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A B S T R A C T

Early detection of plant diseases with automated, non destructive and high-throughput techniques is a major
objective in plant breeding and crop protection. Near infrared spectroscopy and hyperspectral imaging are
proven to be particularly relevant technologies. However, robust discriminant models remains a challenge
because of the many uncontrolled sources of variability during the experiment. Indeed, at early stages of
most diseases, the temporal variations due to environment and measurement effects can induce signal shifts
of greater magnitude than the infection itself, masking the information of interest. Excluding the variations of
the measurement environment and the temporal fluctuation of the plant-pathogen interaction can depreciate
the model robustness. Here, the problem is addressed in a study of the seven potato cultivars monitored for
the presence of early blight disease at 0, 18, 36, and 96 h after inoculation. Three practical corrections are
proposed regarding the effect of temporal fluctuations. (i) subclass effect, (ii) kinetic effect of the disease,
and (iii) measurement effect. Eventually, the application of EPO-PLSDA to orthogonalise the model regarding
temporal variation to produce invariant models proved to be the only suitable and well-performing of the
tested solutions. With this approach the disease can be detected from 36 h after inoculation for 6 of the 7
tested cultivars. Classification errors differ among the cultivars but on average are below 25% of errors.
1. Introduction

Spectroscopy and hyperspectral imaging (HSI), especially in the
visible and near infrared (VIS–NIR) domain, are very popular auto-
mated and non-destructive techniques for the detection of numerous
plant diseases (Mahlein et al., 2018). When these technologies are
combined with appropriate analysis and modelling methods, it is pos-
sible to discriminate infected plants from healthy ones, to predict
infection levels and stages, or even to discriminate between different
diseases (Mas Garcia et al., 2021; Lowe et al., 2017; Mahlein et al.,
2012; Couture et al., 2013). In addition, spectral data can be used to
deduce changes in leaf chemistry or structure (Jacquemoud and Ustin,
2019; Bos and Parlevliet, 1995). As a matter of fact, some characteristic
spectral regions are well-known to be related to the concentration of
pigments (chlorophyll, anthocyanins and carotenoids), nitrogen, sugar
and water content or even leaf surface and tissue structure (Gold
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et al., 2020b). The emerging need for explainable models, consistent
with domain knowledge (e.g. plant sciences) makes spectral data and
its modelling tools (chemometrics) (Wold, 1995) especially relevant
within the new trend of explainable artificial intelligence (Confalonieri
et al., 2021; Streich et al., 2020).

Being a growing threat for tomato and potato, early blight disease
has been recently more and more investigated, including by means
of spectral measurements and hyperspectral imaging. Usually, such
studies use in-vivo foliar measurements to monitor the disease during
its progression. Studies use either spectral vegetative indexes (Atherton
et al., 2017), multivariate analysis of continuous spectra (Gold et al.,
2020a) or both (Van De Vijver et al., 2020), to discriminate the healthy
plants from the infected ones at specific disease progression stages.
The studies report a discriminant accuracy above 90% from two to
four days post infection depending on the growing and inoculation
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Fig. 1. Experimental setup: plant material, inoculation protocol, symptoms development and spectral measurement: a. photograph showing the six-week-old potato plant; b. schematic
representation of the position of the inoculation in the leaflets (marked with red 1–4); c & d. photograph showing the inoculation and intact inoculum droplet post-inoculation,
respectively; E. data measurement using the ASD QualitySpec Trek Handheld Spectrometer (NIR); f. leaflets showing the initial stage of development of early blight infection; g.
leaflets showing the clear necrotic lesions of early blight infection; h. phenotype of the control and inoculated leaflets after 4 days.
conditions and the sensitivity of the cultivars. In the case of Van De
Vijver et al. (2020), the results were obtained with field measurement,
which can explain later detection threshold due to slower infection
of the fungus. First signs of infection by A. solani are detected from
differential changes in pigments, water content and cell damage (Bao
and Zhang, 2023).

However, when monitoring individual plants or evaluating a field
for the presence of a disease, measured signals evolve with time. The
plant-pathogen interaction is a dynamic process, and even healthy
plants are subject to uncontrolled natural physiological fluctuations.
In addition, measured signals also depend on numerous fluctuations of
the local environments. Therefore, temporal variations represent both a
useful information and a source of detrimental effects for the modelling
process. It provides information regarding the evolution or the kinetic
of a disease and cultivar-specific interaction but it also represents a
source of variability that can be assimilated to a ‘‘measurement effect’’.
In this context, changes in signals induced by the infection, especially
at early stages, can be masked by variabilities of greater magnitudes.
Indeed, if some variations, due to light, temperature, or humidity, can
be reduced or corrected by ensuring stable measurement environments
and controlled growing conditions, measurement effects and temporal
variation remain major obstacles to achieve reliable models have to be
taken. Early detection of infection is crucial for plant phenotyping ap-
plications, for breeding, and crop monitoring. Although there are some
examples in the existing literature, early detection of infections remains
a challenge (Terentev et al., 2022; der Waals et al., 2001). Here, we
investigated the interactions of A. solani with seven potato cultivars at
early time points after inoculation. These cultivars have varying degree
of susceptibility, and we know different types of transcriptome response
to A. solani (Sajeevan et al., 2023).

In this study, a method to correct time induced variabilities is
proposed to improve the robustness and performances of discrimination
between healthy and infected plants. The problem is addressed with a
case study of the monitoring of early blight disease during the initial
hours after inoculation (HAI). A. solani, the agent responsible for the
early blight disease, is a fungal pathogen of the phylum Ascomycota,
infecting leaves, stems, fruits or tubers. It is a necrotroph that causes
lesions and characteristic ‘‘bullseye’’ spots symptoms on the leaves.
Eventually, leaves sustain yellowing (due to chlorosis and nitrogen
deficiency) and then dry out, leading to premature defoliation. The
tubers also sustain surface dryness and dark lesions while the flesh turns
2

‘‘leathery’’ and can even rot. A. solani can infect numerous species of the
Solanaceae family other than potato, including tomato (Solanum lycop-
ersicum L.), eggplant (Solanum melongena) and, bell pepper (Capsicum
spp.) (Weir et al., 1998).

The purpose of this study is to investigate three practical correction
methods of the time induced measurement effects and to compare them
with the reference method PLSDA (Partial Least Square Discriminant
Analysis) (Ruiz Perez et al., 2020):

(a) predicting the health status and the HAI altogether within a PLS2
model

(b) predicting the health status after internal linear correction
(Wülfert et al., 2000) with a time constrained PLS2 model

(c) predicting the health status with EPO-PLSDA considering time
(external parameter orthogonalisation — partial least square (Roger
et al., 2003))

2. Material and methods

2.1. Plant growth conditions

In vitro grown potato (Solanum tuberosum) cultivars Aracy, Bintje,
Désirée, King Edward, Kuras, Matilda, and Magnum Bonum were ini-
tially transferred in 0.5 L pots (9×9×9.5 cm) filled with potting mixture
(Exklusiv Blom & Plantjord, Emmaljunga Torvmull AB, Sweden) for
two weeks and later transferred to 2 L pots and allowed to grow for
four more weeks (a representative picture of a six weeks old potato
plant is presented in Fig. 1A). The plants were grown in an artificial
light chamber of 160 μmol s−1 m−2 with 16 h light and 8 h dark regime
(Biotron, SLU Alnarp, Sweden). The chamber was maintained at 25 and
22 ◦C day and night temperature, respectively, with relative humidity
(RH) of 55%–60%.

2.2. Fungal culture preparation and inoculation

Actively growing mycelial discs (5 × 5 mm) of A. solani As112
strain Odilbekov et al. (2014) was placed on the centre of a 20% potato
dextrose agar (PDA) medium plate and allow it to grow in dark at room
temperature for 3 days. The plates were subsequently transferred for
8 h to an UV-C light supplying incubator (OSRAM HNS15G13 with
dominant wavelength of 254 nm) with a temperature of 18 ◦C for
inducing sporulation. The plates were incubated for 10 to 12 days and
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Table 1
Datasplit: repartition of samples within potato cultivars, health status and time points
(HAI).

Health status HAICultivar Total Control Inoculated 0 18 36 96
Aracy 191 119 72 48 48 48 47
Bintje 271 172 99 68 68 67 68

Desiree 288 180 108 72 72 72 72
King Edwards 281 175 106 70 70 70 71

Kuras 271 169 102 68 68 67 68
Magnum Bonum 361 222 139 92 93 92 84

Matilda 345 219 126 86 86 86 87
Total 2008 1256 756 504 505 502 497
the conidia were harvested by flooding the plates with 10 to 15 mL of
sterile tap water containing 0.01% (v/v) Tween 20 (Sigma Aldrich).
The concentration of conidia was measured using a Fuchs Rosenthal
haemocytometer and was adjusted to 25,000 conidia/mL for inocula-
tion. Three different potato plants from each cultivar with two leaves
each from the centre (22 to 25 days old) was used for inoculation.
Fig. 1b presents the inoculation scheme and 1c shows the inoculation in
practice and 1d shows the resulting intact droplets. For each infection,
a 15 μl inoculum carrying 25,000 conidia/mL of As112 was placed
on the adaxial side on either sides of mid rib towards the centre part
of each leaflets leaving the first two and centre leaflets. For control
plants (mock inoculation), 15 μL each of sterile water containing 0.01%
(v/v) Tween 20 was used. Four different potato cultivars were kept
in each trolley and covered with transparent plastic to maintain high
humidity (>95%) and the lights were turned off for efficient infection.
Measurements were taken at 0, 18, 36, and 96 HAI. Fig. 1f, g and h show
respectively the initial state of the infection after 18 h, the evolution
after 96 h and the comparison with the control samples.

2.3. Spectral acquisition

The spectral measurements were conducted with the handheld con-
tact spectrometer ASD Qualityspec Trek®. Measures were directly per-
formed on leaves, targeting inoculated areas for the infected plants (see
Fig. 1e. The resulting data are a collection of reflectance spectra (Lin-
don et al., 2017) (one for each measured point in the spectral domain
of VIS–NIR–SWIR (short wave infrared) [350–2500 nm], with a spectral
resolution of ∼1 nm. Then each spectrum is described by 𝑝 = 2151
wavelengths

2.4. Database description

In total, the constructed database contains 2008 spectral samples
easured on leaflets from 42 plants (7 cultivars × 3 replicates × 2

roups). For each plant, three, four or five leaflets were monitored
epending on the cultivar. For example, for Aracy fewer leaflets were
easured, hence the difference in the number of samples per cultivars

hat can be seen in Table 1 that details the number of measurements
ccording to the cultivars, HAI and health status.

.5. Data processing

.5.1. Data split and models’ evaluation protocol
The database is iteratively divided into calibration and validation

ets. For each iteration, all the samples of one cultivar is picked out for
alidation while the remaining data is used for calibration. The cultivar
plit ensures the independence of the validation data by dissociating
iological replicates. In addition, it enables to test the robustness
f models calibrated on different cultivars and to compare models
roperties and performances of the different cultivars. Essentially, it
s the same principle as ‘‘k-fold’’ cross-validation, where each fold is
etermined by the cultivar split.
3

2.5.2. PLSDA and EPO-PLSDA
Chemometrics is a reference approach in spectral analysis and in-

tegrative ‘‘omics’’ analysis (Worley and Powers, 2013; Worley et al.,
2013; Rohart et al., 2017), particularly Partial least square (PLS) (Wold
et al., 2001), which is used to model the relationship between ex-
planatory variables 𝐗 (e.g. spectral data) and variable of interests 𝐘
(e.g. health status of samples). PLS is essentially a multilinear analysis,
producing predictive models. It is particularly adapted to strongly
collinear (correlated), noisy and high dimensional 𝐗 data (especially
when the dimension of the variables 𝑝 is superior to the number 𝑁 of
samples) (Jobson, 1991). PLS enables to achieve at once dimensionality
reduction, variable selection and regression. PLS can also be applied
for discriminant problems, such as predicting semantic classes (e.g.
healthy, infected, and response to abiotic stress), in which case it is
called PLS-DA (discriminant analysis). In practice it consists in combin-
ing a discriminant analysis, generally the Fischer’s linear discriminant
analysis (LDA, also known as FDA).

External Parameters Orthogonalisation PLS (EPO-PLS) was proposed
by Roger et al. (2003) to calibrate robust models that are invariant to
a given detrimental variation effect. Originally it was proposed to deal
with the effect of the temperature of measurement for the prediction
of sugar content in apples. In the context of discriminating between
control and inoculated samples, it is proposed to summarise the various
‘‘measurement effects’’ using the HAI as a combined proxy. Then EPO-
PLS is applied by considering the HAI similarly as it is conventionally
done for temperature in Roger et al. (2003). Appendix presents a
pseudo-algorithm detailing the practical implementation of EPO-PLS in
this context.

The data processing framework then consists in comparing EPO-
PLSDA with PLSDA as the reference method in the domain, in terms
of discriminant performances, robustness and sensitivity regarding cul-
tivars and time-points.

2.5.3. Evaluation criteria
Confusion Matrix and classification error :
A confusion matrix is a 𝑘 by 𝑘 array, that compares the predicted

class and the actual class of samples, where 𝑘 denotes the number of
semantic classes or label of interests to discriminate. In this application
𝑘 = 2 [‘‘Control’’, ‘‘Inoculated’’].

From this matrix, several performance metrics can be derived, such
as the classification error, which represent for each class, the number
of misclassified samples. (i.e. the number of control samples classified
as inoculated and vice versa. It is equivalent to 1 − 𝑅𝑒𝑐𝑎𝑙𝑙).

3. Results and discussion

3.1. Data visualisation

Fig. 2 shows balanced subsets of the spectral database which are
coloured according to their health status (a), HAI (b) and cultivar (c).
The reflectance spectra present the typical features of leaves in the
VIS–NIR–SWIR domain Jacquemoud and Ustin (2019). Notable spectral
bands can be observed, first for the pigments, around 480 nm for the
carotenoids, 680 nm for chlorophyll then the ‘‘red-edge’’ after 780 nm
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Fig. 2. Distribution of spectra according to the labels of interest: health status (a), HAI time-points (b) and cultivar (c).
and the water absorption bands around 980, 1480 and 1870 nm. There
are no visible difference between the spectra of the different health
statuses, HAI and cultivars.

Fig. 3 presents the score plot of the dataset projected on the 3rd and
4th component of a PCA (Principal Component Analysis), representing
11 and 9% of the explained variability, respectively. Spectral samples
are coloured according to their HAI (a) and health status (b). The
projection shows a relative separability of the data according to HAI
on the 3rd and 4th PC’s. No combination of axes can, however under-
line separability between the control and inoculated groups (example
Fig. 3.b). Therefore, temporal (assimilated to a ‘‘measurement effect’’)
variations represent here the largest variance and occludes the health
status which represents differences of lesser magnitude between the
spectra. The following parts aim at stating and illustrating the problem
of the measurement effect that increases the complexity of the target
problem: predicting health status.

3.2. The reference method: PLSDA for the discrimination of health status

Fig. 4 presents the discrimination performances achieved by the
PLSDA method. Fig. 4.a present the classification errors (CE in %)
cumulated for each of the seven cultivar splits, depending on the
number of latent variables (LV). It illustrates a representative and
generic behaviour for all the models calibrated for each of the targeted
cultivars. Results are presented for both the ‘‘control’’ and ‘‘inoculated’’
4

group. A discriminant model is achieved when both CE curves for the
two classes, reach a low value. At the first LV, all samples are classified
in the control group (results are shown from the second LV). Then,
the error curves decrease toward the joint minimum CE reached for 7
LVs, with respectively 31 and 32% of cumulated CE for the control and
inoculated groups. After, the CE curves start to be unstable and diverge
after the 13th LV, where the model is depreciated (form of overfitting)
and tend to classify samples predominantly into the ‘‘inoculated’’ group.
Fig. 4.b presents the confusion matrix for the selected model at 7 LV.
This confusion matrix is also the cumulated classifications for each
cultivar split. Overall, the performances are insufficient for applicative
perspectives but still shows that the model can learn from a relevant
information.

Table 2 shows the CE values per cultivar. Each cultivar is itera-
tively chosen as a validation set, when the remaining are used for
the calibration. For most cultivars, the value of the evaluation criteria
are very poor. Indeed, in most cases, the samples are predominantly
attributed to one of the two classes and the cumulative assessment is
only balanced because iterations tend to compensate each other. Only
the performances of the models calibrated for King Edward and Kuras
seem to bear some relevant information. Both King Edward and Kuras
are early blight susceptible cultivars. This might have enhance faster
changes in the spectral differences between control and inoculated com-
pared to others cultivars considered moderately susceptible or partially
resistant.

Table 3 presents the CE detailed according to the HAI. The perfor-
mances are resulting from the same data split and models as before, but
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Fig. 3. PCA analysis: separability of the data according to HAI (a) and health status effects (b). The samples are projected on PC3 and PC4 representing respectively 11 and 9%
of the explained variance.
Fig. 4. Classification errors of the PLSDA method for the discrimination of control and inoculated samples, all cultivars and HAI considered: (a) cumulative classification error
(%) per class for PLSDA, and (b) confusion matrix for 7 LV cumulated.
Table 2
Classification errors (%) for control and
inoculated of PLSDA detailed by cultivar.

Cultivar Control Inoculated
Aracy 50 15
Bintje 29 38

Desiree 54 15
King Edwards 27 26

Kuras 23 30
Magnum Bonum 23 41

Matilda 24 54

Table 3
Classification errors (%) of PLSDA detailed by HAI.

Treatment 0 HAI 18 HAI 36 HAI 96 HAI
Control 4 81 48 20

Inoculated 64 20 15
5

are here detailed according to the HAI of samples. The control samples
at 0 h and both classes for 96 h are fairly well-modelled. However, in
the case of HAI = 18 or 36 h, the model is completely off-target.

3.2.1. Conclusion about the discriminant potential of PLSDA
The proposed problem is quite complex because it mixes different

cultivars and measurement acquire at different key HAI. This situation
is chosen to illustrate a case close to the real application. Indeed, when
evaluating a field or greenhouse, models are calibrated in advanced
with a subset of cultivars and measurement conditions. In addition,
when testing a plant for the presence of a pathogen, it is impossible
to have prior knowledge of the time since primary infection. In that
context, the PLSDA is limited by the detrimental source of variabilities
that are unrelated to the health status and achieves insufficient perfor-
mances. However, some encouraging results for some cultivars or HAI
lead to consider that PLS is a relevant ‘‘backbone’’ as modelling system
that can integrate the time factor as a solving constraint.
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Fig. 5. Classification performances with the PLSDA-2 method considering time-points: (a) mixed classes classification cumulated CE, and (b) summarised binary classification
umulated CE.
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.3. PLSDA-2, predicting HAI and health status altogether

A first hypothesis regarding the limits of the PLSDA is the hetero-
eneity of the classes. Namely, each time point would correspond to
subclass of the inoculated group with varying stages and severity of

he disease. Under this assumption, the approach to solve the problem,
onsists in modelling and predicting altogether health status and HAI
ith a PLSDA-2 (Stocchero et al., 2019).

Fig. 5.a presents the cumulative CE depending on the LV for crossed
lasses (health status and HAI) with the same cultivar split as presented
n Section 3.2. The continuous curves with ‘‘diamond’’ markers are
sed for the control group, when the dashed curves with dot markers
re used for the inoculated group. Fig. 5.b presents the evolution
f CE considering a summarised binary classification where errors
n HAI can be tolerated and only the health status is considered to
ompute performances. For example a control sample measured at 18
that would be classified in the 36 h control group is considered as
valid classification. The PLSDA-2 method results in a fair modelling

f inoculated samples and of the control group at 0 h. For the other
AI, control samples are predominantly classified as inoculated. This

esults in CE above 50% for the control group in the summarised binary
lassification.

Fig. 6 presents the confusion matrices obtained for the optimal
odel (i.e.with the joint minimum CE) at 13 LV (see Fig. 5.a). Fig. 6.a is

he ‘‘semi-binary’’ confusion matrix, i.e. it shows the confusion matrix
hen predicting only the health status, but detailing the actual HAI
nd 6.b is the summarised binary confusion matrix. Fig. 6.c presents
he binary CE detailed per HAI. Globally, the inoculated samples are
ell classified with CE below 10% while more than half of the control

amples are mistakenly classified in the other group. This approach
s completely ineffective and results in lower performance than the
eference PLSDA approach. The conclusion is then that time represents
ndeed more a factor of disturbance than a subdivision of stages.

Fig. 7 presents the performances for the time-constrained method:
c-PLSDA. This method is derived from Wülfert et al. (2000) and
onsists in calibrating a model with both reference values for health
tatus and HAI, but realising predictions only considering the regression
oefficients regarding the health status part of the model. This process
s essentially an implicit orthogonalisation performed within the PLS
lgorithm. Fig. 7.a is a comparison of the MCE between tc-PLSDA and
he reference PLSDA method, depending on the number of LV. Fig. 7.b
6

s the confusion matrix for 7LV (optimal model for PLSDA: see Fig. 8). L
Table 4
Cultivar wise comparison of the classification errors for 7 LV PLSDA and
tc-PLSDA models.

PLSDA tc-PLSDACultivar Control Inoculated Control Inoculated
Aracy 50 15 29 37
Bintje 29 38 23 17

Desiree 54 15 30 12
King Edwards 27 26 24 9

Kuras 23 30 25 21
Magnum Bonum 23 41 31 30

Matilda 24 54 27 29

Table 5
Classification error of tc-PLSDA (%)
regarding HAI for the 7 LV model.

Treatment HAI
0 18 36 96

Control 12 54 33 25
Inoculated 22 31 13

The tc-PLSDA does not seem to represent a considerable improve-
ment compared to the PLSDA reference method. The MCE of tc-PLSDA
is a little lower for the optimal model at 7 LV (see Fig. 8), where the
MCE is 30% for tc-PLSDA compared to 32% for PLSDA. However, when
looking at the results per cultivar, presented in Table 4, the model is
actually relevant in this case, with the exception of the Aracy cultivar.
Similarly, when looking at the detail per HAI presented in Table 5, the
model is relevant from 36 h where the CE is respectively of 33 and 31%
or the control and inoculated groups. Globally, the performances are
till insufficient before 96 h for an application. However, it shows a
ajor interest of constraining the PLS model with information related

o the time, that acts here as a proxy for the measurement effect.

.4. EPO-PLSDA: Explicit constraint

Fig. 8 presents a comparison of the discrimination performances
etween PLSDA and EPO-PLSDA. (a) and (b) present the evolution of
E for both classes according to the number of LV and (c) summarises
he MCE for both classes. First of all, EPO-PLSDA seems to improve
ignificantly the performances with a first minimum CE below 25% at
LV (optimum for PLSDA) and a second minimum CE below 20% at 19

V. Secondly, the EPO-PLSDA seems to be able to learn a more complex
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Fig. 6. Confusion matrix and classification errors (%) of PLSDA for 13 LV model. Semi-binary (a), binary (b), and binary classification error per HAI (c).
Fig. 7. Comparison of mean classification error between PLSDA and tc-PLSDA (a) and confusion matrix of tc-PLSDA at 7 LV (b).
model from the data, as shows Fig. 8.b, the two curves start to diverge
after the 15th LV.

Fig. 9 compares the cumulated confusion matrix for the PLSDA (a)
and EPO-PLSDA (b) at 7 LV and the resulting CE for both class (c).
7

For the PLSDA model, the cumulative CE for both classes are over
30%, which is insufficient for applicative perspectives but still shows
the relevance of both the information and the modelling method. In

the case of the EPO-PLSDA, the results are significantly better with
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Fig. 8. Comparison of the evolution of the cumulative classification error (%) for PLSDA (a), EPO-PLSDA (b), models applied iteratively to each cultivar, according to number of
V. (c) presents the comparison of the mean classification errors for PLSDA and EPO-PLSDA.
s

6 and 20% of cumulative CE for the control and inoculated groups,
espectively. It means that 80% of the inoculated samples are retrieved,
hile 26% of control samples are mistakenly classified as inoculated.
his level of performances might remain limited for applications such
s plant nursery sanitation, but shows a significant improvement with
PO-PLSDA compared to the reference PLSDA.

Table 6 presents the comparison of CE between both methods,
egarding the targeted cultivar. It is essentially the detail of the cumu-
ative CE for each iteration over the different calibration sets and their
espective cultivar used for validation. For the EPO-PLSDA method,
erformances are quite satisfying for all cultivars except Aracy. As one
f the most early blight tolerant cultivar known, there might be only
inor differences between the inoculated and control plants at the

ery early time points. In the case of Desiree, for which the inoculated
amples are well recalled (𝐶𝐸 = 11%) but 31% of the control samples
re misclassified as inoculated, the model could be interesting for
pplications more tolerant to false positives.

Table 7 presents the comparison of CE regarding the HAI. The
erformances are resulting from the same data split and models as
efore, but are here detailed according to the HAI of samples. In the
ase of the EPO-PLSDA method, CE are lower for 0 h and 96 h, However,
ompared to the PLSDA method, the model is still relevant at 36 h
here the inoculated are well retrieved (𝐶𝐸 = 10%) but with a high

alse positive rate for control samples (𝐶𝐸 = 30%). It is the sensitivity
8

— detection limit of the model which is not relevant at 18 h. m
Table 6
Cultivar wise comparison of the classification errors for 7 LV PLSDA (a)
and EPO-PLSDA (b) models.

PLSDA EPO-PLSDACultivar Control Inoculated Control Inoculated
Aracy 50 15 25 38
Bintje 29 38 21 11

Desiree 54 15 31 7
King Edwards 27 26 24 12

Kuras 23 30 23 19
Magnum Bonum 23 41 25 25

Matilda 24 54 25 23

3.5. Robustness and stability of the models calibrated with PLSDA or
EPO-PLS: variability of the ‘‘b-coefficient’’

Fig. 10 compares the stability — variability of the ‘‘b-coefficient’’
(regression coefficient) regarding the different cultivars considered for
calibration with respectively (a) PLS and (b) EPO-PLS. These coef-
ficients are estimated before the DA step of the process. The blue
curves represent the mean b-coefficients, i.e. the average between
the coefficients obtained for each iteration over cultivars. The orange
areas represent the variability magnitude expressed with the standard
deviation ± 𝜎(𝑏𝜆). The EPO-PLS method present a substantially higher
tability than the reference PLS method. It means that the produced
odel are more robust to changes in calibration data.
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Fig. 9. Comparison of the cumulative confusion matrices resulting from 7 LV models applied iteratively to each cultivar, respectively PLSDA (a), and EPO-PLSDA (b), corresponding
cumulative classification error per class (c).
Fig. 10. Comparison of the variabilities of b-coefficients between PLS (a) and EPO-PLS (b) models. The blue curves represent the average b coefficients computed for all models.
he orange areas mark the variance between the mean and each of the models specifically calibrated to predict one cultivar.
Table 7
HAI wise comparison of the classification errors for 7 LV PLSDA and EPO-PLSDA models.

PLSDA EPO-PLSDA
Treatment 0 HAI 18 HAI 36 HAI 96 HAI 0 HAI 18 HAI 36 HAI 96 HAI

Control 4 81 48 20 8 63 30 20
Inoculated 64 20 15 27 10 19
Table 8 presents a comparison of the angles (in degrees) between
he different b-coefficients calibrated for each model, respectively with
LS and EPO-PLS. This angle express how similar the obtained regres-
ion coefficient (∼the model) when a part of the calibration data is

◦

9

ubstituted. Angles close to 0 describe similar models while angles
close to 90◦ describe orthogonal, i.e. independent models. This table
shows a relative stability of the models for EPO-PLS, Only the model
for Aracy present significant dissimilarities with the other models. It
means that, the process is quite robust to the variabilities within the

considered cultivar, and that it is possible to calibrate a generic model
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Table 8
Comparison of the variability of the b coefficients for PLS and EPO-PLS models. The values represent
angles (◦) between the b coefficient of the model calibrated for the prediction of each cultivar and the
average b-coefficients of each model.

Aracy Bintje Desiree King Edwards Kuras Magnum Bonum Matilda
PLS 37◦ 26◦ 23◦ 35◦ 21◦ 31◦ 18◦

EPO-PLS 25◦ 6◦ 4◦ 16◦ 7◦ 11◦ 3◦
d
C

D

i
e
G
s

D

p
(

A

i
F
i

on several cultivars to be applied for the prediction on other cultivars.
In the case of PLS, the angles show that the different models are more
‘‘oblique’’ to one another. It means that while they preserve some
correlation and common properties they are still significantly different.
These observation are consistent with the differences in performance
and classification behaviours between the two methods. The natural
variabilities within the dataset, both due to samples (cultivar range)
and to the signal (measurement effect), are detrimental for the PLS
method that cannot reach a stable and well-performing model. When
applying corrected models with EPO-PLS, the resulting performances
and the rather stability of the models show that it is relevant to try a
robust approach and that it enable to solve the application.

3.5.1. Interpretation of the model from the regressions ‘‘b-coefficients’’
Even though the coefficient of the PLS seem easier to interpret, the

coefficients of EPO-PLS bear additional information. The coefficients
from the PLS are related to changes in pigment content, notably at
480 nm for the carotenoids, 530 nm for the anthocyanins and 680 nm,
730 nm, 860 nm for chlorophyll and photosynthetic systems (Mer-
zlyak et al., 2003). In addition there are notable spikes around 1725
and 1820 nm that correspond respectively to CH2 content (lipids, wax
from cuticles) and cellulose. The coefficients of the EPO-PLS model
include the spectral regions of interest previously cited and some
additional information. Notable spikes around 1200 nm confirms the
importance of lipid content (Osborne and Fearn, 1993). Furthermore,
some usual areas around 950, 980, and 1940 nm related to water content
appeared. Otherwise, regions around 2080 and 2242 nm respectively
related to hydroxide/alcohol content, sucrose and amino-acids seem to
be discriminant.

4. Conclusion & perspectives

When dealing with complex NIR applications such as the detection
of plant diseases at early stages, the reference PLSDA method seems
limited. Indeed external sources of variations related to measurement
or growth effects can be detrimental to the calibration process and can
result in poorly performing models, instabilities and lack of robustness.
In this article, it was shown that a interesting process to overcome
this issue is to constraint the model with a priori knowledge regarding
plant physiology, pathogenesis and there interaction with spectroscopy.
Eventually, the method EPO-PLS performed better than the implicit
linear correction method. This work also showed that reference of
time, here in the form of HAI values can be used as proxies to correct
growth and measurement effects. The resulting models significantly
outperform PLSDA and are more robust for different cultivars which
are not included in the model. With EPO-PLS it is possible to detect
potato early blight 36 hours after the inoculation of A. solani. This
demonstration covered only one generic type of effect with two exam-
ple of corrections which essentially consist in orthogonalising a known
detrimental effect. It would be interesting to extend this work to other
limiting/detrimental sources of external variability and propose other
correction methods or constraints. For example, it is known that the
plant physiology as well as the pathogens physiology can be influenced
by numerous environmental factors that lead to the susceptibility or
on the contrary the resistance of the host. In that context, it could be
considered to study the effects of plant age, leaf position, metabolic
content before infection or even compounds inducing plant resistance.
A recent transcriptomic study (Sajeevan et al., 2023) captured major
10

transcription factor families whose differential expressed genes are U
associated with resistance or susceptibility to early blight within potato
cultivars. Associating these findings with hyperspectral imaging could
improve the robustness of statistical models aiming at predicting health
status and infection stages. Providing a new target category to predict
that is more consistent with the dynamic of plant pathogen interaction
(or proxy), would allow to include a form of constraint to improve
the accuracy of predictive models. In addition, by investigating more
cultivars with different types of defence mechanisms or resistance levels
against a specific pathogen it might also be possible to train future mod-
els to identify specific types of interactions and also help characterise
these based on the spectral signature. Regarding correction methods,
statistical tools and especially chemometrics are rich in robust, transfer
or domain invariant methods. It would be interesting to adapt them and
compare with EPO-PLS. Finally, punctual spectroscopy cannot capture
the spatial patterns of the disease, which could represent a valuable
information. Reproducing this work from hyperspectral images could
improve further the discrimination performance and robustness
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Appendix A

Algorithm 1 Practical implementation of the EPO-PLS algorithm
Estimation of 𝐺 and computation of its orthogonal basis
1: Compute the difference matrix of the ‘‘external factors’’

𝐷[𝑘 = 4, 𝑝 = 2151] =
⎛

⎜

⎜

⎝

�̄�−�̄�𝑡=0
�̄�−�̄�𝑡=18
�̄�−�̄�𝑡=36
�̄�−�̄�𝑡=96

⎞

⎟

⎟

⎠

,

where �̄� denotes the column-wise mean of 𝑋, i.e. the mean spectrum.

2: Perform singular value decomposition (SVD) of the covariance matrix of
𝐷

[𝑈, 𝑠, 𝑉 ] = 𝑆𝑉 𝐷(𝐷T.𝐷),
where ‘‘T’’ denotes the transposition operator and . denotes the matrix
multiplication operator.

3: Compute the ‘‘detrimental space’’ 𝐺
𝐺 = 𝐷T.𝑉

4: Determine 𝐺𝑜𝑝𝑡 the optimal subset of 𝐺
�̂�𝑜𝑝𝑡 ⊂ 𝐺

5: Compute the vector orthonormal basis 𝑃𝑟𝑜𝑗⊥[𝑝,𝑝] to project 𝑋 orthogonally
on 𝐺𝑜𝑝𝑡

𝑃𝑟𝑜𝑗⊥[𝑝,𝑝] = 𝐼𝑑[𝑝,𝑝] − (𝐺𝑜𝑝𝑡.(𝐺𝑜𝑝𝑡
T.𝐺𝑜𝑝𝑡)−1.𝐺𝑜𝑝𝑡

T),
6: where 𝐼𝑑[𝑝,𝑝] denotes the identity matrix of dimension 𝑃𝑟𝑜𝑗⊥ = 𝐼𝑑 −

[�̂�𝑜𝑝𝑡.(�̂�𝑜𝑝𝑡)
T
.(�̂�

− 1
2

𝑜𝑝𝑡

T
)].�̂�𝑜𝑝𝑡.[�̂�T

𝑜𝑝𝑡.�̂�𝑜𝑝𝑡)
− 1

2 ]

7: Project 𝑋 orthogonally to 𝐺𝑜𝑝𝑡

𝑋𝑜𝑟𝑡ℎ = 𝑋.𝑃 𝑟𝑜𝑗⊥

8: Calibrate a robust PLS model invariant to the factors in 𝐷, with 𝑋𝑜𝑟𝑡ℎ

dv = PLSDA.calibration(𝑋𝑜𝑟𝑡ℎ), so that:
for any given measured 𝑋𝑛𝑒𝑤, regardless the HAI, 𝑌 = 𝑑𝑣.𝑋𝑛𝑒𝑤,
𝑌 denotes the estimation of the sample class, from the data 𝑋𝑛𝑒𝑤 and 𝑑𝑣
denotes the discriminant vector of the PLSDA model.
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