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Abstract 

Background Genome‑wide association studies (GWAS) aim at identifying genomic regions involved in phenotype 
expression, but identifying causative variants is difficult. Pig Combined Annotation Dependent Depletion (pCADD) 
scores provide a measure of the predicted consequences of genetic variants. Incorporating pCADD into the GWAS 
pipeline may help their identification. Our objective was to identify genomic regions associated with loin depth and 
muscle pH, and identify regions of interest for fine‑mapping and further experimental work. Genotypes for ~ 40,000 
single nucleotide morphisms (SNPs) were used to perform GWAS for these two traits, using de‑regressed breeding 
values (dEBV) for 329,964 pigs from four commercial lines. Imputed sequence data was used to identify SNPs in strong 
( ≥ 0.80) linkage disequilibrium with lead GWAS SNPs with the highest pCADD scores.

Results Fifteen distinct regions were associated with loin depth and one with loin pH at genome‑wide significance. 
Regions on chromosomes 1, 2, 5, 7, and 16, explained between 0.06 and 3.55% of the additive genetic variance and 
were strongly associated with loin depth. Only a small part of the additive genetic variance in muscle pH was attrib‑
uted to SNPs. The results of our pCADD analysis suggests that high‑scoring pCADD variants are enriched for missense 
mutations. Two close but distinct regions on SSC1 were associated with loin depth, and pCADD identified the previ‑
ously identified missense variant within the MC4R gene for one of the lines. For loin pH, pCADD identified a synony‑
mous variant in the RNF25 gene (SSC15) as the most likely candidate for the muscle pH association. The missense 
mutation in the PRKAG3 gene known to affect glycogen content was not prioritised by pCADD for loin pH.

Conclusions For loin depth, we identified several strong candidate regions for further statistical fine‑mapping that 
are supported in the literature, and two novel regions. For loin muscle pH, we identified one previously identified 

associated region. We found mixed evidence for the utility 
of pCADD as an extension of heuristic fine‑mapping. The 
next step is to perform more sophisticated fine‑mapping 
and expression quantitative trait loci (eQTL) analysis, and 
then interrogate candidate variants in vitro by perturba‑
tion‑CRISPR assays.

Background
Pork is one of the most consumed meats in the world, 
accounting for around 34% of the world’s meat con-
sumption in 2021 [1]. Meeting consumer demand for 
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high-quality meat in the most cost-efficient way is a 
major aim in pig breeding, and two traits that contrib-
ute to these goals are loin muscle depth and ultimate pH. 
Loin muscle depth is a measure of the amount of loin 
muscle in the carcass and is a key determinant of profita-
bility. After slaughter, the pH of muscle tissue declines, as 
the glycogen stored in muscle is broken down into lactic 
acid. Ultimate pH is a measure of pH at fixed points after 
slaughter and a faster rate of pH decline affects the colour 
and water-holding capacity of the muscle fibres and is a 
direct cause of reduced meat quality.

Accelerating the genetic improvement of major traits 
by applying marker-assisted selection benefits the effi-
ciency of pig breeding. However, dissection of the genetic 
architecture of these traits remains a complex and chal-
lenging task, and few definitive causal variants have been 
identified for any trait in pigs. A missense mutation of 
the melanocortin 4 receptor (MC4R) gene is involved in 
energy homeostasis and somatic growth [2] and also in 
feed efficiency in pigs [3]. Likewise, a missense mutation 
within the protein kinase AMP-activated non-catalytic 
subunit gamma 3 (PRKAG3) gene located on Sus scrofa 
chromosome (SSC) 5 has been shown to affect the glyco-
gen level in muscle in the Hampshire breed [4], and the 
effect is so large that this allele has been eliminated from 
many Hampshire-based commercial pig lines via marker-
assisted selection. A splice mutation within the phos-
phorylase b kinase gamma catalytic chain (PHKG1) gene 
located on SSC3 has also been shown to affect glycogen 
content [5].

To demonstrate that variants are causative, biological 
assays are required. However, computational methods 
such as genome-wide association studies (GWAS) are 
an important first step in identifying candidate variants. 
Single marker GWAS aim at identifying the underlying 
causal genetic basis of a trait by independently testing 
each genetic variant for statistical association with a trait 
of interest. Whole-genome sequencing of many animals 
is costly and, therefore, medium-density single nucleotide 
polymorphism (SNP) panels are often used for GWAS in 
livestock. This method relies on linkage disequilibrium 
(LD) between the SNPs present on a panel and causa-
tive variants to identify genomic regions associated with 
a trait. However, high LD extends over long distances in 
livestock breeding populations and identifying a causa-
tive variant from the many variants that may be in high 
LD with a GWAS SNP remains difficult.

Pig Combined Annotation Dependent Depletion 
(pCADD) is an algorithm that scores genetic variants 
according to their predicted functional impact [6]. Derks 
et  al. [7] incorporated pCADD scores into the GWAS 
pipeline and developed a simple method to identify 
potentially causative SNPs from sequence data. In this 

study, we performed a large-scale GWAS using SNP 
data for loin muscle depth and loin and ham pH in four 
intensely selected purebred pig lines. Then, we used SNPs 
imputed from whole-genome sequence data in a down-
stream pCADD analysis to identify candidate causative 
variants. Our main objective was to identify regions of 
the genome associated with loin depth and muscle pH, 
and to identify candidate regions of interest for fine-map-
ping and further experimental work.

Methods
Dataset
This study used breeding records on 318,964 pigs from 
the Pig Improvement Company (PIC; Hendersonville, 
TN). Pigs from two maternal lines (referred to as lines 
A and B) and two terminal lines (referred to as lines C 
and D), and from crossbred progeny sired by lines C or 
D were used in this analysis. The number of pigs used for 
each trait and line is in Table 1. Loin depth was measured 
in purebred and crossbred animals, while ham and loin 
pH were measured in crossbred animals only and attrib-
uted to the contributing breed.

Muscle phenotypes included loin depth, measured via 
ultrasound at the 10th rib, and muscle pH, measured 
22  h post-slaughter in the longissimus (loin) and semi-
membranosus (ham) muscles. Pedigree-based breeding 
values were estimated by genetic line with a linear mixed 
model that included polygenic and non-genetic effects 
(as relevant for each trait), as well as the dam’s breed 
effect in analyses of phenotypes on crossbred progeny. 
De-regressed breeding values (dEBV) were derived from 
the EBV for each trait as in [8] and used as pseudo-phe-
notypes in GWAS.

Table 1 Number of individuals for each trait and line analysed

a These phenotypes were measured on purebred progeny
b These phenotypes were measured on crossbred progeny sired by lines C and D. 
GWAS was performed on purebred sires
c pH of semimembranosus muscle measured 22 h post-slaughter
d pH of longissimus muscle measured 22 h post-slaughter

Trait Line Heritability dEBV reliability Number of 
individuals

Loin  deptha A 0.25 0.32 64,004

Loin  deptha B 0.21 0.28 55,831

Loin  deptha C 0.23 0.38 26,389

Loin  deptha D 0.36 0.45 85,833

Loin  depthb C 0.09 0.26 17,801

Loin  depthb D 0.25 0.25 63,916

Ham  pHb,c C 0.04 0.38 552

Ham  pHb,c D 0.07 0.45 1819

Loin  pHb,d C 0.02 0.33 817

Loin  pHb,d D 0.06 0.45 2002
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The breeding values, dEBV, and their reliabilities (REL) 
were estimated using the BLUPF90 suite programs [9]. 
The de-regression method is as follows:

where PA is the parent average and EBV  is the individu-
al’s EBV. R is the de-regression factor obtained by:

where, following [10, 11], DEindividual is the number of 
‘daughter’ equivalents for the individual’s performance 
and its progeny and DEPA is the number of ‘daughter’ 
equivalents for PA . The DEindividual and DEPA are calcu-
lated as follows:

where RELEBV  and RELPA are the reliabilities of the indi-
vidual’s EBV and of its PA, respectively.

Where relevant, a distinction is made in the text 
between results that were obtained from loin depth dEBV 
calculated based on purebred versus crossbred perfor-
mance. Individuals with a dEBV reliability lower than 0.2 
were excluded from further analysis.

Purebred animals were genotyped using Illumina SNP 
chips, with SNPs mapped to the Sscrofa11.1 genome 
assembly. The following SNPs were removed from fur-
ther analyses: SNPs with a minor allele frequency lower 
than 0.01 and 0.05 for the analysis of loin depth and mus-
cle pH, respectively, and SNPs with a call rate lower than 
0.95. After quality control, an average 42,344 and 39,520 
SNPs were available for each line for loin depth, and pH 
traits, respectively.

Variants from whole-genome sequence datasets were 
available from a previous study [12]. Briefly, approxi-
mately 230,000 pigs from four PIC populations (with 
18,300 to 107,800 individuals per population) were 
genotyped using low- to medium-density SNP panels 
(between 15,000 and 75,000 SNPs) (GeneSeek). Approx-
imately 2% of the animals in each population were 
sequenced and used to impute the remaining individu-
als to whole-genome sequence data with hybrid peeling 
using AlphaPeel [13], with an imputation accuracy of 
0.97, which was evaluated by removing the sequence data 
of individuals with high coverage, using a leave-one-out 
design. The imputed variants were used in the present 

dEBV =

(

EBV − PA

R

)

+ PA,

R =
DEindividual

DEindividual + DEPA + 1
,

DEindividual =
RELEBV

(1− RELEBV )
,

DEPA =
RELPA

(1− RELPA)
,

study to investigate causative variants post-GWAS (see 
‘Identifying candidate SNPs’, below).

Model for analysis
To account for the heterogeneous variance of the dEBV, a 
weight was calculated for each individual i using the fol-
lowing formula from [14]:

where h2 is the line-specific heritability of the trait, r2 is 
the reliability of the dEBV for the individual, and c is the 
fraction of the variance not explained by markers, which 
was assumed to be 0.5. The reciprocal of the calculated 
weights was used as a residual weighting factor in the 
GWAS analyses, using the -widv option in the genome-
wide efficient mixed-model association (GEMMA) 
software [15]. The GEMMA software was also used to 
calculate centered genomic relatedness matrices ( Gc ) 
using the following formula:

where Xi is the ith column of the n× p genotype matrix 
X for n individuals and p SNPs, representing genotypes 
of the ith SNP, xi is the mean genotype of the animals 
for SNP i and 1n is an n× 1 vector of 1s. The GEMMA 
software was also used to fit a series of univariate linear 
mixed models:

where y is the vector of dEBV, β is the vector of effects for 
each tested SNP, X is the genotype matrix, as described 
above, u ∼ N (0,Gcs

2
u ) is the vector of the polygenic addi-

tive effect with covariance matrix equal to Gc and additive 
genetic variance, and e ∼ N (0,Ws2e)   is the vector of the 
residual errors, with diagonal matrix W matrix contain-
ing weights wi and residual variance s2e . To conservatively 
account for multiple comparisons in the GWAS, P-values 
were adjusted by Bonferroni correction and a SNP was 
declared significant at the genome or chromosome level 
if the −   log10(P-value) was greater than −   log10(0.05/n), 
where n represents the number of analysed SNPs across 
the genome, or on a given chromosome. Manhattan plots 
were generated using the R package CMplot.

1

wi
=

1− h2
[

c +
1−r2i
r2i

]

h2
,

Gc =
1

p

p
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i=1

(Xi − 1nxi)(Xi − 1nxi)
T
,

y = Xβ+ u + e,
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Genetic variance explained by SNPs
For each trait, GWAS SNPs that showed an association 
at the chromosome-wide level or a higher level were 
combined for all genetic lines. From these combined 
SNPs, the significant GWAS SNPs located within 0.5 Mb 
of each other, plus all SNPs located within 0.5 Mb up or 
downstream of significant GWAS SNPs were defined as a 
distinct genomic region [16, 17]. To estimate the additive 
genetic variance for each genomic region, a ridge regres-
sion model was fitted using AlphaBayes [18]. AlphaBayes 
uses the same inputs as GWAS but it analyses all SNPs 
simultaneously to account for LD between markers 
within and outside the genomic regions [19]. Posterior 
samples of the effects for each region were obtained 
from 40,000 Markov-chain Monte Carlo iterations with 
a 5000-iteration burn-in period. For each iteration of the 
model, breeding values were calculated for each individ-
ual and the variance of the breeding values provided the 
total additive genetic variance [19]. Breeding values were 
also calculated for each genomic region using the SNPs 
located within that region. The additive genetic variance 
attributable to a genomic region was then calculated as 
the ratio of the variance of the breeding values for that 
region and the total additive genetic variance.

Identifying candidate variants and genes
To identify candidate sequence variants from the iden-
tified GWAS regions, the GWAS SNP with the lowest 
P-value (lead GWAS SNP) from each genomic region 
(as described above) was identified. Then, the PLINK 
v1.09 software (Boston, MA, USA) [20] was used to 
identify SNPs from imputed whole-genome sequence 
data that were in high LD (≥ 0.80) with the lead GWAS 
SNP. To further narrow down the list of candidate SNPs, 
pCADD scores were used. The pCADD tool [6] provides 
a score for each SNP within the pig genome based on its 
predicted functional impact, with a high score indicat-
ing a greater predicted functional impact. In this study, 
pCADD scores were obtained for all SNPs from the 
sequence data that were found to be in high LD with the 
lead GWAS SNP. The variants with the highest pCADD 
score associated with each lead GWAS SNP were also 
annotated for their variant type, using the Ensembl Vari-
ant Effect Predictor (VEP) [21], which classifies the con-
sequences of a genomic variant on genes, transcripts, 
and protein sequences (e.g., synonymous, missense, etc.), 
and identifies genes and transcripts that are affected by 
the variant. To identify potential candidate genes in the 
identified genomic regions, variants with the top 5% of 
pCADD scores and their associated genes were identified 
using the BioMart data mining tool [22].

Overlap with open chromatin regions
In order to prioritize noncoding variants, we used pig 
muscle open chromatin sequencing data from [23-25]. 
We combined the peak call files of the ATAC-seq and 
H3K27ac ChIP-seq data for all muscle samples from 
these studies, i.e. 24 samples (14 ATAC-seq and 10 ChIP-
seq), into one set of merged regions using the Genomi-
cRanges package [26]. This resulted in 1.1 million open 
chromatin regions that covered 556  Mb of the pig 
genome.

Results
The GWAS revealed 15 distinct genomic regions that 
are associated with loin muscle depth on a genome-wide 
level. Prioritisation of the candidate variants in these 
regions using pCADD identified 22 variants and 24 genes 
that may be responsible for these associations. Figure  1 
shows the genome-wide associations by trait and line. We 
found one genomic region that was associated with loin 
muscle pH, but no associations that reached genome-
wide significance for ham muscle pH. For the association 
with loin muscle pH, the highest-scoring pCADD variant 
was a synonymous SNP in the RNF25 gene.

Table  2 summarises the main findings of the GWAS 
for regions that were significantly associated with traits 
at the genome-wide level. Regions that were significant 
at the chromosome-wide level are in Additional file  1: 
Table S1. Several regions with strong genome-wide asso-
ciations with loin depth were shared by two or more 
genetic lines, but none of the regions were shared across 
all four commercial pig lines. A breakdown of the addi-
tive genetic variance explained by each genomic region is 
presented in Additional file 2: Tables S2–S5. Analysis of 
the additive genetic variance suggests that muscle traits 
are highly polygenic, with each identified genomic region 
capturing only a small amount of the total variance. For 
the maternal line A, 5.0% of the additive genetic variance 
in loin depth was captured by the identified genomic 
regions, whereas significant regions captured only 2.7% 
of the additive genetic variance for loin depth for ter-
minal line D crossbred animals (Table  3). The amount 
of genetic variance captured by the identified genomic 
regions was much smaller for muscle pH than for loin 
depth, and ranged from 0.1 (ham pH, line D) to 0.7% (loin 
pH, line D; Table 3). The largest amount of genetic vari-
ance captured for any one genomic region was 4.0%, on 
SSC16 for line C and loin depth measured in purebred 
animals (see Additional file 2: Table S2).

Genomic regions of interest—loin depth
Fifteen distinct genomic regions were identified for loin 
depth, most of which have been previously reported. 
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With the objective of identifying novel regions (i.e., 
regions that have not been described in the literature) 
and candidate causative loci, we present the two novel 
associations identified and the five regions that displayed 
the strongest GWAS associations.

Novel regions: A single SNP located on SSC17 
(~ 5.3 Mb) was found to be associated on a genome-wide 
level with dEBV based on both purebred and crossbred 
relatives in terminal line C, while two SNPs located on 
SSC18 (~ 2.4 Mbp) were found for maternal line A. These 
associations were not detected in any of the other lines.

Fig. 1 Manhattan plots showing the genome‑wide associations with loin depth and with ham and loin pH in four commercial pig lines. The dotted 
horizonal line denotes genome‑wide significance
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Strong associations: We identified strong associations 
for loin depth on SSC1, 2, 5, 7, and 16. Three SNPs on 
SSC1 at ~ 158.4 Mb were found for maternal line B. This 
region was not detected in the other lines, however a 

single SNP located ~ 2  Mb away from those identified 
in line B was identified for the maternal line A. Twenty 
SNPs across two regions on SSC2, at 0.4 Mb and 2.2 Mb, 
were identified for lines B and D. Three SNPs on SSC5 
at ~ 66.1  Mb with a lead SNP −   log10(P-value) of 27.4 
were found to be associated with loin depth for line D 
(based on purebred and crossbred phenotypes). This 
region was not identified in other lines at either the 
genome- or chromosome-wide level. Between one and 
six SNPs on SSC7, spanning 1.8 Mb (30.1 to 31.96 Mb), 
showed associations in both maternal lines and in ter-
minal line D based on both purebred and crossbred per-
formance. Finally, from 5 to 61 SNPs that spanned more 
than 4.5 Mb (31.83 to 36.86 Mb) on SSC16 were associ-
ated with loin depth in one maternal line and in the ter-
minal line C purebred and crossbred datasets. Another 
chromosome-wide level association was also found in 
this region in terminal line D.

Table 2 Summary of the genomic regions associated with each trait at a genome‑wide significance threshold

LDP loin depth (purebreds), LDX loin depth (crossbreds), PHHAM pH of semimembranosus muscle measured 22 h post-slaughter, PHLOIN pH of longissimus muscle 
measured 22 h post-slaughter, MAF minor allele frequency

Trait SSC Position (Mb) Line Number of 
significant SNPs

Most significant SNP

Position (bp) −  log10(P-value) MAF

LDP 1 158.36–158.36 A 1 158,355,905 6.9 0.32

LDP 1 159.7–161.33 B 3 160,347,188 8.36 0.24

LDP 1 270.35–270.35 D 1 270,354,493 6.66 0.31

LDP 2 0.12–0.69 B 5 404,057 18.83 0.06

LDX 2 2.05–2.05 D 2 2,051,230 7.57 0.23

LDP 2 2.05–3.99 B 13 2,215,904 14.1 0.18

LDP 5 66.1–66.22 D 3 66,103,958 27.4 0.43

LDX 5 66.1–66.22 D 3 66,103,958 23.47 0.43

LDP 6 45.74–47.55 A 7 45,744,000 11.14 0.29

LDX 7 20.59–20.59 D 1 20,586,603 7.26 0.26

LDP 7 30.1–30.23 D 2 30,095,798 6.71 0.03

LDX 7 30.1–30.23 D 2 30,095,798 6.28 0.03

LDP 7 30.32–31.64 A 6 30,317,219 8.94 0.31

LDP 7 30.32–31.96 B 6 30,317,219 9.74 0.26

LDP 9 47.65–47.65 A 1 47,650,875 9.59 0.36

LDX 9 47.28–47.65 D 2 47,650,875 6.81 0.36

LDP 12 25.48–25.53 A 2 25,532,133 6.03 0.28

LDP 16 33.18–33.49 B 5 33,283,559 8.25 0.44

LDP 16 31.83–36.49 C 54 34,100,484 21.55 0.17

LDX 16 32.39–36.86 C 61 34,893,593 21.56 0.18

LDP 16 48.16–48.62 C 3 48,157,349 6.41 0.28

LDP 17 5.31–5.31 C 1 5,307,502 6.64 0.18

LDX 17 5.31–5.31 C 1 5,307,502 6.3 0.2

LDP 18 2.36–2.38 A 2 2,380,106 8.43 0.03

PHLOIN 15 119.93–121.09 D 8 120,437,865 6.42 0.23

Table 3 Percentage of additive genetic variance explained 
by genomic regions with genome‑ and chromosome‑wide 
significant SNP associations for loin muscle depth and muscle pH 
(ham and loin) in the four genetic lines evaluated

a Although these traits were measured on crossbred individuals, GWAS was 
performed on purebred relatives
b pH of semimembranosus muscle measured 22 h post-slaughter
c pH of longissimus muscle measured 22 h post-slaughter

Line A Line B Line C Line D

Loin depth (purebreds) 5.0 5.6 6.1 4.3

Loin depth (crossbreds)a – – 4.2 2.7

Ham muscle  pHb – – 0.1 0.1

Loin muscle  pHa,c – – 0.4 0.7
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Genomic regions of interest—muscle pH
We analysed ham and loin pH in two terminal sire lines. 
Only one genome-wide association was found for mus-
cle pH, on SSC15, accounting for 0.44% of the additive 
genetic variance. This region included eight SNPs that 
were significant at the genome-wide level and spanned 
1.16  Mb (119.93 to 121.09  Mb). Five other regions on 
SSC2, 6, 11, and 17 were associated with ham or loin pH 
at the chromosome-wide level.

Prioritisation of candidate variants
We used LD to define regions around each lead SNP that 
harboured potential candidate causative variants and 
genes from whole-genome sequence data. Within these 
regions, the variants with the highest pCADD scores 
were identified as potential candidate variants and the 
genes that contained these variants were identified as 
candidate genes. Table 4 shows the highest-scoring can-
didate gene for each region, based on pCADD scores. In 
many cases, pCADD identified different top candidate 
genes for the same region in different lines. For example, 
for the SSC7 region, pCADD prioritised the genes copine 
5 (CPNE5), nudix hydrolase 3 (NUDT3), and glutamate 
metabotropic receptor 4 (GRM4) for different lines. In 
total, this region includes 19 genes that contained SNPs 
in the top 5% of pCADD scores. Similarly, for the SSC16 
region, pCADD highlighted the ADP-ribosylation factor-
like protein 15 (ARL15) and chondroitin sulfate proteogly-
can family member 4B (ENSSSCG00000016898) genes 
for different lines with 18 top 5% pCADD candidate 
genes.

Table  4 shows the SNPs with a top ranking pCADD 
score (seqSNP) for each genome-wide significant lead 
GWAS SNP, along with the predicted effect for each SNP, 
and its distance from, and LD with the lead GWAS SNP 
(for results on regions that were significant at the chro-
mosomal level, see Additional file 3: Table S6). Candidate 
variant prioritisation by pCADD identified primarily 
protein coding variants for the significant associations, 
which are often located far away (on average 566  kb, 
calculated from the data in Table  4) from the most sig-
nificant SNP. Among the variants that were identified in 
exons, 11 were missense variants, five were synonymous, 
and one was a UTR. For loin depth, pCADD identified 
a missense mutation in the MC4R gene as a candidate 
variant in maternal line B. For the region on SSC7 that 
was shared between the terminal line D (purebred and 
crossbred phenotypes) and both maternal lines, the top 
pCADD scores were found for variants located in differ-
ent genes, i.e. CPNE5, NUDT3, and GRM4.

For 10 of the 29 line-specific regions that were found to 
be associated with loin depth or pH at the genome-wide 
level, none of the SNPs in high LD with the lead SNP 

contained missense mutations. In the other 19 regions, 
only 0.72% of all SNPs that were in high LD with the lead 
GWAS SNP were missense variants, while approximately 
9.6% of these SNPs were in the top 5% of pCADD scores. 
Sixty eight percent of all missense variants that were in 
high LD with lead GWAS SNPs appeared in the top 5% 
of variants identified by pCADD, while 38% of the top 
scoring variants identified by pCADD were missense 
mutations.

To explore whether the combination of LD and 
pCADD analyses are sufficiently accurate to prioritise 
variants for further functional studies, we looked more 
closely at the main regions that were found to be associ-
ated with loin depth in the current study. The region on 
SSC7 that was identified in three of the genetic lines was 
also highlighted by Derks et  al. [7], who used a similar 
methodology and this, therefore, provides a useful com-
parison. Figure 2 shows the position and pCADD score of 
the seqSNP, and all the SNPs that are in high LD with the 
GWAS SNP for each of these three genetic lines.

Discussion
Identification of novel associations
Loin muscle depth
We found two previously unreported regions on SSC17 
and 18 to be associated with loin muscle depth. The vari-
ants identified by pCADD in these regions were a synon-
ymous variant located in the SLC7A2 gene (SSC17) and 
an intergenic variant (SSC18). The SLC7A2 gene encodes 
an amino acid transporter that has been shown to be 
downregulated in pigs on severely protein-restricted 
diets [39] and is therefore a highly plausible candidate 
gene for loin muscle traits.

Loin and ham muscle pH
We did not identify novel regions that were significantly 
associated with loin or ham pH at the genome-wide level. 
Although similar population sizes were used as in e.g. 
[39], we failed to replicate many GWAS findings reported 
in the literature, which may be explained by the relatively 
small population size, combined with the low average 
reliability of dEBV in our study. Raw phenotypes were 
not available for this analysis, but they could be consid-
ered as an alternative to dEBV in other studies.

Replication and refinement of previously known genomic 
regions for muscle and growth traits
A region spanning 1.16  Mb on SSC15 was found to be 
associated with ham pH at the genome-wide level and 
this region includes the protein kinase AMP-activated 
non-catalytic subunit gamma 3 (PRKAG3) gene. While 
relatively few mutations have definitively been associ-
ated with pork meat quality traits [40], two mutations in 
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the PRKAG3 gene have been shown to increase glycogen 
level in the muscle of pigs. Pigs carrying these mutations 
produce inferior meat with a lower pH (so-called “acid 
meat”). The previously identified missense mutation in 
the PRKAG3 gene was the 7th highest-scoring pCADD 
SNP, while the highest scoring variant was a synonymous 
variant located in the ring finger protein 25 (RNF25) gene. 
This gene encodes a ligase that partly controls naked 
cuticle 2 (NKD2) degradation in humans [38], which has 
been suggested to have a role in muscle development 
[41]. Although RNF25 may have a role in muscle pH, the 
more likely candidate causative gene for the association 
with muscle pH identified in this region is PRKAG3.

Our study replicated five regions on SCC1, 2, 5, and 
16 that were strongly associated with loin muscle depth 
and that have previously been shown to be associated 
with muscle and growth traits and prioritised potential 
candidate causative variants for these regions. In the fol-
lowing, we briefly discuss the overlaps between the genes 
reported in the literature and the genes that we identified 
here using pCADD prioritisation.

SSC1
The region identified on SSC1 has been detected in sev-
eral GWAS for loin depth and backfat [7, 17, 42, 43]. 
In our study, the lead GWAS SNP was located 0.4  Mb 
downstream from the MC4R gene and the highest-scor-
ing pCADD variant was a missense variant located within 
this gene. Several mutations in the pig MC4R gene are 
well known and are involved in regulating appetite [44, 
45]; the variant that we identified has also been described 
to affect fatness, growth, and feed intake in different pig 
breeds [2, 46, 47]. Given the supportive evidence from 
multiple previous studies and the plausible biological 
pathways in which MC4R is involved, the pCADD-iden-
tified missense mutation in MC4R and in the regions 
around the MC4R gene represent strong candidates for 
effects on muscle loin depth in pigs and warrant further 
fine-mapping to identify other causative variants.

SSC2
Two regions on SSC2 were strongly associated with loin 
depth, one from 0.12 to 0.69 Mb and the other from 2.05 
to 3.99 Mb. These were treated as separate regions in our 

Fig. 2 Plot showing the sequence SNPs (grey) that are in high linkage disequilibrium  (r2 > 0.80) with the lead GWAS SNP (red) from the region on 
SSC7 that was found to be associated with loin depth in three commercial pig lines. The candidate causal variant identified based on pCADD scores 
is highlighted in green
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analysis since there was an interval of more than 0.5 Mb 
between them, however Gozalo-Marcilla et al. [17] found 
one large association with backfat that spanned this 
entire region, accounting for 6.7% of the additive genetic 
variance. In our study, these regions jointly accounted 
for 2.8% of the additive genetic variance in line B. This is 
one of several regions identified in our study that over-
laps with regions that were previously shown to be asso-
ciated with backfat, which may be due to the negative 
genetic correlations between loin depth and backfat [48]. 
An intronic variant in the oxysterol binding protein like 
5 (OSBPL5) gene was identified as a candidate gene for 
this region. In humans, OSBPL5 plays a key role in the 
maintenance of cholesterol balance in the body [49], and 
thus represents a plausible candidate for body composi-
tion traits in pigs.

SSC5
The region identified on SSC5 was previously reported 
to be associated with backfat [7, 17], average daily gain 
[50], and meat tenderness [51]. In our study, pCADD pri-
oritisation identified cyclin D2 (CCND2) as a candidate 
gene. The CCND2 gene is important for the growth of 
pancreatic islets and is involved in hormonal regulation 
of growth [52], has recently been fine-mapped as a can-
didate gene for backfat [53] and for conformation traits 
[52] in pigs, and has been  found to be overexpressed in 
the semimembranosus muscle of pigs [30]. Thus, CCND2 
is a plausible candidate gene for the regulation of loin 
muscle traits in pigs.

SSC16
The region that explained the largest proportion of 
genetic variance in loin depth was located on SSC16. Sev-
eral studies have detected markers within this region that 
are associated with loin muscle [35, 54, 55], feed conver-
sion rate [56], backfat [17, 57], and growth [36, 58], but 
no causative SNPs have been confidently proposed. Ber-
gamaschi et al. [55] found that this region explained more 
than 4% of the variance in loin muscle depth and the 
gene network analysis performed in that study suggested 
GPX8 as a candidate gene, but this gene was not identi-
fied in the top 5% of pCADD scores in our study. Instead, 
the variants identified by pCADD in this region were a 
synonymous mutation in the SH3 and PX domains 2B 
(SH3PXD2B) gene, an intronic variant in the ADP ribo-
sylation factor like GTPase 15 (ARL15) gene, and a mis-
sense variant in an uncharacterised protein coding gene. 
Since this genomic region contains 70 genes (results not 
presented), it is difficult to pinpoint any one of the genes 
as causative using the pCADD methodology. However, 
the strength of this association and its replicability make 

this a strong candidate region for detecting causative var-
iants via fine-mapping and biological assays.

The utility of linkage disequilibrium and pCADD scores 
for fine-mapping complex traits
The prioritisation scheme of LD in combination with 
pCADD scores identified several candidate causative 
variants in genes that have plausible biological links 
to muscle. The question is whether combining LD and 
pCADD is sufficiently accurate to prioritise variants for 
further functional studies. To explore this, we looked 
more closely at the main regions that were identified to 
be associated with loin depth in our study. One region 
on SSC7 that was detected in three of the genetic lines 
was also highlighted by Derks et al. [7], who used a simi-
lar methodology, which allows a relevant comparison 
between the results of these two studies.

Derks et  al. [7] reported that this region is associated 
with backfat, intramuscular fat, growth rate, and drip loss 
in Duroc pigs, and the candidate variant that was identi-
fied by pCADD was located in the HMGA1 gene, which 
has been implicated in growth and carcass traits in pigs 
[59]. The candidate mutation that was reported by Derks 
et al. [7] was in high LD with the lead SNP in both of our 
maternal populations but ranked 3rd and 33rd based 
on our pCADD scores. In our study, the pCADD scores 
highlighted variants in the GRM4, CPNE5, and NUDT3 
genes as the most likely candidates in the SSC7 region.

The two maternal lines (top two panels in Fig. 2) shared 
a lead GWAS SNP but the seqSNP was different for 
each line due to different LD patterns in the two popu-
lations. The genes in which the SNPs for these lines are 
positioned, NUDT3 and CPNE5, respectively, are located 
more than 2 Mb from each other. Among the three lines 
presented in Fig. 2, maternal line A had the slowest rate 
of LD decay with distance (results not presented) and, 
therefore, the pool of candidate SNPs for pCADD was 
much larger for this line and covered a larger region. This 
explains why the seqSNP for this line was located more 
than 2  Mb away from the lead GWAS SNP, in contrast 
to the seqSNPs identified in lines B and D, and demon-
strates how population structure can influence the can-
didate SNP identified using this methodology. Thus, the 
ability of pCADD to identify causative variants could be 
improved by adding a physical distance constraint, to 
mitigate the effect of large LD blocks. Bayesian fine-map-
ping of these regions may help further refine the param-
eters used to identify causative variants using pCADD 
scores.
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Noncoding genetic variants may be important contributors 
to complex traits
In the current analysis, 38% of the top variants identified 
by pCADD were missense mutations. The CADD meth-
odology was developed based on simulated mutations to 
identify variants that do not segregate at high frequency, 
[6, 60] and, thus, tends to prioritise potentially deleteri-
ous variants with protein-coding consequences and to 
score noncoding variants with a lower value. Thus, we 
hypothesise that this 38% value likely overestimates the 
fraction of causative variants that are protein-coding.

Among the highest scoring SNPs identified by pCADD, 
one was in an intergenic region, seven were intronic, and 
one was located within a UTR, which suggests that the 
causative variants detected may be noncoding. For such 
regions, prioritisation needs to consider open chromatin 
data from muscle and, in our study, we combined such 
data from several studies [23-25]. We found that 14 of 
the variants were in regions of open chromatin obtained 
from muscle tissue, while 11 were not. For noncoding 
variants, bioinformatic prediction alone is likely not suf-
ficient to prioritise causative variants. Candidate variants 
prioritised by pCADD and overlapping active chromatin 
in muscle could be tested for gene regulation functions 
in cell-based assays such as CRISPR interference or mas-
sively parallel reporter assays e.g. [61].

Future work
Genome editing via CRISPR/Cas9 technologies has the 
potential to quickly and cost-effectively improve traits 
that are difficult to target via traditional selection meth-
ods. However, the polygenic architecture of the traits 
studied here, with the strongest associations explaining at 
most 3.6% of the additive genetic variance, suggests that 
the identification of candidate variants with large effects 
for gene editing, which needs significant investment, is 
unlikely.

Alternatively, variants identified from GWAS and 
whole-genome sequencing could be incorporated into 
genomic prediction models to improve their accuracy, or 
their ability to predict breeding values across populations, 
making the accuracy of genomic predictions less sensi-
tive to differences in LD within and between populations. 
The most promising strategy for genomic prediction with 
sequence variants seems to be to add preselected variants 
from some combination of GWAS and functional anno-
tation to SNP chips, rather than use millions of sequence 
variants directly for prediction. For example, Xiang et al. 
[62, 63] used GWAS and functional genomics data to 
identify 80k potentially causative SNPs and to develop 
a medium-density array for use in genomic selection in 
dairy cattle. However, in pigs, the strategy of pre-select-
ing variants from GWAS to improve genomic prediction 

has shown inconsistent results across traits and popula-
tions [64]. Perhaps these strategies can be improved by 
statistical fine-mapping and functional genomic prioriti-
zation of variants [65], if such approaches could improve 
the enrichment of genuine causative variants among the 
pre-selected variants.

Conclusions
In this paper, we detected novel associations for loin 
depth and muscle pH in the pig and confirmed sev-
eral previously known associations for loin depth. We 
identified plausible candidate genes based on whole-
genome sequence data and bioinformatic variant effect 
prediction with pCADD, including genes involved in 
adipogenesis, fatty acid metabolism, and insulin signal-
ling. Taken together with the overlap of the associated 
regions with backfat, this is consistent with the shared 
genetic basis of loin depth and backfat. However, the 
identified regions contain many genes and putative 
functional variants in high LD with each other, and the 
prioritised genes differed between lines due to variable 
LD patterns. Thus, there is considerable uncertainty 
in the current prioritisation of genes and variants and 
statistical fine-mapping in combination with empiri-
cal assays of variant function may be necessary to get 
closer to the causative variants.
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