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Identification and expression 
of functionally conserved circadian 
clock genes in lichen‑forming fungi
Henrique F. Valim1,2*, Francesco Dal Grande1,2,3, Jürgen Otte1, Garima Singh1,2,3, 
Dominik Merges1,2,4 & Imke Schmitt1,2,5*

Lichen‑forming fungi establish stable symbioses with green algae or cyanobacteria. Many species have 
broad distributions, both in geographic and ecological space, making them ideal subjects to study 
organism‑environment interactions. However, little is known about the specific mechanisms that 
contribute to environmental adaptation in lichen‑forming fungi. The circadian clock provides a well‑
described mechanism that contributes to regional adaptation across a variety of species, including 
fungi. Here, we identify the putative circadian clock components in phylogenetically divergent 
lichen‑forming fungi. The core circadian genes (frq, wc-1, wc-2, frh) are present across the Fungi, 
including 31 lichen‑forming species, and their evolutionary trajectories mirror overall fungal evolution. 
Comparative analyses of the clock genes indicate conserved domain architecture among lichen‑ and 
non‑lichen‑forming taxa. We used RT‑qPCR to examine the core circadian loop of two unrelated 
lichen‑forming fungi, Umbilicaria pustulata (Lecanoromycetes) and Dermatocarpon miniatum 
(Eurotiomycetes), to determine that the putative frq gene is activated in a light‑dependent manner 
similar to the model fungus Neurospora crassa. Together, these results demonstrate that lichen‑
forming fungi retain functional light‑responsive mechanisms, including a functioning circadian clock. 
Our findings provide a stepping stone into investigating the circadian clock in the lichen symbiosis, 
e.g. its role in adaptation, and in synchronizing the symbiotic interaction.

The circadian clock is a well-described central molecular timekeeping mechanism that regulates biochemical 
and physiological processes within most organisms, helping them to perceive and respond to abiotic and biotic 
environmental cues. Circadian systems are characterized by oscillations that can be synchronized (entrained) 
by environmental cues (i.e. zeitgebers) such as light, heat, or  nutrients1. The entrained circadian rhythms can 
persist without external cues with a period of roughly 24 h under free-running conditions and are capable of 
temperature compensation, wherein the circadian clock maintains stable rhythmicity across broad temperature 
ranges within which biochemical and physiological processes are  regulated2.

The central circadian oscillator of N. crassa is composed of the negative element frequency (frq) and its inter-
actions with the White Collar Complex (WCC), composed of proteins encoded by the white collar-1 (wc-1) and 
white collar-2 (wc-2) genes. WCC activates transcription of frq, which ultimately represses its own expression by 
affecting the phosphorylation of WC-1 and WC-23,4. Another essential component of the circadian regulator is 
Frequency Interacting RNA Helicase (FRH), which plays a role in regulating FRQ expression by variably protect-
ing FRQ against ubiquitin-mediated degradation and suppressing frq expression via interaction with the WCC 
5. This central clock oscillator in turn regulates a variety of downstream transcriptional and post-translational 
 modifications6. The N. crassa circadian clock also exhibits a temperature compensation mechanism, consistent 
with other circadian clock systems in plants and  animals7,8.

Circadian systems are present in nearly all organisms across the various kingdoms of life, and appear to have 
arisen at least three times during the evolution of  life9–11. The adaptive value of the circadian system becomes 
obvious in populations that have lost circadian rhythms over the course of their evolutionary history, or that 
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“switch off ” their circadian clocks due to seasonal cues; in both cases, the circadian system becomes less rhythmic 
under conditions where rhythmicity does not provide adaptive information to the biological system. Indepen-
dently-evolved populations of the cavefish Astyanax mexicanus show widespread disruption of circadian clock 
gene rhythmicity, as well as a reduction in rhythmic transcription compared to surface-dwelling  populations12. 
Activating overwintering mechanisms in trees involves an interplay between photoreceptors and the circadian 
clock, which is then disrupted for the duration of the  winter13. The circadian rhythms of Svalbard reindeer are 
attenuated during winter  months14, similarly to that of other Arctic mammals such as the muskox Ovibos mos-
chatus15 and the red fox Vulpes vulpes16.

The circadian clock provides fitness and performance advantages in a variety of model systems, further sup-
porting its role in environmental adaptation. In plants, the circadian clock aligns chemical defenses to herbivore 
feeding patterns, regulates drought responses, and anticipates pathogen attack (see Xu et al.  202217 for a recent 
review of the role of the circadian clock in plant biotic and abiotic stress responses). In fungi, the asexual repro-
ductive patterns of Neurospora crassa have long been observed to be regulated by the circadian  clock18,19, while 
strains of Neurospora discreta with habitat-specific circadian rhythms maintain higher fitness in their respective 
 habitats20.The interacting circadian clocks in symbiotic systems are a growing topic of  interest21,22. Tightly-
regulated circadian systems have been observed between corals and  algae23,24, as well as between the Hawaiian 
bobtail squid Euprymna scolopes and the bioluminescent bacteria Vibrio fischeri25. The arbuscular mycorrhizal 
fungus Rhizoglomus irregularis also contains a functioning circadian clock  system26, which has been hypothesized 
to play a role in the AMF-plant symbiosis.

The lichen symbiosis is composed of a fungal partner (mycobiont) and a photosynthesizing partner, either a 
green alga and/or a cyanobacterium (photobiont), plus a more or less specific suite of associated prokaryotic and 
eukaryotic microorganisms (e.g.27,28). The lichen lifestyle—a fungal nutritional mode that relies on the photo-
synthetic products of internally accommodated algal symbionts—occurs in unrelated lineages across the fungal 
tree of life, but is most prevalent in the Leotiomyceta (e.g. Lecanoromycetes, Eurotiomycetes, Dothideomycetes) 
within the  Ascomycota29. Lichens are ubiquitous in the landscape, thriving in a diverse range of habitats across 
nearly all  ecosystems30. This ubiquity is likely related to lichens’ capability to withstand extreme abiotic stresses, 
such as complete  desiccation31,32. This ability to withstand stress may be due to variable stress response pathways 
relative to other sessile organisms; the lichen Endocarpon pustillum maintains active transcription of metabolism-
associated genes during osmotic stress that are largely suppressed in plants and  fungi33.

Although lichens have been acknowledged as a symbiosis of interest to explore symbiotic circadian clock 
 systems22,34, little work has been done to elucidate the circadian clock mechanism in lichens aside from the 
identification of the putative frq ortholog in the lichen-forming fungus Umbilicaria pustulata35. An important 
prerequisite step to further studies of the lichen circadian clock is to determine how conserved the core circa-
dian clock and photosensory machinery is across phylogenetically unrelated lichen-forming fungi, as well as to 
determine whether this core machinery is functional.

Here, we investigate the presence of putative circadian clock components across the Fungi, focusing on major 
lineages in the Ascomycota that include lichens. We performed this investigation using a two-pronged approach: 
a phylogenetic analysis of putative homologs of the core circadian clock genes frq, wc-1, wc-2, and frh, and func-
tional validation of one core mechanism in the fungal circadian clock. We find that homologs of these four core 
fungal circadian clock genes are present in lichen-forming Lecanoromycetes, Eurotiomycetes and Dothideomy-
cetes, and that these orthologs contain strongly conserved protein-coding sequences in the functional domains 
of these genes. We demonstrate the light-dependent expression of the core clock gene frq in two highly diverged 
lichen-forming lineages, U. pustulata and D. miniatum. Taken together, these results demonstrate that lichen 
mycobionts retain functional light-responsive mechanisms, including a functioning circadian clock, similar to 
those of non-lichen-forming filamentous fungi.

Materials and methods
Identification and phylogenetic analysis of putative circadian clock genes. The four core fungal 
clock genes frq, wc-1, wc-2, and frh of the model fungus Neurospora crassa were used as queries to search for 
homologs in the genomes of the lichen-forming and non-lichen-forming fungi via reciprocal BLAST in Gen-
Bank, through the Genome Portal of the Joint Genome  Institute36 and from Calchera et al.37; see Table S1.

Putative clock genes recovered from a broad range of fungal taxa across the Ascomycota, Basidiomycota, and 
Mucoromycota were used for the phylogenetic analysis. We made sure to include lichenized (and if possible non-
lichenized) representatives of most Leotiomycete lineages that include lichens (Lecanoromyctes, Eurotiomycetes, 
Dothideomycetes). Amino acid sequence alignments were performed using MAFFT v7.45038. After alignment, 
sequences were trimmed using TrimAl v1.239, removing all columns with gaps in more than 20% of sequences 
in the alignment. Phylogenetic trees were inferred by maximum likelihood using RAxML version  840 using 
the GAMMA BLOSUM62 model and 1,000 bootstrap replicates. The presence of functional domains between 
lichen-forming and non-lichen-forming lineages was investigated using the protein domain and visualization 
tool  DomainViz41.

Study site and sample collection. Lichen thalli of Dermatocarpon miniatum and Umbilicaria pustulata 
were harvested from co-localized (ca. 600 m apart) sites in the vicinity of Eppstein, in the Taunus region of 
Germany (50°08′N 08°24′E). Single thallus fragments were taken from multiple populations (4 populations of 
U. pustulata and 5 populations of D. miniatum) to minimize disturbance. U. pustulata populations were located 
on horizontal or gently sloping, sun-exposed rock faces. D. miniatum populations were located on vertical, well-
shaded rock faces. Samples were collected and briefly cleaned of debris before being transferred to labeled paper 
bags before immediate transfer to a growth chamber.
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Growth conditions and light exposure treatment. After sample collection, lichen thalli were radi-
ally divided into two pieces and placed in individually-wrapped 5 cm-diameter Petri dishes with sterile blotting 
paper and ca. 200 μl of sterile deionized water. Petri dishes were subsequently incubated for 72 h in a plant 
growth chamber (CLF Plant Climatics GmbH, Wertingen, DE) at 16 °C under a light:dark 12:12 h light regime 
with 30 μmol  m−2  s−1 of light being provided during the light phase. After 72 h, all Petri dishes were wrapped in 
aluminum foil and placed in an additional paper box to induce a 24 h dark incubation period. Shortly before 8:00 
(dark:dark 24 = circadian time 0, subjective dawn), control thalli were harvested into liquid nitrogen. Aluminum 
foil was then removed and light-treated Petri dishes were exposed for 20 min. Petri dishes were kept equidistant 
from light sources in the growth chamber during light exposure before being harvested for RNA extraction.

Transcript abundance. After tissue harvesting from lichen thalli (150 mg), RNA was extracted with TRI 
Reagent (Zymo Research Europe GmbH, Freiburg, DE) according to the manufacturer’s instructions. Total RNA 
was quantified using a NanoPhotometer P 300 (Implen GmbH, Munich, DE) and cDNA was synthesized from 
500 ng of total RNA using RevertAid H-Minus first-strand cDNA synthesis kit (MBI Fermentas) according to 
the supplied protocol. Reverse transcription quantitative PCR (RT-qPCR) was performed in an CFX Opus 96 
cycler (Bio-Rad Laboratories GmbH, Feldkirchen, DE) using the Luna Universal qPCR Master Mix kit (New 
England Biolabs GmbH, Frankfurt am Main, DE). Umbilicaria pustulata and Dermatocarpon miniatum actin-
like 6A was used as a reference gene.

Statistical analyses. All data were analyzed using R v.3.4.242 and RStudio v.1.0.15343. Pairwise post-hoc 
comparisons were made using the R package EMMEANS44 using Šidàk-adjusted contrasts after significant 
results were observed in a two-way ANOVA.

Results
Homologs of core circadian clock genes are present and highly conserved across lichen‑form‑
ing fungal lineages. In order to investigate how widespread circadian clock-associated genes are across 
fungal lineages, we recovered putative homologs from the core circadian clock loop (frq, wc-1, wc-2, frh) across 
a wide set of lichen-forming and non-lichen-forming fungi (see Table S1). Putative homologs were included in 
the phylogenetic analysis after reciprocal BLAST using Neurospora crassa protein sequences.

Putative homologs for lichen-forming taxa from a variety of clades were recovered, ranging from the class 
Lecanoromycetes to the classes Dothideomycetes and Eurotiomycetes. In order to explore potential variation 
between lichen-forming and non-lichen-forming fungal lineages, non-lichen-forming lineages from these classes 
were included when available from GenBank. Given that circadian clock homologs have been identified in line-
ages such as Rhizophagus irregularis in the  Mucoromycota26 and have been predicted by functional annotation in 
the Basidiomycota, we further included lineages in these clades in the phylogenetic analysis. Circadian homologs 
for wc-1 and wc-2, as well as for frq and frh, are present across most lichen-forming and select non-lichen-forming 
fungal clades; nonetheless, some putative homologs are missing in some lineages, including notably frq in the 
Trichocomaceae (e.g. Aspergillus spp. and Penicillium spp.) within the Eurotiomycetes and in several Umbilicaria 
spp. in the lichen-forming Lecanoromycetes (Fig. 1).

Domain architecture of putative core circadian clock homologs is broadly conserved across 
lichen‑forming and non‑lichen‑forming taxa. The phylogeny inferred for circadian clock homologs 
of WC-1 demonstrates a broad consensus with overall fungal evolution, including the phylogenetic placement 
of the lichenized taxa (Fig. 1a). In order to investigate whether functional domains in the core fungal circa-
dian clock proteins were conserved, we compared the presence of functional domains between lichen-forming 
and non-lichen-forming lineages in the Ascomycota as well as the Basidiomycota/Mucoromycota in the Pfam 
(Fig. 1b–d) and PROSITE (Fig. 1e–g) protein domain databases using the protein domain and visualization tool 
 DomainViz41.

The evolution of wc-1 (Fig. 1), wc-2, frq and frh (Figs. S1–S3) largely mirrors known class-level relationships 
of the fungal tree of life. Clock genes of lichen-forming taxa fall within the respective fungal classes (Lecanoro-
mycetes, Eurotiomycetes, Dothideomycetes) with high support, rather than forming a monophyletic clade. This 
suggests that there are no shared signatures of lichenization in the analyzed clock genes.

The results demonstrate that two key regions of the Neurospora WC-1 protein are broadly conserved between 
lichen-forming Ascomycota, non-lichen-forming Ascomycota, and Basidiomycota/Mucoromycota lineages. The 
first of these is the PAS region, originally identified in the Drosophila melanogaster period clock (PER), Ah recep-
tor nuclear translocator (ARNT) and single-minded (SIM) proteins, and which is involved in protein dimeriza-
tion, light perception, light regulation and circadian rhythm regulation. At the C-terminal end, there is broad 
conservation across all three investigated lineages in the GATA-type zinc finger motif (Fig. 1b–g), involved in 
protein localization to a set of consensus sequences in the regulatory regions of many light- and clock-regulated 
 genes45.

Light‑dependent response of the core circadian clock gene frequency is conserved in two 
highly diverged lichen‑forming fungal lineages. To investigate whether frq homologs in lichen-
forming fungal lineages maintain their primary circadian function as targets of the WCC, we investigated the 
transcript abundance of frq putative homologs in response to light in Dermatocarpon miniatum (Ascomycota, 
Eurotiomycetes) and Umbilicaria pustulata (Ascomycota, Lecanoromycetes), two species belonging to different 
Ascomycete classes (Fig. 1a, asterisks). Thalli were harvested from a colocalized site in the Taunus mountains 
of Germany (Fig. 2a) and were acclimatized for 72 h under standardized conditions of 12:12 light:dark at 16° C, 
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following which half of the thalli were exposed to 20 min of light (30 μE) before harvesting (Fig. 2b). All primers 
(Table S2) were previously tested for each species and no fluorescence was detected in negative controls  (dH20 
and RT- controls).

After significant gene:treatment interactions were detected in ANOVA for both species, post-hoc tests 
revealed significantly increased frq transcript abundance in both D. miniatum (p = 0.0012, Šidàk-adjusted con-
trasts) and U. pustulata (p = 0.0101, Šidàk-adjusted contrasts) after exposure to light, while transcript abundance 
of wc-1 was not significantly affected by the light treatment in either species (Fig. 2c). Statistical results for each 
species are summarized in Table S3.

Discussion
The fungal circadian system, as elucidated initially in Neurospora crassa, is composed of three primary oscil-
lators: a FRQ/WCC-dependent oscillator (FWO) as well as FRQ-independent (WC-FLO) and oscillators that 
are both FRQ- and WCC-independent (FLO)46.The main FRQ/WCC-dependent oscillator, of which frq, wc-1, 
wc-2 and frh are the core components, was initially thought to be limited to Ascomycota, but has since been 
identified in various lineages across the Basidiomycota and Mucoromycota. Although a frq homolog has been 
previously identified in the genome of Umbilicaria pustulata within the lichen-forming  Lecanoromycetes35, there 
have been no previous reports on the presence or absence of circadian clock genes across lichen-forming fungi 
more broadly. The identification of putative homologs of circadian and light-sensing genes in a wide range of 
lichen-forming fungal lineages, combined with the conserved light-activated function of the core circadian clock 
component frq in two highly diverged lichen-forming fungi, points to the conservation of the circadian clock 
mechanism in mycobionts. Lichen-forming fungi exist in stable symbioses with algae and cyanobacteria, both 
of which have relatively well-understood circadian clocks in free-living  conditions47–49. The elucidation of the 
well-conserved fungal circadian mechanism in mycobionts thus opens the door for the investigation of how the 
circadian systems of myco- and photobionts interact and coordinate.

Increased attention has recently been paid to holobiont chronobiology and the characteristics of circadian 
systems in symbiotic  interactions22, although the vast majority of investigations into the evolution and function 
of circadian clock components have been made in free-living organisms. To date, most holobiont chronobiology 

Figure 2.  Homologs of frq in two lichen-forming fungi are responsive to light. (a) Thalli of the lichen-forming 
fungi Dermatocarpon miniatum and Umbilicaria pustulata, harvested in the Taunus mountain range of central 
Germany. (b) Lichen thalli were acclimatized to standard laboratory conditions via a 72 h LD 12:12 cycle at 
16° C before 24 h in constant darkness, followed by a 20-min light induction at CT 0. (c) RT-qPCR analysis 
demonstrates broad conservation of light responsiveness in the circadian clock components of lichen-forming 
fungi. n = 6 for Dmin, n = 5 for Upust per treatment; mean ± SEM are shown. Asterisks represent significance 
extracted using Šidàk-adjusted contrasts: *P < 0.05; **P < 0.01; ***P < 0.001. Dmin: Dermatocarpon miniatum; 
Upust: Umbilicaria pustulata; frq: frequency; wc-1: white collar-1. 
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studies deal with microbiotic effects of prokaryotes and unicellular eukaryotes on host  chronobiology21,22. None-
theless, important inroads into the role of rhythmicity have been made in eukaryotic-eukaryotic systems ranging 
from arbuscular mycorrhizal fungal interactions and their host  plants26 as well as Symbiodinium algae and their 
coral host  species23,24. The lichen symbiosis is composed of partners with highly specialized and often well-
investigated  roles49,50, and outputs from one symbiont (such as photosynthates) may affect the production of 
compounds by the other  symbiont51. Each symbiont produces compounds in a seasonally-variable  manner52,53, 
which may be regulated at least in part by the photosensory and circadian machinery of the symbionts. Lichen 
symbioses are also remarkably stable and geographically widespread, and the exchange of symbionts along 
gradients has been reported (e.g.54–56, providing an excellent model in which to study the effect of each partner’s 
circadian system in the holobiont.

While we identified putative homologs of all components of the core circadian clock machinery in nearly all 
lineages, some of the core circadian clock genes were missing in some lineages. The gene frq appears to be missing 
from certain isolated lichen-forming fungal lineages in the Umbilicariaceae, as well as from the Trichocomaceae 
(Aspergillus spp. and Penicillium spp.) within the Eurotiomycetes. The main paradigm of the evolution of frq in 
the Fungi has changed considerably over the last decades. Originally identified in Neurospora crassa (Ascomycota, 
Sordariomycetes), initial investigations of its evolution restricted its presence to within the Sordariomycetes, 
Leotiomycetes and Dothideomycetes within the  Ascomycota46. More recent investigations have expanded this 
understanding considerably, and frq is understood to have evolved at least before the divergence of Mucoromy-
cotina and Zoopagomycota from  Dikarya35.

In our present study, the putative homologs of frq could not be found in the genomes of certain lichen-
forming fungal lineages (U. phaea, U. deusta, U. spodochroa, U. freyi; see Davydov et al.  201757 for an overview 
of the Umbilicariaceae). Little life history or ecological rationale can at present be given for a parsimonious loss 
of the frq homolog in these lineages alone; interestingly, we were able to find a copy for one of these species (U. 
spodochroa) as well as for other lineages that do not have their genomes sequenced (Fig. S4), using a degener-
ate primer design approach (Table S2). It may be that frq is present in many more species but simply remains 
undetected in some genomes because of issues with local genome quality, genome assembly, annotation, and 
gene prediction. For the other circadian clock components investigated in this study, we found that frh and wc-2 
were occasionally missing in single disparate lineages: wc-2 in Alternaria alternata and wc-2 and frh in Sordaria 
fimicola. Of the four genes investigated in this study, only the gene wc-1 was identified in every lineage without 
exception.

The rapid induction of frq expression by light has long been a characteristic phenotype of the main FWO 
oscillator in N. crassa (since e.g. Crosthwaite et al.58). This phenotype of light-induced frq expression has been 
observed in other Ascomycota such as the soil-living saprophyte Pyronema confluens (Pezizomycetes)59, as well 
as in the Mucoromycota, such as the arbuscular mycorrhizal fungus R. irregularis26. The presence of frq, wc-1, 
and wc-2 alone, however, is not enough to infer a functional FWO oscillator: in the plant pathogen Verticil-
lium dahliae, the frq homolog is present, but is largely unresponsive to  light60. It is thus noteworthy that, in the 
present study, we observe that lichen-forming fungi from two highly diverged lineages, the Lecanoromycetes 
(U. pustulata) and the Eurotiomycetes (D. miniatum) both display frq light-dependent responses similar to the 
canonical responses of N. crassa, pointing to a functionally-conserved core circadian clock mechanism in at least 
two highly-diverged groups of lichen-forming fungi.

Circadian rhythms are central to the functioning of symbiotic interactions, as evidenced by the squid-Vibrio25, 
coral-Symbiodinium23,24, and plant-mycorrhiza26 symbioses. The lichen system is an unexplored model of sym-
biosis with respect to the circadian clock that has great potential in contributing to our understanding of organ-
ism-organism and organism-environment interactions. Having identified the core components of the fungal side 
of the lichen symbiosis and determined their functional conservation in at least two broadly-diverged lineages 
of lichen-forming fungi, we can now address questions like: How does the circadian system influence seasonal 
and diurnal dynamics in the lichen symbiosis, such as growth, nitrogen fixation, photosynthesis, or ascospore 
discharge? Which seasonal and diurnal rhythms are important in this mutualism in the first place? To what extent 
do the circadian clocks of the mycobiont and photobiont interact and interdepend? Is there circadian regulation 
in partner recruitment, establishment, and maintenance of the symbiotic association? What is the role of the 
circadian clock machinery in climatic niche specialization? An in-depth knowledge of the lichen circadian clock 
and its outputs and contributions to the symbiosis has the potential to enhance our understanding of symbiotic 
systems more broadly, from geographic distributions to interactions at the cellular and the molecular levels.

 Data availability
NCBI/GenBank Biosample IDs for the genomes utilized in this study published in Singh et al. 2022 (lichen/
fungus): Umbilicaria freyi: SAMN27294873/SAMN26992773; Umbilicaria deusta: SAMN27294874/
SAMN26992774; Umbilicaria hispanica (Lasallia hispanica): SAMN27294875/SAMN26992775; Umbilicaria 
phaea: SAMN27294876/SAMN26992776; Umbilicaria spodochroa: SAMN27294878/SAMN26992778; Umbili-
caria subpolyphylla: SAMN27294879/SAMN26992779; Umbilicaria grisea: SAMN27294880/SAMN26992780; 
Dermatocarpon miniatum: SAMN27294881/SAMN26992781. JGI Project IDs for the genomes utilized in this 
study: Sclerophora sanguinea: 1,052,667; Xanthoria parietina: 16,820; Usnea florida: 1,051,215; Lobaria pulmo-
naria: 1,006,353; Cladonia grayi: Cgr/DA2myc/ss v2.0 (portal name). NCBI/GenBank Biosample IDs for all 44 
remaining accession numbers/IDs of published genomes used in this study can be found in Table S1.
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