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1 | INTRODUC TION

Monitoring populations is crucial for tracking ongoing changes in 
biodiversity (Keith et al., 2015) and progress towards conserva-
tion targets (Costelloe et al., 2016). A common approach to assess 
biodiversity change is to compute biodiversity indicators across 

a group of species (e.g. the Living Planet Index; Loh et al., 2005), 
such as the change in geometric mean of relative abundances of a 
set of species (Buckland et al., 2005) (e.g. the Grassland Butterfly 
Indicator (Van Swaay et al., 2019), the Wild Bird Indicator (Gregory 
& Van Strien, 2010)). These multi- species indices (MSIs) are often 
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Abstract
1. In the light of declining biodiversity, monitoring its fate is essential for conserva-

tion strategies. Aggregation of temporal change of different species into multi- 
species indices such as geometric means makes it possible to identify species 
groups that are at risk as well as those that are doing well. However, aggregated 
indices mask the between- species variability in the temporal trajectories, which 
could be of high relevance for conservation actions.

2. We propose a toolbox, available as an r package, to investigate compositions of 
species dynamics in geometric mean multi- species indices. The toolbox is based 
on a dynamic factor analysis which uses species dynamics and their uncertainty 
to (1) identify common latent trends in those species dynamics, (2) display the 
variability of species dynamics and (3) extract clusters of species with similar dy-
namics within the species groups used for the indices.

3. We apply the toolbox to common breeding birds in Sweden and explore the vari-
ability in dynamics among species included in EU- official indices for farmland and 
woodland species, highlighting clusters of species with related dynamics previ-
ously hidden by averaging.

4. The toolbox is designed to be applicable to a wide range of ecological monitoring 
data. By enabling a deeper exploration of the structure behind existing indices, 
we may refine our understanding of biodiversity change to better inform subse-
quent conservation policies.
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constructed from species that share similar habitats or ecologi-
cal traits and are then used as proxies to evaluate the status and 
changes of a given environment, even becoming official indicators 
(EEA, 2019), particularly because of their simplicity of interpreta-
tion. For example, MSIs have been used to sound the alarm about 
continuing declines of common farmland birds (Freeman et al., 2001; 
Gregory et al., 2003) and in characterising the onset of recovery of 
some rarer wetland birds (Inger et al., 2015).

Since aggregated biodiversity indices summarise the main tra-
jectory of a group of species, trajectories of single species are ob-
scured, and these can potentially vary greatly within the species 
group (Gregory et al., 2007). For instance, a declining MSI trend 
could emerge from the aggregation of many decreasing populations, 
or from a few strongly decreasing populations and several stable or 
moderately increasing ones, the topic of a recent debate concerning 
interpretation of the Living Planet Index (Leung et al., 2020; Loreau 
et al., 2022). The trajectory of some species may also be driven by 
factors that do not affect other species within the index, resulting in 
different trends for those species compared to others and the ag-
gregated index. There is currently a paucity of formal tools for inves-
tigating the structure and diversity among population trajectories 
in the group of species underlying biodiversity indicators (but see 
Gaüzère et al., 2019). Available approaches are to examine species- 
wise slope coefficients (Julliard et al., 2004), or simple sensitivity 
analyses where the effects of leaving species out in the computation 
of the index are examined (Leung et al., 2020).

In this study, we use dynamic factor analysis (DFA) (Zuur 
et al., 2003) in combination with a clustering analysis of DFA out-
put as a tool for exploring structures in species dynamics underlying 
aggregated geometric mean biodiversity indicators. DFA is a type of 
multivariate state- space model (Holmes et al., 2012) that represents 
the main dynamic features of a set of observed time series using 
a, typically small, number of latent dynamic trajectories while ac-
counting for observation and process error. These latent trends may 
be interpreted as building blocks for constructing the trends of the 
species (via linear combinations). DFA can also be thought of as a 
dimension- reduction technique for time series that may be used to 
extract shared dynamic features from a set of time series while in-
corporating the uncertainty of each time series (Zuur et al., 2003). 
DFA has been mostly used in marine ecology (e.g. to analyse the 
dynamics of fish stocks (Lin et al., 2021; Zimmermann et al., 2019)), 
and constitutes a means of relating trajectories of different species 
to each other by considering how they relate to the latent dynamics 
of the set of species.

Based on a DFA model, we propose a toolbox, available as an 
r package, that aims to explore the structure underlying geometric 
mean biodiversity indices. The toolbox takes time series of species 
indices and their associated uncertainty as input and provides (1) 
estimates of latent trends which correspond to the main features 
of the dynamics among the species, (2) ordination plots visualising 
the distribution of species dynamics along the latent trends and (3) 
a clustering of species sharing similar dynamics. This toolbox can 
reveal important information about the heterogeneity in species 

dynamics inside an aggregated species index. We first present the 
DFA and the three related tools. Then, we apply it to empirical data 
on Swedish breeding birds and the two main habitat specific multi- 
species indices, the farmland and woodland bird indicators, which 
are used as official biodiversity health indicators in Sweden and the 
European Union (Svensk fågeltaxerings, 2021). Finally, we use simu-
lations to explore the performance of the method.

2  |  MATERIAL S AND METHODS

2.1  |  Time- series analysis

2.1.1  |  Dynamic factor analysis

The first step of the toolbox is to fit a DFA model to time series of 
species- wise population indices and their associated uncertainties. 
In DFA, the dynamics of a set of time series is described as linear 
combinations of a smaller number of latent trends (Zuur et al., 2003). 
These latent trends correspond to unobserved common dynamics 
(i.e. ‘trend’ here does not necessarily refer to a linear process) that 
are used to model the observed species time series. This allows cap-
turing shared features of the dynamics across multiple observed 
series, which we aim to use to explore structures of dynamics hid-
den behind population indices. Our DFA for estimated population 
indices, using M latent trends for I species, may be described as 
(Equation 1):

Here, yi,t is the population index for species i at time t, which we will 
assume to be mean centred at the log scale, the zi,j are factor load-
ings of species i for the corresponding latent trend j, and α j,t is the 
value of the common latent trend j at time t (mean- centred to obtain 
zi,j). The noise component consists of two parts, ηi,t and εi,t both nor-
mally distributed with mean 0. The variance of εi,t is set equal to the 
squared standard error of the log- scale and mean- centred popula-
tion index for species i at time t. Thus, ε captures the measurement 
uncertainty associated with the fact that the yi,t are estimated quan-
tities, the uncertainty of the indices being given as input to the DFA 
model. The variances of the ηi,t are free parameters estimated for 
each species, ηi,t ~ N(0, σi), with σi the species- specific variance. The 
ηi,t therefore capture additional random species- specific discrepan-
cies from the latent trends beyond what is captured by the stan-
dard errors of the indices. The standard errors of the indices then 
become lower bounds for the total uncertainty around the linear 
combination of latent trends. The ηi,t can optionally be left out, but 
then the standard errors of the indices need to capture all deviations 
between indices and the linear combinations of the latent trends, 
which can require a large number of latent trends. This would be 
particularly problematic in cases where index standard errors are 
small and there is large among year variation in the indices. We in-
clude ηi,t in all analyses in this paper although they may sometimes 

(1)yi,t = zi,1α1,t + zi,2α2,t + … + zi,MαM,t + ϵi,t + �i,t .
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give boundary estimates (σi close to zero) for some species in which 
case they have no effect.

We model the dynamics of the latent trend α j,t as independent 
random walks (Equation 2):

with νi,t ~ N(0, 1) and αi,0 = 0. Random walk dynamics are standard in 
DFA models, although alternatives such as smoother time- series mod-
els are possible (Ward et al., 2022). The variance of the random walk 
disturbances νi,t is set to 1 for identifiability reasons (Harvey, 1990). To 
match the assumption of log- scale mean- centred observed data, we 
impose a sum- to- zero constraint on the random walks before they are 
used with Equation (1) (i.e. we are using αi,t − αi).

2.1.2  |  DFA implementation

DFA models are not identifiable unless further constraints are im-
posed on the factor loadings z. This is because the DFA model is 
invariant to rotations and reflections of the factor loadings (see Zuur 
et al., 2003 for details). We impose constraints on the factor loadings 
by setting the above- diagonal elements of the loading matrix to zero 
(Harvey, 1990).

Adding more latent trends (i.e. increasing M) will improve the 
fit of the DFA model. We therefore use AIC to select an optimal 
number of latent trends (Zuur et al., 2003) and tested different 
numbers of trends from one to a third of the number of time series 
(Zimmermann et al., 2019).

DFA models were implemented in Template Model Builder via 
the r- package tmb (Kristensen et al., 2016). tmb uses Laplace approx-
imations to integrate over random effects. The likelihood function 
was optimised using the nlminb function in r (R Core Team, 2021) 
and Nelder– Mead implemented in the optim algorithm, each run 
three times using three different starting values and selecting the 
solution with largest log- likelihood.

2.2  |  Toolbox

2.2.1  |  Tool 1: Visualising latent trends

As the dynamics of species are constructed from linear combina-
tions of latent trends, the estimated latent trends provide informa-
tion about the general types of dynamics going on among the set 
of species, and about the diversity of dynamics behind the multi- 
species index. The first tool is therefore to visualise the latent trends 
(Griffiths et al., 2020; Zimmermann et al., 2019). Since the DFA 
model is invariant to rotations of the factor loadings, any choice of 
rotation could in principle be used for plotting the latent trends. A 
common and useful choice, which we adopt, is the varimax rotation 
(Holmes et al., 2014). The purpose of it is to aid interpretation of the 
rotated latent trends and the corresponding loadings. Intuitively, this 

is done by rotating so that the loadings for species are concentrated 
on as few latent trends as possible (see Jackson, 2005 for technical 
details behind varimax rotation). We then display the varimax ro-
tated trends. Additionally, the loadings of species on these rotated 
trends can be plotted. This gives visual and quantitative information 
about which species are most associated with a specific latent trend 
and thus gives a first idea of whether some species dynamics deviate 
from other species in the index group.

2.2.2  |  Tool 2: Ordination biplots

The factor loadings of the DFA model determine the contributions 
of the latent trends to the dynamics of the species, and species with 
similar factor loadings will have similar dynamics up to random noise 
captured by ηi,t. The factor loadings can therefore be used as a basis 
for an ordination of species dynamics (Zuur et al., 2003). For this or-
dination, factor loadings may be plotted directly if there are less than 
three latent trends. If the number of latent trends is three or larger, 
we use a principal component analysis (PCA) of the factor loading 
matrix to reduce the dimension for plotting. The resulting plot (i.e. 
the first factorial plane) visualises the distribution of species dynam-
ics in a continuous space formed by coefficients (factor loadings) for 
the latent trends. It therefore provides an additional clue of whether 
and how the dynamics of some species deviate from those of the 
majority of species in the index group.

2.2.3  |  Tool 3: K- means clustering

The third tool is aimed at objectively detecting potential clusters 
of species that share similar dynamics. The clusters can then be 
incorporated visually in the ordination biplots. For the clustering, 
we use the k- means algorithm (although other clustering methods 
could be considered) of the factor loadings of the species. We es-
timate an optimal number of species clusters while accounting for 
the uncertainty in the factor loadings. To do so, we first run a k- 
means analysis on the point estimates of the factor loadings to 
obtain a reference partition. We select the number of clusters in 
the reference partition according to the number most frequently 
indicated by the 30 indices calculated by the NbClust function 
(Charrad et al., 2014). To incorporate uncertainty of the factor 
loadings, we then run a bootstrap routine by sampling 500 sets 
of factor loadings from a multivariate normal distribution with 
mean equal to the point estimates of the factor loadings obtained 
from the DFA fit and with a covariance obtained from the Hessian 
matrix of the model fit, representing variances and covariances 
among the estimated factor loadings. We then run k- means clus-
tering for each of the sampled sets of factor loadings. This results 
in 500 partitions of the species into estimated clusters. Clusters 
from each bootstrap sample are then compared to the most similar 
cluster in the reference partition using Jaccard similarity following 
Hennig (2007). The Jaccard similarities Jkb between cluster k in the 

(2)�i,t = �i,t−1 + �i,t
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reference partition and its most similar cluster in bootstrap sample 
b are then used to calculate J ̄ k, the cluster stability, as the mean 
Jaccard similarity for cluster k (Equation 3):

with B the number of bootstrap partitions. Clusters in the reference 
partition with a high stability will therefore tend to have a correspond-
ing similar cluster in many of the bootstrap samples. In other words, a 
cluster with high stability will have a species list that will remain fairly 
stable across bootstrap samples.

If the stability of one of the clusters in the reference partition is 
below 0.5, we rerun the full clustering procedure with a reference 
partition reduced by one cluster to dissolve the cluster with low sta-
bility (Hennig, 2007).

In addition to the stability of clusters, we estimate cluster dis-
persion by calculating the spread of the factor loadings within each 
cluster. To do so, we first calculate the coordinates of the cluster 
centre cc as the mean of the factor loadings of species from this 
cluster weighted by the specificity of species (i.e. their frequency 
of attribution to the cluster, using Jkb to link the estimated cluster 
with one of the reference clusters). Cluster dispersion Dc was then 
obtained by averaging the Euclidean distance between the species 
factor loadings (independently of specificity) and the centre position 
of the cluster c (Equation 4):

with Ic the number of species in the cluster, M the number of latent 
trends, zic,j the factor loading of species ic for the latent trend j and ccj 
the coordinate of the cluster centre cc for latent trend j.

To visualise the dynamics of a cluster, we use the weighted aver-
age of the loadings of the species within the cluster (i.e. the cluster 
centre above) as loadings for the latent trends to estimate the cluster 
centre dynamics. When displayed at the arithmetic scale, the resulting 
dynamics represent a (weighted) geometric mean of the dynamics of 
the species in the cluster. The uncertainty of the cluster centre dy-
namics was estimated by fixing factor loadings at the weighted cluster 
average and using the sdreport function from the tmb package to es-
timate uncertainty, see Kristensen et al. (2016). This will give a crude 
estimate as uncertainty in cluster membership is only considered via 
the weighting and cluster centre loadings are held fixed, but we lack a 
computationally feasible better alternative. Singleton clusters (i.e. with 
only one species) are not considered as clusters but as outlier species 
and their stability, dispersion and centre dynamics are not computed.

2.2.4  |  R- package

The three tools are implemented in the r package DFAclust avail-
able at https://github.com/Stani slasR igal/DFAclust. In this package, 

the default format of input data for the function performing DFA 
(fit_dfa) are log- scaled mean- centred time series, but alternatively, 
time series centred on the first year of data can be provided as input 
data. In addition, by default fit_dfa chooses the optimal number of la-
tent trends (within an interval specified by the user), but the number 
of latent trends can also be provided by the user.

There is a specific function to prepare data into the suitable 
format (prepare_data). Species time series may contain gaps due to 
incomplete monitoring (e.g. missing values, zeros and lack of uncer-
tainty data). The likelihood of the DFA is then calculated only over 
non- missing values, that is omitting the likelihood contributions 
from the missing data points. Another issue may result from the 
presence of zeros in time series that would prevent the use of a log- 
scale index. By default, zeroes are replaced by 1% of the mean of the 
values of the species time series (but the user can specify another 
percentage), following common practice used for the LPI and other 
MSIs (Collen et al., 2009; Soldaat et al., 2017). If the standard error 
of the indices is not available for some time steps and species, miss-
ing values in ε are replaced as follows (Equation 5):

with εNA the missing value in ε and �2
i
 the mean of the squared standard 

errors over the available values for species i. Finally, if standard errors 
are not available at all for one or several time series, the ε error term is 
dropped (i.e. ε is assumed to be equal to zero for those time series) and 
noise is entirely captured by the ηi,t.

2.3  |  Application on Swedish breeding birds

To illustrate the toolbox on real data, we used counts of common 
breeding birds in Sweden obtained from the Swedish Bird Survey 
(Lindström & Green, 2021). The survey has been monitoring com-
mon and widespread bird species since 1996 on 716 fixed routes, 
each route consisting of an 8- km line transect. The survey is carried 
out between 20 May and 5 July each year and consists in counting all 
birds heard or seen while slowly walking along the transect.

We initially computed annual indices with enough data accord-
ing to five criteria (Lorrillière & Gonzalez, 2016): (i) more than three 
consecutive years in which the species was detected (i.e. at least 
one non- zero count), (ii) less than four consecutive years in which 
the species was not detected, (iii) at least one detection in the first 
year, (iv) the median of the number of routes at which the species is 
detected per year is larger than three, and (v) a median of abundance 
per year larger than five, among the 107 species used in Wild Bird 
Indices in Sweden (Svensk fågeltaxerings, 2021). We used data be-
tween 1998 and 2020 as the number of routes monitored in 1996 
and 1997 was low (Lindström et al., 2007).

For each species, we estimated annual national population in-
dices and their uncertainties. To obtain these annual estimates, we 
used a quasi- Poisson generalised linear model (GLM) with the fol-
lowing structure (Equation 6):

(3)Jk =
1

B

B
∑

b=1

Jkb

(4)Dc =
1

Ic

Ic
∑

ic

√

√

√

√

M
∑

j

(

zic ,j−ccj
)2

(5)�NA =

√

�
2
i
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where Count are the annual site- specific counts of the species and 
Year and Route are fixed factors. From the fitted models (i.e. those 
with an overdispersion smaller than 3), we extracted the mean- centred 
estimate of the year effects (representing a log- scale mean- centred 
population index; Knape, 2023), and the associated standard errors as 
inputs to the DFA analysis. We were thus able to estimate the time se-
ries and standard errors of 104 of the 107 species, three species being 
removed from the analysis by the five criteria on data detailed above 
and the overdispersion criterion on the model fit.

We applied the DFA analysis to (i) the set of 15 farmland bird 
species used for the official EU- farmland bird indicator for Sweden 
(Svensk fågeltaxerings, 2021) (see species list in Supporting 
Information 1) and (ii) the 26 woodland bird species used to pro-
duce the EU- woodland bird indicator for Sweden (Svensk fågel-
taxerings, 2021) (see species list in Supporting Information 1). 
Additionally, results for all the 104 common bird species are avail-
able in Supporting Information 2.

2.4  |  Simulation study

2.4.1  |  Simulate latent trends

As the clustering tool goes beyond standard applications of DFA, 
we focused on this part of the toolbox to explore performance 
via simulated time series. To do so, we simulated random walk 
latent trends (Equation 2). We used three latent trends (α1, α2 and 
α3), 25 time steps and 15 species time series (the same order of 
magnitude as in European wild bird indicators; Gregory & Van 
Strien, 2010) to test the influence of the number of clusters and 
the proximity between clusters on the performance of the clus-
tering tool. From α1, α2 and α3, we simulated C clusters of factor 
loadings, each cluster containing nc =

15

C
 (rounded if not an integer 

and nc of one cluster adjusted if needed to always keep 15 species) 
time series.

2.4.2  |  Simulate clustered factor loadings

For each species i belonging to a simulated cluster c, the factor load-
ing for each latent trend j was drawn independently from a trivariate 
normal distribution N(μcj, ς

2I), where I is the identity matrix. In other 
words, the variance around the cluster centre was the same in all 
three dimensions and also across all clusters. The means of the fac-
tor loadings of the clusters, that is the simulated cluster centres μcj, 
were arranged in the three- dimensional space so that the distance 
d between any two centres was equal (see details in Supporting 
Information 3). From ς, the standard deviation of the factor load-
ings within clusters, and d, the distance between cluster centres, 
we defined the proximity between pair of clusters as p =

�

d
. This is a 

scale- free measure of the proximity between the species pool of one 

cluster and the species pool of another cluster, which determines the 
overlap between clusters.

2.4.3  |  Simulate time series

The simulated factor loadings, together with the latent trends, de-
termine expected population trajectories for all species. To this, we 
add two noise components to all trajectories, corresponding to η and 
ε in Equation (1).

First, we add random white noise to the expected trajectories. 
The white noise sequences are drawn from a normal distribution 
N(0, τ) with the same variance τ = 0.05 for all species. We assume 
that the variance of this component is unknown (i.e. the value 0.05 is 
not used when fitting the simulated time series). This noise compo-
nent corresponds to η in Equation (1).

Second, we simulate noise corresponding to index uncertainty 
(ε in Equation 1) with a variance that is assumed known and used as 
input when fitting the model. For this, we again drew independent 
normally distributed values, but let the variance vary over time and 
across species. The variance for species j at time t (corresponding to 
the squared standard error for species j at time t) was simulated as 
the absolute value of a random variable drawn from a normal distri-
bution with a mean equal to 10% of the range of the species time 
series simulated via the latent trends and the first noise component 
(see above), and with a standard deviation equal to 0.01. In this way, 
the noise (corresponding to ε) and its standard error will be larger for 
simulated series with a wider range.

2.4.4  |  Number of clusters

We first tested for the influence of the number of clusters C, fixing 
p, the proximity between clusters, to 0.1. We simulated 200 sets of 
time series for each value of C in [1, 2, 3, 4]. In total, 800 sets of time 
series were simulated for this test.

2.4.5  |  Proximity between clusters

We then tested for the influence of cluster proximity p, fixing the 
number of clusters C to 2. We simulated 200 sets of time series for 
each value of p in [0.01, 0.05, 0.1, 0.2, 0.5, 1]. In total, 1200 sets of 
time series were simulated for this test.

2.4.6  |  Fitting models to simulated data

We applied the toolbox to each simulated data set, estimating the 
optimal number of latent trends (between 1 and 5). To assess to what 
extent the clustering tool was able to recover the simulated clusters, 
we finally measured the stability of the simulated clusters, and their 
similarity to the true clustering as 1— the Jaccard distance between 

(6)Count ∼ QP(exp(Year + Route)),
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clusters in the output of the model compared to the clustering used 
for simulating the data.

3  |  RESULTS

3.1  |  Application on Swedish wild bird index

3.1.1  |  Farmland bird index

We found three latent trends for the 15 farmland bird species 
(Figure 1a). The first one, U- shaped, to which most species were 
positively related, explained at least a third of the variance in dy-
namics of the Barn swallow Hirundo rustica, the Common linnet 
Linaria cannabina, the Rook Corvus frugilegus and the Eurasian sky-
lark Alauda arvensis. The second one, with a reversal of the dynam-
ics around 2002, explained at least a third of the variance of the 
Eurasian tree sparrow Passer montanus and the Western yellow 
wagtail Motacilla flava dynamics. The third one, with a reversal of 

the dynamics around 2007, explained more than half of the variance 
of the Ortolan bunting Emberiza hortulana, the Northern lapwing 
Vanellus vanellus and the European starling Sturnus vulgaris dynam-
ics (see factor loadings and computation of variance proportion in 
Supporting Information 2).

In the ordination biplot (representing the first factorial plane of 
the PCA on the three latent trends, Figure 2a), the Ortolan bunting, a 
species that has undergone a sharp decline in the last few decades, is 
visually isolated from the rest of the species along the first PCA axis 
which explains most of the existing variation (43.9%). The other spe-
cies are mainly segregated along the second axis (capturing 34.6% of 
the variation) with meadow pipit Anthus pratensis and the Common 
kestrel Falco tinnunculus at opposing ends.

The clustering tool confirms the visually observed position of 
the Ortolan bunting as an outlier species and furthermore indicates 
that the 14 remaining farmland bird species were separated into two 
clusters (Figure 2a): one cluster of 11 species (stability, i.e. cluster 
similarity across bootstraps = 0.69) and one other cluster of three 
species (stability = 0.51). The dispersion of the first cluster is slightly 

F I G U R E  1  Latent trends from the dynamic factor analysis (DFA) model. (a) The three latent trends obtained for the 15 farmland species 
and (b) the four latent trends obtained for the 26 woodland species. The shaded areas correspond to the 95% confidence intervals.
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smaller (mean distance = 1.51) than that of the second (mean dis-
tance = 1.63). The time series of the centre of the first cluster has 
overall been decreasing between 1998 and 2020 (slope = −0.009, 
SD = 0.002) with an initial increase followed by a later decline 
(Figure 2c) which is visible in the species that compose it (eight de-
creasing, one increasing, two with uncertain direction, see details on 
species slopes in Supporting Information 2). The time series of the 
centre of the first cluster shows a strong correlation with the trend 
from the means of all the factor loadings (ρPearson = 0.93, Figure 2b,c). 
Despite an initial decline, the time series of the centre of the second 
cluster has increased overall between 1998 and 2020 (slope = 0.019, 
SD = 0.004, two species with uncertain direction, one increasing, 
see details on linear species slopes in Supporting Information 2) and 
is negatively correlated to the trend from the means of all the factor 
loadings (ρPearson = −0.59, Figure 2b,d).

3.1.2  |  Woodland birds index

Four latent trends were found for the 26 woodland bird species 
(Figure 1b). The first had a minimum (resulting in a peak for spe-
cies with negative loadings) in 2007 and explained at least half of 
the variance of the Willow tit Poecile montanus, the Lesser spotted 
woodpecker Dryobates minor and the Marsh tit Poecile palustris dy-
namics. The second was monotonous and explained three quarters 
of the variance of the Mistle thrush Turdus viscivorus and the Rustic 
bunting Emberiza rustica dynamics. The third had a change in the 
dynamics around 2010 with a monotonous decline after this date. 
Most species were negatively related to this trend, which explained 
at least half of the variance of the Goldcrest Regulus regulus and the 
Eurasian treecreeper Certhia familiaris dynamics. The fourth had an 
abrupt change around 2016 and explained most of the variance of 

F I G U R E  2  Heterogeneity in species dynamics among Swedish farmland birds (n = 15). (a) Clusters of species displayed in the first factorial 
plane obtained from a PCA on the factor loadings (three latent trends). Species of each cluster are shown by different colours (cluster 
1: 11 species in red, cluster 2: three species in blue and one species (the Ortolan bunting, Emberiza hortulana) out of the two clusters). 
Cluster centres are shown by black square dots. Species stability into a cluster is shown by the size and the brightness of its dot: species 
always associated with one cluster are depicted by small and bright dots. Insert plots show the variation in dynamics along the first and 
second principal component axes with remaining loadings set to 0. (b) Multi- species index of the 15 farmland species between 1998 and 
2020 obtained from the latent trends and the means of all the factor loadings (line), and geometric means of species abundances (dots). (c) 
Time series of the centre of the first cluster between 1998 and 2020. Approximate standard errors are shown by the shaded area. Cluster 
stability = 0.69 and scaled mean distance between species and cluster centre = 1.51. (d) Time series of the centre of the second cluster 
between 1998 and 2020. Standard error shown by the shaded area. Cluster stability = 0.51 and scaled mean distance between species and 
cluster centre = 1.63. All trends are shown at the log scale.
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the Hawfinch Coccothraustes coccothraustes dynamics (see factor 
loadings in Supporting Information 2).

The 26 woodland bird species were separated into two clusters 
(Figure 3a): one cluster of 6 species (stability = 0.69) and one cluster 
of 20 species (stability = 0.74) with the first cluster slightly more dis-
persed (mean distance = 1.78) than the second (mean distance = 1.70). 
The time series of the centre of the first cluster has erratic dynam-
ics with an overall increase between 1998 and 2020 (slope = 0.012, 
SD = 0.004) and was correlated with the trend from the means 
of all the factor loadings (ρPearson = 0.93, Figure 3b,c). Most of the 
species belonging to this cluster have also increased (one decreas-
ing, two with uncertain direction, three increasing, see Supporting 
Information 2). The time series of the centre of the second cluster 
also shows an increase between 1998 and 2020, which is more con-
sistent than for the first cluster (slope = 0.011, SD = 0.001). Most 
of the species are increasing (three decreasing, six with uncertain 
direction and 11 increasing, see Supporting Information 2) and the 

cluster centre time series is similarly correlated to the trend from the 
means of all the factor loadings (ρPearson = 0.91, Figure 3b,d). Species 
from the second cluster are mostly positively related to the first and 
fourth latent trends and negatively to the third latent trend. Species 
from the first cluster are mainly positively related to the second la-
tent trend.

3.2  |  Simulation results

3.2.1  |  Sensitivity of clustering to the 
number of clusters

Overall, the clustering tool is providing clusters very similar to the 
simulated clusters, in particular when there are between one and 
three simulated clusters (Table 1). When there are more than two 
clusters, the clustering tends to be conservative and underestimate 

F I G U R E  3  Heterogeneity in species dynamics among Swedish woodland birds (n = 26). (a) Clusters of species displayed in the first 
factorial plane obtained from a PCA on the factor loadings (four latent trends). Species of each cluster are shown in a different colour (cluster 
1: 6 species in red, cluster 2: 20 species in blue). Cluster centres are shown by black square dots. Species stability into a cluster is shown 
by the size and the brightness of its dot: species always associated with one cluster are depicted by small and bright dots. (b) Multi- species 
index of the 26 woodland species between 1998 and 2020 obtained from the latent trends and the means of all the factor loadings (line), 
and geometric means of species abundances (dots). (c) Time series of the centre of the first cluster between 1998 and 2020. Approximate 
standard error is shown by the shaded area. Cluster stability = 0.69 and scaled mean distance between species and cluster centre = 1.78. (d) 
Time series of the centre of the second cluster between 1998 and 2020. Standard error is shown by the shaded area. Cluster stability = 0.74 
and scaled mean distance between species and cluster centre = 1.70. All trends are shown at the log scale.
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the number of clusters rather than overestimate it (Table 2). In addi-
tion to the similarity with simulated clusters, estimated clusters are 
also highly stable in this simulation (Table 1) (a threshold of 0.7 has 
been proposed to define high cluster stability; Hennig, 2007).

3.2.2  |  Cluster proximity

In the test of the influence of cluster proximity, estimated clusters 
remain very similar to simulated clusters while the proximity stays 
below 0.5 (Table 3). The similarity between simulated and estimated 
clusters decreases above 0.5 as the clusters are less and less sepa-
rated (Table 3 and see example in Supporting Information 3). Cluster 
stability remains high over the whole range of tested proximity. It 
also starts to decrease above a proximity of 0.5 (Table 3) as the clus-
ters are less and less separated.

4  |  DISCUSSION

We present a toolbox for systematically investigating the diversity 
of species dynamics underlying aggregated biodiversity indices. The 
toolbox is based on identifying latent trends among species time 
series through DFA (Zuur et al., 2003), accounting for observation 
error, to explore the variability of species time series and identify 
potential clusters displaying a similar pattern of dynamics. It can be 

used to complement biodiversity aggregate index interpretation and 
highlight possible challenges in current conservation strategies for 
the index species as a group (Leung et al., 2020).

To demonstrate the method, we applied it to empirical data 
on Swedish common birds. The MSI of farmland birds shows a 
general decline in recent decades in Sweden (Svensk fågeltax-
erings, 2021; Wretenberg et al., 2006) and similar declines have 
been reported elsewhere in Europe (Donald et al., 2001; Voříšek 
et al., 2010). Our tool suggested that the decline of farmland birds 
in Sweden is driven by one cluster of species that have experi-
enced declining dynamics since the beginning of the century, with 
a potential stabilisation in the last few years (Figure 2c). However, 
one other cluster consists of species that have not decreased or 
have even increased since 1998 (Figure 2d). This latter cluster is 
partly responsible for the deceleration of the decline and the late 
increase visible in the MSI between 2015 and 2020. One species 
(the Ortolan bunting) does not belong to any clusters as its steep 
decline makes its time series singular and deviating strongly from 
the others. Although it is well known that population dynamics 
for farmland birds display variable pattern among species dy-
namics (Voříšek et al., 2010; Wretenberg et al., 2006), farmland 
birds have often been discussed or analysed as a group of species 
(Donald et al., 2001; Reif & Vermouzek, 2019; but see Gaüzère 
et al., 2019; Stjernman et al., 2013). Assessing the mechanisms ex-
plaining these differences among farmland birds will necessitate 
more studies, but our three tools provides new insights into how 

Number of simulated clusters 1 2 3 4

Mean of similarity 0.92 0.98 0.95 0.92

Standard deviation of similarity 0.16 0.07 0.10 0.11

Mean of cluster stability 0.93 0.97 0.93 0.88

Standard deviation of cluster stability 0.14 0.07 0.07 0.07

TA B L E  1  Influence of the numbers 
of clusters on the similarity between 
estimated clusters and simulated clusters 
and the stability of estimated clusters.

Number of 
clusters 1 2 3 4

1 162 (81.0%) 5 (2.5%) 0 0

2 12 (6.0%) 189 (94.5%) 40 (20.0%) 24 (12.0%)

3 23 (11.5%) 4 (2.0%) 156 (78.0%) 58 (29.0%)

4 3 (1.5%) 2 (1.0%) 4 (2.0%) 118 (59.0%)

TA B L E  2  Contingency table between 
the number of estimated clusters (rows) 
and the number of true simulated 
clusters (columns) with percentage of 
the number of simulations. Estimated 
clusters composed of only one species 
have not been considered in the number 
of estimated clusters.

TA B L E  3  Influence of cluster proximity on the similarity between estimated clusters and simulated clusters and the stability of estimated 
clusters. The cluster proximity corresponds to the ratio between the standard deviation of the factor loadings and the minimum distance 
between centres of clusters.

Cluster proximity 0.01 0.05 0.1 0.2 0.5 1

Mean of similarity 0.99 0.99 0.98 0.92 0.74 0.69

Standard deviation of similarity 0.07 0.06 0.07 0.11 0.12 0.11

Mean of cluster stability 0.99 0.99 0.97 0.85 0.75 0.75

Standard deviation of cluster stability 0.02 0.03 0.07 0.11 0.10 0.09
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the dynamics within the group of species are structured and opens 
up for finding common denominators for the groups.

In contrast to farmland birds, the MSI of woodland birds has 
increased over the past two decades (Figure 3b; Ram et al., 2017; 
Svensk fågeltaxerings, 2021). Two clusters were revealed: one 
composed of mainly increasing species (Figure 3d) and the other 
group of species showing a greater yearly variability in the late 
2000s (Figure 3c). The latter cluster was only composed of non- 
migratory species with a high proportion of small- bodied species 
(in particular the Eurasian nuthatch Sitta europaea, the Goldcrest, 
the Eurasian treecreeper and the European crested tit Lophophanes 
cristatus) (Storchová & Hořák, 2018). Although the other group 
contains a few species with similar characteristics, small resident 
species can be expected to be more strongly affected by harsh 
winter conditions and thus show higher annual variation (Gregory 
et al., 2007). Therefore, the overall increase visible in the wood-
land aggregated index encompasses at least two different types 
of dynamics and our toolbox highlights species that deviate from 
this increase, providing clues for the conservation of woodland 
biodiversity.

The toolbox is aimed at geometric mean biodiversity indices, and 
the accompanying r package can handle missing values in species 
time- series, zero indices can be dealt with using common practice 
procedures for MSIs. It can also be used when uncertainty estimates 
of the indices are lacking. In the setup of our simulations, the tool-
box was able to reasonably recover the true structure of the data. 
However, it will be useful mainly for indices built from a moderate 
number of species with fairly complete time series. A large number 
of species or many gaps in the data can lead to convergence issues or 
not very informative results (e.g. high number of latent trends and no 
distinguishable clusters). This turned out to be the case when using 
the method on 104 species which suggested a wide range of dynam-
ics going on in the system (many latent trends) and no clear clusters 
were identified (see Supporting Information 2). We rather suggest 
to use the toolbox for indices with a reasonable number of species 
(e.g. up to 50, but this may be context dependent) which already 
encompass a wide range of geometric mean indices used in practice.

5  |  CONCLUSIONS

Although the variability of biodiversity dynamics is widely recog-
nised, it remains challenging to understand its consequences for ag-
gregate biodiversity indices whose simplicity contributes to its use 
in the political sphere (Weber et al., 2004). Our toolbox opens up for 
thoroughly investigating the precision of present species indices as 
an indicator of ecosystem health and aid the interpretation of ag-
gregated species indices by recognising the existence of clusters of 
species with different and even opposite dynamics. It could also be 
used in the development of new indicators based on existing spe-
cies time series data, by assessing whether a particular set of species 
selected to target some aspect of biodiversity of interest display co-
herent dynamics. If the empirical example focus on species indices, 

the toolbox is not restricted to the analysis of such indices, but can 
be used on other sets of multivariate time series. In general, it ena-
bles an analysis on the variable temporal changes going on within 
communities and may help to refine our understanding of variability 
in biodiversity dynamics, which is essential for effective conserva-
tion policies.
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