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Abstract
Forests are widely recognized as critical to combating climate change due to their ability to
sequester and store carbon in the form of biomass. In recent years, the combined use of data from
ground-based forest inventories and remotely sensed data from light detection and ranging (lidar)
has proven useful for large-scale assessment of forest biomass, but airborne lidar is expensive and
data acquisition is infeasible for many countries. By contrast, the spaceborne Global Ecosystem
Dynamics Investigation (GEDI) lidar instrument has collected freely available data for most of the
world’s temperate and tropical forests since 2019. GEDI’s biomass products rely on models
calibrated with a global network of field plots paired with GEDI waveforms simulated from
airborne lidar to predict biomass. While this calibration strategy minimizes spatial and temporal
offsets between field measurements and corresponding lidar returns, calibration data are sparse in
many regions. Paraguay’s forests are known to be poorly represented in GEDI’s current calibration
dataset, and here we demonstrate that local models calibrated opportunistically with on-orbit
GEDI data and field surveys from Paraguay’s national forest inventory can be used with GEDI’s
statistical estimators of aboveground biomass density (AGBD). We specify a protocol for
opportunistically matching GEDI observations with field plots to calibrate a field-to-GEDI
biomass model for use in GEDI’s hybrid statistical framework. Country-specific calibration using
on-orbit data resulted in relatively accurate and unbiased predictions of footprint-level biomass,
and importantly, supported the assumption underlying model-based inference that the model
must ‘apply’ to the area of interest. Using a locally calibrated biomass model, we estimate that the
mean AGBD in Paraguay is 65.55 Mg ha−1, which coincides well with the design-based approach
employed by the national forest inventory. The GEDI estimates for individual forest strata range
from 52.34 Mg ha−1 to 103.88 Mg ha−1. On average, the standard errors are 47% lower for
estimates based on GEDI than the forest inventory, representing a significant gain in precision. Our
research demonstrates that GEDI can be used by national forest inventories in countries that seek
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reliable estimates of AGBD, and that local calibration using existing field plots may be more
appropriate in some applications than using GEDI global models, especially in regions where
those models are sparsely calibrated.

1. Introduction

Quantifying carbon stored in forest biomass is essen-
tial for understanding terrestrial carbon fluxes and
for achieving the objectives set under the United
Nations Framework Convention on Climate Change
(UNFCCC). National forest inventories (NFIs) are
critical for monitoring aboveground biomass dens-
ity (AGBD) since they generally deploy probability-
based sample design strategies that enable straight-
forward inference about biomass quantities over large
areas (hereafter referred to as ‘design-based’ estim-
ation) (Brown et al 1989, Schreuder et al 1993,
Gregoire 1998). However, the global distribution of
field plots remains limited, and many forests are not
properly represented due to inaccessibility or finan-
cial constraints (de Freitas et al 2009, McRoberts et al
2010, 2013b).

Light detection and ranging (lidar) can comple-
ment field surveys for large-scale assessment of AGBD
due to its high correlation with aboveground bio-
mass (Lu 2006, Frolking et al 2009, Shugart et al
2010, Zolkos et al 2013, McRoberts et al 2013a, Ene
et al 2018, Magnussen et al 2018), but airborne
data acquisition is expensive and wall-to-wall cover-
age has not been seen as practical (McRoberts et al
2010, Wulder et al 2012, Lu et al 2016). The Global
Ecosystem Dynamics Investigation (GEDI; Dubayah
et al 2020a) mission was launched in 2018 and meas-
ures full-waveform lidar data across most of the
world’s tropical and temperate forests, offering an
unprecedented opportunity to expand the use of lidar
in forest inventories.

Ståhl et al (2016) surveyed methods for using
technologies such as lidar in the context of statistic-
ally rigorous large-area forest assessments. If a prob-
ability sample of field plots exists, lidar can be used to
increase precision under a model-assisted approach
(e.g. Andersen et al 2009, Gregoire et al 2011). In cases
where sufficient field data for calibrating a robust
model using remote sensing data are available but
do not constitute a probability sample, model-based
approaches can be used to estimate mean biomass
(e.g. McRoberts 2010, Chen et al 2016, McRoberts
et al 2018). In the event that model-based methods
are used, but ancillary remote sensing data cover only
a sample of the area of interest, properties of that
sample can be combined with properties of themodel
to estimate uncertainty of the estimated mean bio-
mass (Ståhl et al 2011). This ‘hybrid’ approach was
adopted for inference by the GEDImission (Patterson
et al 2019), which observes only a sample of Earth’s
land surface, and has been applied to GEDI data at

multiple scales from 1 km grid cells to entire coun-
tries (Dubayah et al 2022a).

To our knowledge, all uses of GEDI data with
hybrid inference have utilized GEDI’s footprint-level
models as described in Duncanson et al (2022) and
Kellner et al (2023). Specifically, field biomass meas-
urements from around the world are modeled using
simulated GEDI waveforms produced from spatially
and temporally coincident airborne lidar (Hancock
et al 2019). The direct match of field and lidar data
reduces dilution of precision that can occur with
plots that are offset from, or a different size of, the
remotely sensed measurement (Rejou-Mechain et al
2014, Labriere et al 2018). However, while GEDI takes
steps to assess model transferability within a region,
this approach limits calibration to the relatively small
subset of global plots overflown with airborne lidar.

Vastly more field measurements could be used,
and GEDI footprint-level models could be calibrated
much more locally, if existing inventory plots could
be matched opportunistically to on-orbit GEDI data.
Almost all countries collect forest data of some kind,
although in many cases available plot data do not
comprise a probability sample (MacDicken 2015). As
GEDI’s continued operation gradually reduces the
distance between any forest plot and its nearest GEDI
shot, it becomes more relevant to ask if local model
calibration can improve the precision and accuracy
of biomass estimates made in the context of hybrid
inference.

GEDI data are freely available, processed into
analysis-ready formats, cover most of the world’s
tropical and temperate forests, and are readily access-
ible on platforms such as Google Earth Engine
(Gorelick et al 2017, Healey et al 2020, Dubayah
et al 2020a). If estimation based on locally calibrated
GEDI data can provide comparable advantages to
those achieved with airborne lidar, it could poten-
tially benefit national greenhouse gas (GHG) invent-
ories and other applications requiring estimates of
AGBD. Therefore, our motivating research questions
are:

1. Can on-orbit GEDI data, despite some spa-
tial offset from available forest inventory plots,
be used to create useful aboveground biomass
models?

2. How does a biomass model constructed with
NFI data compare to GEDI’s standard (Level 4A)
global footprint-level biomass predictions in an
area where the Level 4A had little calibration
data?
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3. How do GEDI-based estimates of AGBD compare
to estimates based on field data alone?

We explore these questions in Paraguay using the
same hybrid inference framework employed by the
GEDI mission. We develop a Paraguay-specific bio-
mass model that uses on-orbit GEDI data and is cal-
ibrated with NFI data. Results are compared to the
estimates obtained from the design-based framework
used by Paraguay’sNFI.Our research represents a step
towards lidar-based estimation of forest biomass that
is accessible to all countries with existing field surveys
and within GEDI’s spatial coverage.

2. Methodology

2.1. Study area
The study area is the South American country of
Paraguay. The Chaco region in western Paraguay
contains South America’s second largest forest and
is a global deforestation hotspot (Grau and Aide
2008). The country has the sixth highest deforesta-
tion rate in the world and the highest rate as a pro-
portion of forest area in South America (FAO 2020).
Domestically, the land use sector is the main con-
tributor of GHG emissions (MADES-DNCC/PNUD-
FMAM2022). Therefore, it is not surprising that mit-
igation actions in the forest and land use sector are
highlighted in theNationalDeterminedContribution
(NDC) submitted to the UNFCCC (DNCC/MADES
2021). The NFI, which was started by the National
Forestry Institute (INFONA) in 2014, is the main
source of information on GHG fluxes from the land
use sector included in all reporting to the UNFCCC,
namely the NDC, GHG inventory, and submissions
under the Reduced Emissions fromDeforestation and
Forest Degradation (REDD+) framework. For the
NFI, the country was divided into five forest strata:
humid forests of the eastern region (‘Humid’), subhu-
mid Cerrado forests (‘Cerrado’), subhumid flooded
forests of the ParaguayRiver (‘Subhumid’), Chaco dry
forests (‘Chaco’), and palm forests (‘Palm’) (Cueva
2015). Likemost countries, Paraguay estimatesAGBD
directly from the NFI sample of field survey plots
using a design-based inference framework. In accord-
ance with the NFI, we define AGBD as the total mass
of live organic matter in trunks, branches, leaves, and
stumps per unit area (Cueva 2015).

The completion of Paraguay’s first NFI was an
undeniable achievement given the size and diversity
of the country’s forests. However, the challenges
faced by INFONA reflect similar initiatives in trop-
ical and sub-tropical countries with early-stage NFIs
(McRoberts et al 2010, McRoberts et al 2013b): non-
response (the omission of measurements at sampled
locations) and plot relocation (modifying plot loc-
ations in a manner inconsistent with the original

sample design) were frequent in inaccessible forests,
uncertainties were high for some estimates of AGBD,
and the measurements are now outdated and need to
be updated.

2.2. Hybrid estimation
To compare to the design-based approach employed
by Paraguay, we applied GEDI’s hybrid estimator
to the forests in the strata mentioned above and at
the national scale. While the estimation approach
described by Patterson et al (2019) is computation-
ally tractable for relatively small areas such as 1 km
grid cells, tracking covariances involving millions of
GEDI shots at the scale of a country may be infeasible
for some applications. Furthermore, GEDI data may
be spatially uneven at the country scale, potentially
compromising the assumption of uniform sampling
underlying GEDI’s hybrid estimator (Patterson et al
2019). An additional step can reduce the computa-
tional burden and account for spatially uneven GEDI
data through aggregation of estimates for constitu-
ent grid cells to larger spatial domains. Dubayah
et al (2022a) described an implementation of GEDI’s
hybrid estimator applicable for country scale estim-
ation based on individual and relatively local (we
use 6 km tiles) estimates, accounting for covariances
among tile-level estimates related to both GEDI’s
sampling design and use of the same model across
tiles. For a comprehensive description of the theory
and equations required for performing the aggrega-
tion process utilized in this study, refer to Dubayah
et al (2022a, suppl. pp 3–7).We applied the same pro-
cess here, except with a Paraguay-specific footprint-
level biomass model instead of GEDI’s continental
default models.

We masked GEDI shots within each 6 km grid
cell using an official forest area map supplied by
INFONA.We further stratified the mask by the forest
type classes described above and estimatedAGBDand
their standard errors (SEs) for each stratum. Relative
standard errors (rSEs) were calculated as the ratio of
estimated SE to the mean and served as a compar-
able measure of uncertainty. Notably, Dubayah et al
(2022a) did not mask out non-forest areas, instead
estimating AGBD and SEs for all land (including non-
forest). We compared the GEDI-based estimates to
field-based estimates using Paraguay’s current NFI
database and the direct, design-based estimators from
the REDD+ reference level submission (Cueva 2015,
p 6).

Application of the design-based andhybrid estim-
ators both rely upon a sample of Paraguay’s forests,
but those samples differed. Whereas the design-based
estimator used 286 randomly allocated field plots,
the hybrid estimator used approximately 12 million
GEDI shots systematically aligned along thousands
of cluster samples (ground tracks). It is of interest to
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determine if there are systematic differences in the
subset of the population represented by these samples
since such differencesmight influence both the estim-
ated mean and its variance. We compared the cumu-
lative distribution functions (CDFs) of the remotely
sensed parameters at the locations of 286 NFI plots
with the larger distribution of those parameters across
the population (the forests of the entire country or
within a forest stratum). Parameters included: GEDI
relative height (rh) values at the 99th percentile (rh99;
approximately equivalent to top height measured by
GEDI); percent tree cover (TC) values as defined by
the Global Forest Cover Change (GFCC) dataset from
Sexton et al (2013), and biomass as defined by the
European Space Agency’s Climate Change Initiative
(CCI) dataset from Santoro and Cartus (2021). For
GEDI top height, plot locations were matched to the
nearest GEDI shot using the criteria described in the
next section, omitting plots without a suitable match.
The CCI biomass and TC datasets cover all areas
defined as forest by INFONA’s map, allowing direct
matching of plots to remotely sensed variables. We
compared the distributions of NFI GEDI top height,
TC, and CCI biomass values to the distribution of the
remotely sensed observations falling in Paraguay offi-
cial forest mask. A two-sided Kolmogorov–Smirnov
(KS) test was used to test the hypothesis that
the empirically observed distributions emanated
from the same underlying distribution (Massey
Jr 1951).

2.3. Model building dataset
Hybrid inference requires a prediction model that
relates field measurements to auxiliary data. To facil-
itate model creation, we developed a dataset with
approximately co-located field measurements and
GEDI data. Field plots were associated with the
nearest GEDI shot that met the following criteria:
labeled as high quality according to the L2A qual-
ity flag (a combination of multiple waveform qual-
ity metrics), less than 200 m from the center of
the field plot, at the same elevation (±2 m), undis-
turbed between the time of the field measurement
and GEDI shot according to the Hansen Global
Forest Change v1.9 dataset (Hansen et al 2013) and
the Continuous Degradation Detection algorithm
(Bullock et al 2020), and within the same forest patch
as defined by the polygons of connected forest pixels
in Paraguay’s official forest mask (figure 1). The cal-
ibration dataset was created on Google Earth Engine
using the GEDI dataset described in Healey et al
(2020).

The definition of forest used by Paraguay for
REDD+ reporting includes disturbed land that is in
the process of naturally regenerating (PNC ONU-
REDD+ 2016; section 2.3). While the area of forests
with no biomass is large due to the high rate

of disturbance, the NFI does not include plots in
recently disturbed forests. Omitting model calibra-
tion at the low end of the biomass spectrum could
potentially compromise the assumption underlying
model-based inference that the model is correctly
specified for the population of interest (Gregoire
1998, Ståhl et al 2016). To increase the representa-
tion of low-biomass forests, we manually identified
30 GEDI shots in recently disturbed forests showing
no aboveground biomass in high-resolution imagery.
We determined 10 to be an approximately represent-
ative number given Paraguay’s high rates of deforest-
ation in recent years (MADES/PNUD/FMAM 2018,
FAO 2020), and therefore randomly selected 10
among the 30 to be include in the model building
dataset.

2.4. Biomass model selection
Currently, only parametric models may be supported
under the hybrid inference paradigm used by GEDI
(Patterson et al 2019). We therefore used ordinary
least squares (OLS) regression in a similar manner
to the GEDI L4A models (Duncanson et al 2022).
Using the R and Python programming languages, we
tested one-, two-, three-, and four-parameter AGBD
models using our model building dataset and GEDI
L2A canopy height and L2B canopy cover metrics
(Dubayah et al 2020b, 2020c). A 100 m offset was
added to all height metrics to preclude the possib-
ility of negative rh values (Duncanson et al 2022).
All combinations of variables were tested using log,
square-root, and non-transformed data for both the
response (AGBD) andpredictor (GEDI) variables.We
employed a ratio method for bias correction during
the back-transformation of predictions, as described
in Snowdon (1991).

We removed poorly parameterized models after
fitting all potential parameter combinations in the
calibration dataset. Following the L4A model selec-
tion procedure (Kellner et al 2023), we discarded
parameter combinations with a Pearson’s correlation
coefficient greater than 0.9 to reduce the effects of
multicollinearity (Duncanson et al 2022). To further
ensure independence in the predictor variables we
constrained the L2A rh variables to have a minimum
difference of 20 in rh values (meaning, for example,
rh50 and rh69 could not be in the same model).
Finally, we removed models with statistically non-
significant variable coefficients (p> 0.05).

We selected a model from a pool of 20 candid-
ate models that exhibited the smallest root-mean-
squared error (RMSE) and cross-validated RMSE
(CV-RMSE). RMSE was used as a simple and com-
parable measure of prediction error. CV-RMSE is
defined as the average RMSE of predicted biomass for
ten subsets withheld from model creation (ten-fold
cross validation) and is a measure of transferability
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Figure 1. An example of the protocol for matching field plots with GEDI shots. Top: a field plot is matched with the closest GEDI
observation that is within a 200 m spatial buffer, in the same forest patch, at the same elevation (±2 m), and in an undisturbed
forest according to ancillary forest disturbance datasets. Bottom: the vertical profile of GEDI rh99 for a transect (or subset) of a
GEDI ground track near the field plot. Note that the best GEDI match (blue circle) is the closest of three observations that
meet all the criteria for linking with field plots.

to ‘unseen’ data outside of the calibration dataset.
The final model was selected manually with consid-
eration for model diagnostic plots, model complexity
(e.g. the number and interpretation of coefficients),
and alternative metrics such as the Akaike informa-
tion criterion (AIC) and adjusted R2.

3. Results

Through our model selection process, we evaluated
over 21 000 models for predicting AGBD with the
joint use of Paraguay’s NFI and on-orbit GEDI lidar
data. The models were calibrated with 199 out of
286 field plots from Paraguay’s NFI in addition to
10 supplemental plots located in disturbed forests
with zero biomass (figure 3). A total of 87 plots were
excluded from the model building dataset as they did

notmeet theGEDImatching criteria described above.
The selected model is defined as:√

AGBDi = β0+β1rh5i +β2
√
rh45i +β3

√
rh91i

+ ϵi ϵi ∼ N
(
0,σ2

)
where β0, β1, β2 and β3 are model parameters to be
estimated, and ϵi is a model random error. Themodel
parameter estimates were estimated using the OLS
estimation method (table 1).

The model RMSE is 33.56 Mg ha−1, CV-
RMSE is 24.38 Mg ha−1, R2 is 0.52, adjusted-R2

is 0.51, cross-validated R2 is 0.59, and AIC is 894
(refer to figure S1 for regression diagnostic plots).
The GEDI mission’s continentally calibrated L4A
models systematically underestimated AGBD relat-
ive to the field data (RMSE = 71.23, figure 2(A)).
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Table 1. Ordinary least squares estimation results for the selected AGBD-GEDI model. The predictor variables include relative height
(rh) values for the 5th, 45th, and 91st percentiles, defined as the heights at which 5%, 45%, and 91% of the waveform energy is returned
for each observation, respectively.

Parameter Estimate Standard error t-value p-value

Intercept β0 −64.32 12.67 −5.07 <0.01
rh5 β1 −0.82 0.152 −5.38 <0.01
rh45a β2 6.45 2.495 2.59 0.01
rh91a β3 8.40 1.45 5.79 <0.01
a Square-root transformation applied prior to estimating model parameters.

Figure 2. (A). Observed versus predicted aboveground biomass for the locally calibrated GEDI model and L4A. The ‘Paraguay
model’ was fitted from NFI data, with model selection performed using ten-fold cross-validation. (B). A histogram of predicted
biomass at GEDI shots for the entire country as calculated by the local GEDI model and L4A.

Consequently, the footprint-level L4A biomass pre-
dictions were, on average, under 25 Mg ha−1. By
contrast, the footprint-level predictions from the
Paraguay model were approximately normally dis-
tributed and centered on 50 Mg ha−1 (figure 2(B)).

We used GEDI with hybrid inference to estimate
mean AGBD at the scale of 6 km tiles (figure 3(B))
and aggregated those estimates at the strata and
national level (figure 3(A)). For comparison, we used
Paraguay’sNFI data, collected under a simple random
sample design, to estimate mean AGBD for the same
spatial domains. The GEDI estimate of mean AGBD
in Paraguay’s forests was 65.55 Mg ha−1 and the
stratum-level estimates ranged from 52.34 Mg ha−1

in Chaco to 103.88 Mg ha−1 in Humid (table 2).
The NFI estimate of mean AGBD for the country
was 73.13 Mg ha−1; the 95% confidence interval
included the value estimated from GEDI. However,
the stratum-level estimates were notably different,
although they were statistically equivalent for Chaco,
Humid and Cerrado. The NFI estimates correspond
to the years 2014 and 2015, while the GEDI estimates
are for 2019–2021.

The GEDI estimates of AGBD were more pre-
cise than the NFI estimates. For example, the rSE of
the NFI estimate was 7.32% for Cerrado compared

to GEDI’s estimate of 4.20%. The rSEs of the GEDI
and NFI estimates ranged from 3.50% to 4.67% and
5.45% to 8.14%, respectively. At the national scale, the
SE of the GEDI estimate (2.35 Mg ha−1) was nearly
half that of the NFI estimate (4.03 Mg ha−1).

We evaluated the representativeness of the
samples used for design-based inference (NFI plot
locations) and hybrid inference (GEDI shots) using a
KS test applied to the CDF of each sample. Figure 4
shows the CDFs of values of GEDI top height, TC,
and biomass (Sexton et al 2013, Dubayah et al 2020b,
Santoro and Cartus 2021) at the locations of the NFI
plots in relation to the populations defined by the
remote sensing datasets covering the country’s forests.
Note that for the Humid and Cerrado strata, the NFI
sample includes a higher proportion of tall, dense,
and high biomass forests than the larger remotely
sensed forest population according to the GEDI,
GFCC, and CCI datasets, respectively (figure 4 and
table 3). In these strata, NFI estimates of AGBD were
substantially higher than the GEDI-based estimates
(table 2).

The KS test statistics were consistently larger for
the NFI than GEDI when compared to the GFCC
TC and CCI Biomass datasets (table 3). A small
test statistic (e.g. <0.1) indicates that the sample

6
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Figure 3. (A). The model building dataset and excluded NFI plots overlayed on the forest strata used by Paraguay for greenhouse
gas reporting. (B). Predicted aboveground biomass density using a GEDI model that was calibrated with co-located NFI plots and
GEDI shots and averaged within 6 km grids for hybrid estimation.

Table 2. Estimates of mean aboveground biomass density, their associated standard errors (SEs), and relative standard errors (rSE)
generated using only national forest inventory (NFI) data and design-based inference and hybrid inference (GEDI).

NFI GEDI

Mean (Mg ha−1) SE (Mg Ha−1) rSE (%) Mean (Mg ha−1) SE (Mg ha−1) rSE (%)

Chaco 59.26 3.23 5.45 52.34 2.33 4.44
Humid 111.49 8.11 7.27 103.88 4.26 4.10
Cerrado 109.16 7.99 7.32 95.06 4.00 4.20
Subhumid 108.78 8.79 8.08 81.11 2.84 3.50
Palm 34.29 2.79 8.14 57.01 2.66 4.67
Country 73.19 4.03 5.51 65.55 2.35 3.59

Figure 4. The cumulative distribution functions of the national forest inventory (NFI) plot locations and population for the three
independent datasets: top height as approximated by GEDI rh99, GFCC tree cover, and CCI biomass. The NFI distribution was
defined by the model building dataset for rh99 and the full NFI dataset (i.e. not subsampled) for GFCC tree cover and CCI
biomass.

7
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Table 3. The Kolmogorov–Smirnov (KS) test statistics for summarizing agreement between the underlying distribution of a sample to
the population. Results are shown at the strata and national scale.

Population

GEDI top height

GFCC tree cover

CCI biomassSample

NFI NFI GEDI NFI GEDI

Chaco 0.135 0.151∗ 0.021∗∗ 0.16∗∗ 0.011∗∗

Humid 0.313∗∗ 0.422∗∗ 0.014∗∗ 0.202∗ 0.012∗∗

Cerrado 0.345∗ 0.478∗∗ 0.035∗∗ 0.231 0.03∗∗

Subhumid 0.165 0.218∗ 0.021∗∗ 0.209 0.015∗∗

Palm 0.184 0.279∗ 0.022∗∗ 0.409∗∗ 0.01∗∗

Country 0.155∗∗ 0.166∗∗ 0.012∗∗ 0.15∗∗ 0.009∗∗

Note 1: The asterisks represent the confidence level in which we can reject the null hypothesis that the sample was drawn from the same

distribution as the population (∗95%, ∗∗99%).

Note 2: The p-value of GEDI when applied as a sample will almost always be close to zero due to the large sample size.

Note 3: The abbreviations in the table represent the National Forest Inventory (NFI), Global Ecosystem Dynamics Investigation (GEDI),

Global Forest Cover Change (GFCC; Sexton et al 2013), and the European Space Agency’s Climate Change Initiative (CCI; Santoro and

Cartus 2001).

and population share the same underlying distri-
bution. The KS test also revealed large divergence
between the NFI and GEDI, although the results
were not statistically significant (p > 0.05) for some
strata.

3.1. Discussion
GEDI is the first spaceborne lidar that acquires
data in most of the world’s temperate and trop-
ical forests at a spatial resolution and sampling
density that is compatible with forest inventor-
ies. GEDI’s baseline estimation strategy relies upon
pre-calibration of footprint-level biomass models
with a global set of paired field-airborne lidar
data (Duncanson et al 2022). However, GEDI was
designed to enable broader forest monitoring applic-
ations (Dubayah et al 2020a), and its public availab-
ility through NASA’s active archive system (Dubayah
et al 2020b) and Google Earth Engine (Gorelick et al
2017, Healey et al 2020) facilitate operational uses of
GEDI in tropical and sub-tropical countries such as
Paraguay.

A primary concern with using on-orbit GEDI
data with an existing NFI is the potential degrada-
tion of biomass model fit due to spatial and tem-
poral mismatches between field measurements and
GEDI shots. In our judgment, the model employ-
ing GEDI height metrics exhibited an adequate fit
to Paraguay’s NFI data (figure 2(A)). Further, the
model we developed using on-orbit GEDI data exhib-
ited lower SEs compared to using NFI data alone
(table 2). Nevertheless, it is important to acknowledge
that model-based frameworks utilizing GEDI may
underestimate AGBD if growth induces systematic
discrepancies in forest structure during the time dif-
ference between data collected by the NFI and GEDI.

There were differences both at the national level
and at the level of some ecozone strata in the estim-
ated mean AGBD (table 1). Insight into these differ-
ences may be gained from comparison of the CDF
of all remotely sensed measurements retrieved over
a national forest mask and the CDF of those same
measurements retrieved at (or near) NFI plot loca-
tions. In the Cerrado and Humid strata, where estim-
ates of mean AGBD were larger for the NFI estim-
ates, KS tests (table 2) suggested that the samples
drawn by the NFI corresponded to taller, denser, and
higher-biomass forests on the basis of remotely sensed
data than one might expect from a random sample
of those data. We observed the opposite pattern in
the Palm, Chaco, and Subhumid strata (figure 4).
While the remotely sensed datamerely correlates with
real biomass, this result suggests that sampling differ-
ences may play a role in deviations of GEDI and NFI
estimates.

It was earlier stated that Paraguay’s NFI may relo-
cate plots deemed inaccessible, although there was no
formalized method for doing so. Practical issues pre-
venting full execution of a designed sample are com-
mon in forest inventories, and can in some cases com-
promise ensuant inferences (estimates of forest attrib-
utes and their uncertainties) (Westfall et al 2022). As
with any probability sample, it is also possible that a
given (relatively small) set of observations may not
accurately represent the larger population (Schreuder
et al 1993). In either case, model-based methods such
as hybrid estimation make fewer assumptions about
the empirical distribution of the data used in the ana-
lysis; we need only to assume that the model applies
to the population of interest (Gregoire 1998). This
highlights a key advantage of the method we have
demonstrated; calibration data in a country need not
come from a probability sample. In fact, it may be
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reasonable in some cases to apply models developed
in a country with extensive plot resources to similar
forests occurring in a country with no formal forest
inventory.

We used the Paraguay-specific biomass model for
hybrid inference rather than the regional GEDI L4A
models (Dubayah et al 2022b, Duncanson et al 2022).
A lack of paired-field data in the South American
deciduous broadleaf tree (DBT) plant functional type
means that there is currently no South American L4A
DBT model. This greatly impacts Paraguay, where
DBT is the predominant type. Instead, the Evergreen
Broadleaf Tree model, which was mostly calibrated
in Amazonian forests, is used for all of Paraguay.
In the future, the inclusion of more field plots into
the global GEDI calibration dataset should enable
a South American DBT model and improve the
L4A predictions in Paraguay. Validation at Paraguay’s
field plots showed that locally calibrated models yiel-
ded better prediction of AGBD than the current
L4A model in Paraguay (figure 2). This benefit may
be lower, particularly in relation to the lack of fit
introduced by pairing spatially offset data sources,
in regions where L4A calibration is more locally
representative.

It is likely that the aggregation process recom-
mended by Dubayah et al (2022a) yielded differ-
ent estimates than using the country (or strata) as
a single estimation unit. It is known that differ-
ential cloud occurrence and unplanned resonance
in the International Space Station’s orbit (especially
in 2021) has caused the probability of inclusion in
GEDI’s sample to vary strongly over space. Humid
ecosystems with frequent cloud cover will often have
higher AGBD than arid regions; since GEDI is sens-
itive to cloud cover, there will also be less observa-
tions in cloudy regions. Therefore, the mean AGBD
(i.e. without aggregation) may be skewed towards
regions with lower cloud cover and biomass. Regions
where the frequency of GEDI observations are spa-
tially uneven can result in a sample that does not rep-
resent an area of interest and, when that sample is
used as a basis of inference, an AGBD estimator that
is biased (Dubayah et al 2022a). Given GEDI’s beam
configuration (8 beams per overpass, spaced approx-
imately 600 m apart), we determined that 6 km was
a domain size for which we could reasonably assume
the kind of uniform sampling that is presumed by
Patterson et al’s (2019) hybrid estimator.

Lidar-based approaches to estimating carbon
stocks have rarely been adopted by national forest
monitoring programs (FAO 2020, Melo et al 2023).
The preference for design-based inference through
direct application of NFI data is understandable:
NFIs are locally managed, do not require an air-
borne campaign or biomass model, require min-
imal technical capacity, and have a long history of
use in many countries. Nevertheless, NFIs must con-
front logistical and continuity challenges that can

impinge on comprehensive and statistically rigor-
ous forest resource assessments. We have demon-
strated here that integration of NFI and GEDI data
through hybrid inference can reduce uncertainties.
Furthermore, hybrid inference using GEDI minim-
ized the potential impact of inventory data that may
not accurately reflect the population (figure 4).

4. Conclusion

Our research shows that statistical estimation of
AGBD using on-orbit GEDI data and incidental field
data is possible and offers numerous advantageous
than using an NFI alone. Based on our findings, we
offer the following suggestions for integrating GEDI
with an NFI:

1. It is possible to establish repeatable, objective
rules for matching on-orbit GEDI waveforms to
NFI biomass measurements. In this study, paired
GEDI-field data collected in this manner identi-
fied a GEDI-biomass relationship that supported
relatively more precise hybrid estimates of mean
aboveground biomass;

2. At least in cases such as Paraguay, where L4A
model-building data do not currently reflect local
conditions (Duncanson et al 2022), opportunistic
parametrization of biomass models with on-orbit
data and local field plots may be preferable;

3. Hybrid inference using GEDI data can be used for
precise estimation of AGBD, even though it does
not rely on a designed sample of field plots. This
approach has the advantage of leveragingmillions
of remotely sensed observations across an area the
size of Paraguay;

4. For large areas applications of hybrid infer-
ence, aggregation of estimates for smaller areas
(6 × 6 km tiles in our case) can reduce compu-
tation and help account for spatial variability in
the frequency of GEDI observations;

5. By comparing the cumulative distribution of
GEDI data at field plots with the distribution
for the population, we can identify NFI samples
that may not accurately represent the estimation
domain.

GEDI is the first space-based mission capable of
supplying the biomass metadata that McRoberts et al
(2022) identified as requisite for model-based infer-
ence (Dubayah et al 2022a). In GEDI’s implementa-
tion of hybrid inference, this means that the covari-
ance matrices for the L4Amodel parameters are pub-
licly available. Ourworkmarks, to our knowledge, the
first use of on-orbit GEDI data with an NFI to create
more locally representative L4A-likemodels (and cor-
responding parameter covariancematrices).Working
directly with local inventory data and specialists can
also build country ownership and take advantage of
local expertise.
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