.008] − 0.166** [-0.295; − 0.023] − 0.122* [-0.249; 0.017] 
Benefits 0.198** [0.038; 0.345] 0.304** [0.132; 0.448] 0.210** [0.039; 0.359] 
Knowledge*Informal knowledge     − 0.013 [-0.164; 0.135]  

AIC − 34.707  − 19.269  − 36.268  
BIC − 18.742  − 3.304  − 13.918  
R2 0.216  0.149  0.242  
Adjusted R2 0.198  0.129  0.216  

Notes: *p < 0.10, **p < 0.05, ***p < 0.01. The following PLS-SEM settings were used: maximum number of iterations is set to 300 with a stop criterion of 10− 7 and 
10,000 bootstrap repetitions using the path weighting method. The confidence intervals are based on the bootstrapped mean and standard errors. For some path 
coefficients slightly asymmetric as a result of applying a non-parametric method.  

Table A18 
PLS-SEM path coefficients under different model specifications for the model explaining portfolio 1. 95% bootstrapped confidence intervals (CI) are presented in 
squared brackets.   

Full model Model 2 Model 3 Model 4 

Bootstrapped 
mean 

95% CI Bootstrapped 
mean 

95% CI Bootstrapped 
mean 

95% CI Bootstrapped 
mean 

95% CI 

Level of 
knowledge 

0.160* [0.036; 
0.354] 

0.234*** [0.091; 
0.371] 

0.167* [-0.035; 
0.362] 

0.212*** [0.071; 
0.350] 

Informal 
knowledge 

0.357*** [0.228; 
0.476] 

0.388*** [0.265; 
0.500] 

0.384*** [0.263; 
0.495] 

0.373*** [0.250; 
0.487] 

(continued on next page) 
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Table A18 (continued )  

Full model Model 2 Model 3 Model 4 

Bootstrapped 
mean 

95% CI Bootstrapped 
mean 

95% CI Bootstrapped 
mean 

95% CI Bootstrapped 
mean 

95% CI 

Lack of PBC − 0.097 [-0.294; 
0.089]   

− 0.113 [-0.312; 
0.075]   

Risk perception − 0.109* [-0.234; 
0.017]     

− 0.119* [-0.243; 
0.007] 

Benefits 0.042 [-0.103; 
0.172]       

Knowledge*Informal knowledge  

AIC − 36.961  − 39.272  − 39.533  − 39.191  
BIC − 17.804  − 29.693  − 26.761  − 26.420  
R2 0.236  0.222  0.230  0.230  
Adjusted R2 0.214  0.213  0.217  0.216    

Model 5 Model 6 Model 7 Model 8 

Bootstrapped 
mean 

95% CI Bootstrapped 
mean 

95% CI Bootstrapped 
mean 

95% CI Bootstrapped 
mean 

95% CI 

Level of 
knowledge 

0.236*** [0.094; 
0.373] 

0.159* [-0.039; 
0.352] 

0.169* [-0.033; 
0.362] 

0.215*** [0.075; 
0.351] 

Informal 
knowledge 

0.379*** [0.252; 
0.496] 

0.370*** [0.248; 
0.483] 

0.373*** [0.245; 
0.489] 

0.361*** [0.231; 
0.478] 

Lack of PBC   − 0.094 [-0.292; 
0.091] 

− 0.116 [-0.315; 
0.073]   

Risk perception   − 0.107* [-0.230; 
0.017]   

− 0.122* [-0.248; 
0.005] 

Benefits 0.031 [-0.111; 
0.162]   

0.036 [-0.108; 
0.167] 

0.038 [-0.104; 
0.168] 

Knowledge*Informal knowledge  

AIC − 37.277  − 38.850  − 37.585  − 37.242  
BIC − 24.506  − 22.885  − 21.620  − 21.277  
R2 0.222  0.235  0.230  0.230  
Adjusted R2 0.209  0.218  0.212  0.212    

Model 9 Model 10 Model 11 

Bootstrapped mean 95% CI Bootstrapped mean 95% CI Bootstrapped mean 95% CI 

Level of knowledge   0.176* [-0.031; 0.382] 0.161* [-0.036; 0.355] 
Informal knowledge 0.363*** [0.238; 0.478]   0.355*** [0.221; 0.475] 
Lack of PBC − 0.188*** [-0.320; − 0.050] − 0.112 [-0.324; 0.089] − 0.100 [-0.299; 0.090] 
Risk perception − 0.119* [-0.245; 0.008] − 0.159** [-0.293; − 0.026] − 0.111* [-0.239; 0.018] 
Benefits 0.040 [-0.106; 0.171] 0.142 [-0.069; 0.285] 0.045 [-0.105; 0.177] 
Knowledge*Informal knowledge     0.011 [-0.121; 0.139]  

AIC − 35.446  − 13.365  − 34.991  
BIC − 19.481  2.600  − 12.641  
R2 0.219  0.119  0.236  
Adjusted R2 0.201  0.099  0.209  

Notes: *p < 0.10, **p < 0.05, ***p < 0.01. The following PLS-SEM settings were used: maximum number of iterations is set to 300 with a stop criterion of 10− 7 and 
10,000 bootstrap repetitions using the path weighting method. The confidence intervals are based on the bootstrapped mean and standard errors. For some path 
coefficients slightly asymmetric as a result of applying a non-parametric method.  

Table A19 
PLS-SEM path coefficients under different model specifications for the model explaining portfolio 2. 95% bootstrapped confidence intervals (CI) are presented in 
squared brackets.   

Full model Model 2 Model 3 Model 4 

Bootstrapped 
mean 

95% CI Bootstrapped 
mean 

95% CI Bootstrapped 
mean 

95% CI Bootstrapped 
mean 

95% CI 

Level of 
knowledge 

0.100 [-0.070; 
0.280] 

0.100 [-0.065; 
0.254] 

0.079 [-0.095; 
0.259] 

0.095 [-0.065; 
0.246] 

Informal 
knowledge 

0.095 [-0.040; 
0.223] 

0.149** [0.012; 
0.280] 

0.148** [0.010; 
0.281] 

0.145** [0.006; 
0.279] 

Lack of PBC − 0.052 [-0.237; 
0.125]   

− 0.037 [-0.221; 
0.138]   

Risk perception − 0.077 [-0.231; 
0.118]     

− 0.044 [-0.197; 
0.152] 

Benefits 0.219* [-0.050; 
0.366]       

Knowledge*Informal knowledge 

(continued on next page) 
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Table A19 (continued )  

Full model Model 2 Model 3 Model 4 

Bootstrapped 
mean 

95% CI Bootstrapped 
mean 

95% CI Bootstrapped 
mean 

95% CI Bootstrapped 
mean 

95% CI  

AIC − 1.565  − 0.985  0.894  0.906  
BIC 17.593  8.594  13.666  13.678  
R2 0.067  0.032  0.033  0.033  
Adjusted R2 0.040  0.021  0.017  0.016    

Model 5 Model 6 Model 7 Model 8 

Bootstrapped 
mean 

95% CI Bootstrapped 
mean 

95% CI Bootstrapped 
mean 

95% CI Bootstrapped 
mean 

95% CI 

Level of 
knowledge 

0.133 [-0.027; 
0.289] 

0.077 [-0.095; 
0.255] 

0.101 [-0.069; 
0.286] 

0.127 [-0.028; 
0.281] 

Informal 
knowledge 

0.107 [-0.026; 
0.233] 

0.145** [0.003; 
0.279] 

0.104 [-0.032; 
0.232] 

0.097 [-0.035; 
0.222] 

Lack of PBC   − 0.032 [-0.218; 
0.145] 

− 0.060 [-0.242; 
0.118]   

Risk perception   − 0.041 [-0.196; 
0.157]   

− 0.080 [-0.233; 
0.114] 

Benefits 0.201* [-0.058; 
0.343]   

0.206* [-0.057; 
0.353] 

0.215* [-0.052; 
0.357] 

Knowledge*Informal knowledge  

AIC − 4.225  2.809  − 2.506  − 3.379  
BIC 8.547  18.774  13.459  12.586  
R2 0.060  0.034  0.062  0.066  
Adjusted R2 0.044  0.012  0.040  0.045    

Model 9 Model 10 Model 11 

Bootstrapped mean 95% CI Bootstrapped mean 95% CI Bootstrapped mean 95% CI 

Level of knowledge   0.105 [-0.063; 0.291] 0.101 [-0.068; 0.282] 
Informal knowledge 0.098 [-0.036; 0.225]   0.094 [-0.047; 0.224] 
Lack of PBC − 0.076 [-0.232; 0.120] − 0.058 [-0.239; 0.119] − 0.058 [-0.244; 0.123] 
Risk perception − 0.099 [-0.257; 0.057] − 0.087 [-0.241; 0.110] − 0.078 [-0.235; 0.118] 
Benefits 0.213* [-0.031; 0.358] 0.240* [-0.037; 0.388] 0.221* [-0.042; 0.367] 
Knowledge*Informal knowledge     0.028 [-0.137; 0.193]  

AIC − 2.350  − 2.208  0.139  
BIC 13.615  13.757  22.489  
R2 0.061  0.060  0.069  
Adjusted R2 0.040  0.038  0.036  

Notes: *p < 0.10, **p < 0.05, ***p < 0.01. The following PLS-SEM settings were used: maximum number of iterations is set to 300 with a stop criterion of 10− 7 and 
10,000 bootstrap repetitions using the path weighting method. The confidence intervals are based on the bootstrapped mean and standard errors. For some path 
coefficients slightly asymmetric as a result of applying a non-parametric method.  

Table A20 
PLS-SEM path coefficients under different model specifications for the model explaining portfolio 3. 95% bootstrapped confidence intervals (CI) are presented in 
squared brackets.   

Full model Model 2 Model 3 Model 4 

Bootstrapped 
mean 

95% CI Bootstrapped 
mean 

95% CI Bootstrapped 
mean 

95% CI Bootstrapped 
mean 

95% CI 

Level of 
knowledge 

0.201** [0.015; 
0.393] 

0.111 [-0.038; 
0.260] 

0.173* [-0.005; 
0.365] 

0.099* [-0.047; 
0.249] 

Informal 
knowledge 

0.237*** [0.099; 
0.367] 

0.322*** [0.182; 
0.451] 

0.324*** [0.181; 
0.455] 

0.312*** [0.172; 
0.444] 

Lack of PBC 0.107 [-0.082; 
0.303]   

0.108 [-0.067; 
0.293]   

Risk perception − 0.112 [-0.246; 
0.045]     

− 0.082 [-0.215; 
0.090] 

Benefits 0.307*** [0.166; 
0.438]       

Knowledge*Informal knowledge  

AIC − 30.842  − 18.312  − 17.698  − 16.954  
BIC − 11.684  − 8.733  − 4.926  − 4.182  
R2 0.211  0.122  0.131  0.125  
Adjusted R2 0.188  0.112  0.116  0.110    

Model 5 Model 6 Model 7 Model 8 

(continued on next page) 
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Table A20 (continued )  

Model 5 Model 6 Model 7 Model 8 

Bootstrapped 
mean 

95% CI Bootstrapped 
mean 

95% CI Bootstrapped 
mean 

95% CI Bootstrapped 
mean 

95% CI 

Bootstrapped 
mean 

95% CI Bootstrapped 
mean 

95% CI Bootstrapped 
mean 

95% CI Bootstrapped 
mean 

95% CI 

Level of 
knowledge 

0.155** [0.003; 
0.307] 

0.167* [-0.007; 
0.357] 

0.207** [0.015; 
0.403] 

0.142* [-0.004; 
0.292] 

Informal 
knowledge 

0.250*** [0.115; 
0.377] 

0.313*** [0.170; 
0.446] 

0.251*** [0.114; 
0.381] 

0.236*** [0.098; 
0.365] 

Lack of PBC   0.122 [-0.055; 
0.309] 

0.090 [-0.100; 
0.286]   

Risk perception   − 0.094 [-0.229; 
0.080]   

− 0.102 [-0.237; 
0.053] 

Benefits 0.300*** [0.161; 
0.432]   

0.298*** [0.157; 
0.433] 

0.309*** [0.169; 
0.439] 

Knowledge*Informal knowledge  

AIC − 31.327  − 16.735  − 30.494  − 31.088  
BIC − 18.556  − 0.770  − 14.530  − 15.123  
R2 0.194  0.135  0.201  0.201  
Adjusted R2 0.180  0.116  0.182  0.183    

Model 9 Model 10 Model 11 

Bootstrapped mean 95% CI Bootstrapped mean 95% CI Bootstrapped mean 95% CI 

Level of knowledge   0.219** [0.019; 0.420] 0.205** [0.016; 0.399] 
Informal knowledge 0.248*** [0.109; 0.379]   0.229*** [0.086; 0.362] 
Lack of PBC − 0.002 [-0.165; 0.158] 0.098 [-0.107; 0.308] 0.116 [-0.075; 0.314] 
Risk perception − 0.122 [-0.254; 0.045] − 0.141* [-0.275; 0.034] − 0.106 [-0.239; 0.050] 
Benefits 0.291*** [0.150; 0.426] 0.367*** [0.230; 0.495] 0.302*** [0.155; 0.438] 
Knowledge*Informal knowledge     − 0.072 [-0.217; 0.073]  

AIC − 27.398  − 20.882  − 29.821  
BIC − 11.433  − 4.917  − 7.470  
R2 0.183  0.157  0.215  
Adjusted R2 0.164  0.138  0.188  

Notes: *p < 0.10, **p < 0.05, ***p < 0.01. The following PLS-SEM settings were used: maximum number of iterations is set to 300 with a stop criterion of 10− 7 and 
10,000 bootstrap repetitions using the path weighting method. The confidence intervals are based on the bootstrapped mean and standard errors. For some path 
coefficients slightly asymmetric as a result of applying a non-parametric method. 
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Kuhfuss, L., Préget, R., Thoyer, S., Hanley, N., Coent, P.L., Désolé, M., 2016. Nudges, 
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