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Abstract
A major effect of environment on crops is through crop phenology, and therefore, the capacity to predict phenology for new 
environments is important. Mechanistic crop models are a major tool for such predictions, but calibration of crop phenology 
models is difficult and there is no consensus on the best approach. We propose an original, detailed approach for calibration of 
such models, which we refer to as a calibration protocol. The protocol covers all the steps in the calibration workflow, namely 
choice of default parameter values, choice of objective function, choice of parameters to estimate from the data, calculation 
of optimal parameter values, and diagnostics. The major innovation is in the choice of which parameters to estimate from 
the data, which combines expert knowledge and data-based model selection. First, almost additive parameters are identified 
and estimated. This should make bias (average difference between observed and simulated values) nearly zero. These are 
“obligatory” parameters, that will definitely be estimated. Then candidate parameters are identified, which are parameters 
likely to explain the remaining discrepancies between simulated and observed values. A candidate is only added to the list of 
parameters to estimate if it leads to a reduction in BIC (Bayesian Information Criterion), which is a model selection criterion. 
A second original aspect of the protocol is the specification of documentation for each stage of the protocol. The protocol 
was applied by 19 modeling teams to three data sets for wheat phenology. All teams first calibrated their model using their 
“usual” calibration approach, so it was possible to compare usual and protocol calibration. Evaluation of prediction error was 
based on data from sites and years not represented in the training data. Compared to usual calibration, calibration following 
the new protocol reduced the variability between modeling teams by 22% and reduced prediction error by 11%.
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1 Introduction

Plant phenology is a major aspect of plant response to 
environment and a major determinant of plant response to 
climate change. This includes phenology of natural vegeta-
tion, which has been shown to be affected by warming (Piao 
et al. 2019; Menzel et al. 2020; Stuble et al. 2021) as well 
as phenology of cultivated crops (Rezaei et al. 2018). For 
the latter, phenology must be taken into account for crop 

management (Sisheber et al. 2022), choice of cultivar or 
cultivar characteristics adapted to a particular region (Zhang 
et al. 2022), and for evaluating the impact of climate change 
on crop production (Rezaei et al. 2018). It is thus important 
to be able to predict phenology as a function of environment, 
and in particular as a function of climate.

A number of mechanistic crop models have been devel-
oped, which include simulation of phenology. Such models are 
regularly used to evaluate management options (McNunn et al. 
2019) or the effect of climate change on crops, including wheat 
(Asseng et al. 2013), rice, (Li et al. 2015), maize (Bassu et al. 
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2014) and soybean (Fodor et al. 2017). Such models are par-
ticularly important for taking into account an increasing diver-
sity of combinations of weather events (Webber et al. 2020).

Mechanistic models in general, and models used to simu-
late crop phenology in particular, are based on our under-
standing of the processes and their inter-linkages that drive 
the evolution of the system. This conceptual understanding 
usually builds on detailed experiments that study specific 
aspects of the system (e.g., Brisson et al. 2003 for the crop 
model STICS). The set of model equations, which is the 
mathematical expression of our understanding, is referred 
to as “model structure” (Tao et al. 2018).

In addition to model structure, simulation requires values 
for all the model parameters. In essentially all uses of crop 
models, the model is first calibrated using observed data that 
is related to the target population for which predictions are 
required, for example, observations for the specific variety 
of interest and/or for the particular set of growing environ-
ments of interest. Calibration normally only concerns a fairly 
small subset of the parameters in a crop model, but is essen-
tially always necessary because mechanistic models are only 
approximations, without universally valid parameter values 
(Fath and Jorgensen 2011; Wallach 2011).

There are therefore two main tracks to improvement 
of crop phenology model predictions. The first is through 
improvement of model structure through improved under-
standing of the underlying processes, and the second is 
through improvement of model calibration, and that is the 
topic here. The specific context of interest is the use of a 
phenology model to predict crop phenology for new environ-
ments, given a sample of data from similar environments. 
The calibration problem is how best to use the sample of 
data in order to minimize prediction error. We do not con-
sider the question of the most appropriate data sets for cali-
bration. Rather, we assume that there is preexisting data, for 
example, from variety trials, and one is limited to those data. 
Note that while better equations and better calibration are 
two separate paths to improving model predictions, they are 
complementary; if one wants to compare how well different 
equations predict phenology, one must first calibrate them.

Calibration of crop models is usually patterned on statisti-
cal methods used to estimate parameters in regression. How-
ever, the application of statistical methods to crop models 
is not straightforward. Major difficulties include the fact i. 
that system models often have multiple output variables that 
can be compared to observed results (e.g., dates of heading 
and dates of flowering for crop phenology models), ii. that 
errors for different variables in the same environment are 
often correlated, and iii. that there are usually many param-
eters, often more than the number of data points available. 
While the details differ, these problems apply to essentially 
all system models. No doubt, as a result, there are no widely 
accepted standard methods for calibration of system models. 

It has been found, for example, that there is a wide diversity 
of calibration approaches between modeling teams furnished 
with identical data, even between modeling teams using the 
same model structure (Confalonieri et al. 2016; Wallach 
et al. 2021a, b). By modeling team we mean a group of 
people working together on or with a crop model.

Because of the importance of calibration and the lack of 
standard approaches for calibration, there have been many stud-
ies published that make recommendations as to how to calibrate 
crop models or system models in other fields. One type of study 
is model-specific and identifies the most important parameters 
to estimate for a particular model (Ahuja and Ma 2011). Other 
studies have focused on the methodology of identifying the most 
important parameters through sensitivity analysis (Khorashadi 
Zadeh et al. 2022), on the choice between frequentist and Bayes-
ian paradigms (Gao et al. 2021), on the form of the objective 
function, or on the numerical algorithm for searching for the best 
parameter values (Rafiei et al. 2022). A recent study has shown 
that different modeling teams make different choices for all the 
steps of the calibration procedure (Wallach et al. 2021c). That 
study showed that the modeling community is far from having a 
consensus on how to calibrate phenology models and that pro-
gress is required for multiple aspects of the calibration procedure.

The purpose of this study was to define and test an origi-
nal, detailed, comprehensive procedure for crop phenology 
model calibration that could be applied to a wide range of 
models. We refer to this new procedure as a “protocol,” to 
emphasize that it contains detailed instructions for calibration. 
It builds on the recommendations in Wallach et al. (2021c) 
but goes beyond those more general recommendations, most 
importantly in proposing an original approach for choosing 
the parameters to estimate, which is arguably the most impor-
tant calibration decision. A second major innovation of the 
protocol is the definition of documentation tables for each 
step of the calibration procedure, which can be used both for 
communication within a modeling team and to inform users of 
the calibrated model. We tested the protocol in a large multi-
model ensemble study. Each modeling team first calibrated 
their model using their “usual” calibration procedure, and then 
using the protocol proposed here. This is thus a comparison, 
for each team, of usual versus protocol calibration. The results 
showed that the protocol reduced the variability between mod-
eling teams compared to usual calibration approaches and, 
most importantly, that it significantly reduced prediction error 
compared to usual calibration approaches.

2  Materials and methods

2.1  Data sets

Three data sets for wheat phenology were used here, 
where a data set is data from fields representative of some 
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specific target population. The target population for the 
first data set was wheat fields in the major wheat-growing 
regions of France sown with winter wheat variety Apache 
and using usual management. The data were from cultivar 
trials. They were separated into a calibration subset with 
data from 14 environments (6 different sites, sowing years 
2010, 2011, 2014-2016 but not every year was represented 
for every site) and an evaluation subset with data from 8 
environments (5 different sites, sowing years 2012 and 
2013). The target population for the second data set was 
identical to that for the first, but with winter wheat variety 
Bermude in place of Apache. For both data sets, the cali-
bration and evaluation subsets had neither site nor year in 
common, so the evaluation is a rigorous test of how well a 
modeling team can simulate phenology for out-of-sample 
environments. The observed data were days from sow-
ing to the beginning of stem elongation (BBCH30 on the 
BBCH scale, Meier 1997) and to the middle of heading 
(BBCH 55).

The target population for the third data set was wheat 
fields in the major wheat-growing regions of Australia, 
with usual management and sown with spring wheat vari-
ety Janz. The data were from a multi-location multi-year 
multiple sowing date trial in Australia (Lawes et al. 2016; 
Wallach et al. 2021b). The calibration subset had data from 
four sites in 2010 and 2011, with three sowing dates per 
site (overall 24 environments). The evaluation subset had 
data from six sites in 2012, with three sowing dates per 
site (overall, 18 environments). Once again, the calibra-
tion and evaluation subsets had neither site nor year in 
common. In the original trials, the BBCH development 
stage was observed once weekly in each environment. 
Based on those data, a graph of BBCH stage versus day 

was produced, and interpolation was used to obtain the day 
for each integer BBCH stage from the earliest to the latest 
recorded in each environment. Those dates were provided 
to the modeling teams.

2.2  Modeling teams and model structures

Nineteen modeling teams, using 16 different model struc-
tures (Table 1), participated in this study, which was car-
ried out within the Agricultural Model Intercomparison and 
Improvement Project (AgMIP; www. agmip. org). The mod-
eling teams are identified only by a code (“M1,” “M2,” etc.) 
without indicating which model structure they used, since it 
would be misleading to give the impression that the results 
are determined solely by model structure. The participating 
teams represent an “ensemble of opportunity,” that is, an 
open call for participants was put out, and all teams that 
volunteered were accepted. An indication of the resulting 
variability in phenology prediction is given by the variabil-
ity in the choice of parameters to calibrate using “usual” 
calibration (see Supplementary Table S4 in Wallach et al 
2021c). Most teams estimated some parameters that rep-
resent degree days to various stages, though the number of 
degree day parameters varied between teams. A few mod-
els have parameters that represent development rates rather 
than degree days to each stage. Only a few teams estimated 
parameters related to time from sowing to emergence. About 
half of the teams estimated one or more parameters related 
to vernalization and to photoperiod sensitivity. A few teams 
estimated parameters related to the temperature response 
function, for example, minimum temperature or optimum 
temperature for development, or related to tillering or leaf 

Table 1  List of model structures 
used by participating modeling 
teams.

Model structure Version(s) References

AgroC May 2018 (Herbst et al. 2008; Klosterhalfen et al. 2017)
APSIM 7.8, 7.9, 7.10 (Keating et al. 2003; Holzworth et al. 2014)
AquaCrop 4.0 (Vanuytrecht et al. 2014)
CERES-Wheat DSSAT V4.7. (Hoogenboom et al. 2019a, 2019b; Jones et al. 2003)
CoupModel Version 5.4.4 (Jansson 2012; Senapati et al. 2016; Coucheney et al. 2018)
CROPSIM-Wheat DSSAT V4.7 (Hoogenboom et al. 2019a, 2019b; Jones et al. 2003)
Cropsyst 3.04.08 (Stockle et al. 2001)
HERMES 4.27 (Kersebaum 2007, 2011)
LINTUL LINTUL5 (Wolf 2012)
MONICA 2.02 (Nendel et al. 2011; Specka et al. 2015, 2019)
PANORAMIX R version (Gate 1995; Chatelin et al. 2005)
SPASS Expert-N 5.0 (Wang 1997)
CERES Expert-N 5.0 (Jones et al. 2003)
SSM-Wheat (Soltani et al. 2013)
STICS 8_5_0 (Brisson et al. 2009; Coucheney et al. 2015)
WOFOST 7.1.7 (Boogaard et al. 2013)

http://www.agmip.org
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appearance rate. Finally, a few teams estimated parameters 
related to the effect of stress on the development rate.

2.3  Goodness‑of‑fit and evaluation of predictions

Goodness-of-fit refers to how well a calibrated model fits the 
data used for calibration. Prediction accuracy refers to how 
well a calibrated model simulates for environments different 
than those in the calibration data set. Since the evaluation 
environments here are for sites and years not represented in 
the calibration data, the test of simulated values against the 
evaluation data truly reflects how well a model can predict 
for new environments.

For both goodness-of-fit and out-of-sample prediction, 
our basic evaluation metric is the sum of squared errors 
(SSE) and the related quantities mean squared error (MSE) 
and root mean squared error (RMSE), where

The sum for SSE is over days to BBCH30 and BBCH55 
for the French data sets, days to BBCH30, BBCH65, and 
BBCH90 for the Australian data sets and over environments. 
Here, yij  is the observed value of variable i for environ-
ment j, ŷij  is the corresponding simulated value and n is the 
number of terms in the sum. We also look at the decomposi-
tion of MSE as the sum of three terms, namely squared bias 
 (bias2), a term related to the difference in standard deviations 
of the observed and simulated values (SDSD), and a term 
related to the correlation of observed and simulated values 
(LCS) (Kobayashi 2004).

In addition, we compare the simulated results in this 
study with two simple benchmark models. The first (the 
“naive” model) is simply the average number of days to 
each stage in the calibration data of each data set. This 
is used as the prediction model for all environments of 
that data set. The often-used Nash Sutcliffe modeling effi-
ciency is one minus the ratio of MSE of a model to MSE 
of the naive model. The naive model ignores all variability 
between environments, so it is a very low bar as a bench-
mark. We therefore also use a more sophisticated bench-
mark, the “onlyT” model, as in Wallach et al. (2021a). 
This benchmark model assumes that the sum of degree 
days above a threshold of 0°C from sowing to each stage is 
fixed for spring wheat. For winter wheat, a simple vernali-
zation model is used to determine the start of development. 
Vernalization is 0 if daily mean air temperature is below 
−4°C, increases linearly to 1 at 3°C, remains at 1 to 10°C, 
decreases linearly to 0 at 17°C and is 0 above 17 °C. When 
the sum of daily vernalization reaches 50, vernalization is 

(1)

SSE =
∑

i

∑

j

(yij − ŷij)
2

MSE = SSE∕n

RMSE =
√

MSE

complete (van Bussel et al. 2015; Wallach et al. 2021a). 
Then the fixed number of degree days applied after ver-
nalization is completed. Both benchmark models are quite 
easily parameterized based on calibration data, and then 
easily applied to new environments.

2.4  Simulation exercise

The participants received input data (daily weather at the 
field, soil characteristics, management details, and, where 
possible, initial conditions) for all environments of every 
data set. Also, the observed data from the calibration envi-
ronments were provided to all participants. The partici-
pants were asked to use those data to calibrate their mod-
els using the calibration protocol described in detail below 
and then to simulate and report days after sowing to stages 
BBCH10 (days to emergence), BBCH30, and BBCH55 for 
the French calibration and evaluation environments, and to 
stages BBCH10, BBCH30, BBCH65, and BBCH90 for the 
Australian calibration and evaluation environments. Days 
to emergence was included to have an example of a variable 
for which there were no calibration data. The BBCH stages 
30 and 55 requested for the French environments represent 
stages that are used for fertilizer decisions in France. The 
BBCH stages 30, 65, and 90 requested for the Australian 
environments represent major transitions that are explicitly 
simulated by many models.

All teams calibrated their model with the same data as 
here using their usual calibration approach, either in previ-
ous studies (Wallach et al. 2021a, b) or specifically for this 
study. It is the results of the usual calibration method that are 
compared here to the results of using the proposed protocol. 
At no time were the evaluation data shown to participants, 
neither in previous studies nor in the present study.

The protocol does not impose a specific software solution. 
However, several participants used trial and error in their 
usual approach and requested help in finding and implement-
ing an automated search algorithm, since that is required for 
the protocol. To answer this need, the CroptimizR R package 
(Buis et al. 2021) was modified to do the protocol calcula-
tions, and many of the participants used this software.

In addition to the individual models, we report on two 
ensemble models, created by taking the mean (the e-mean 
model) or the median (the e-median model) of the simulated 
values. These ensemble models were calculated both for the 
usual and protocol calibration results.

2.5  AICc and BIC

The protocol prescribes a model selection criterion to decide 
which parameters to estimate. The corrected Akaike Infor-
mation Criterion (AICc) and the Bayesian Information 
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Criterion (BIC) are two different criteria that are often used 
for model selection (Chakrabarti and Ghosh 2011). Both are 
based on model error, with a penalization term that increases 
with the number of estimated parameters. Assuming that 
model errors are normally distributed, the criteria are:

where n is the number of data points and p is the number 
of calibrated parameters. These criteria are only used for 
comparing models calibrated using the same data.

There have been comparisons between these criteria, but 
there does not seem to be one that systematically performs 
better than the other, for choosing the model that predicts 
best (Kuha 2004). In applying the protocol here, participants 
were asked to perform the calculations twice, once using the 
AICc criterion and once using the BIC criterion to choose the 
parameters to estimate. In almost all cases, the two criteria 
led to exactly the same choice of parameters. In the few cases 
where the criteria led to different choices, the final models had 
very similar RMSE for the evaluation data, with a very slight 
advantage to BIC (Supplementary tables S24-S25). Therefore, 
all results shown here are based on the BIC criterion.

3  Results and discussion

3.1  Description of protocol

The protocol is based on the recommendations in Wallach 
et al. (2021c), and follows the same list of steps (Fig. 1), but 
has important additions, in particular for the choice of param-
eters to estimate and the documentation to be produced.

Step 1. Describe environments, choose default parameter 
values

(2)
AICc = n ln(MSE) + 2p +

2p(p+1)

n−p−1

BIC = n ln(MSE) + p ln(n)

It is important to describe the environments represented 
in the data, and of the target population, in particular tem-
peratures and day lengths. Information for the data sets used 
here can be found in Wallach et al. (2021a, 2021b).

Since most parameters retain their default values, the 
choice of default values for those parameters that affect phe-
nology is important. For phenology, one would want to have 
reasonable approximations to the cycle length for the culti-
var in question, to photoperiod dependence, and to vernali-
zation requirements. This information and more are usually 
available from the cultivar developer. The documentation for 
step 1 (see example in Table 2) specifies the characteristics 
of the cultivar being modeled and those of the cultivar used 
to provide default parameter values.

Step 2. Identify correspondence between observed and 
simulated variables

In the simplest case, there is a simulated variable that 
corresponds directly to each observed development stage. 
The documentation for step 2 is a table with one row for 
each observed variable, showing the corresponding simu-
lated variable if any (see example in Table 3).

Step 3. Define the objective function

The objective function of the protocol is squared error 
summed over development stages and environments, which 
is the objective function of ordinary least squares (OLS) 
regression and is often used in crop model calibration. A 
major choice of the protocol is to include in the objective 
function all the observed development stages that have a 
simulated equivalent, including stages that are not of pri-
mary interest. A first reason is that often the same calibrated 
model will be used for several different objectives, so meas-
ured variables that are not of central interest in the current 
study may be important in future studies. Furthermore, using 

Fig. 1  Schematic diagram of 
steps in proposed calibration 
protocol.
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more variables makes the model a better representation of 
multiple aspects of the system dynamics, which is likely to 
improve all simulations. The choice in the protocol is to use 
OLS and to avoid estimating additional statistical parameters 
representing variance and covariance of errors. However, 
one should check residual errors to evaluate the extent of 
heteroscedasticity or correlation of errors. Since the objec-
tive function is the sum of squared errors over the variables 
from step 2, no new decisions are required here and no addi-
tional documentation is required.

Step 4. Choose which parameters to estimate

This is arguably the most difficult and the most impor-
tant decision of the calibration approach. Here we propose 
a novel approach which combines expert knowledge with 
a statistical model selection criterion. This approach dis-
tinguishes two categories of parameters to estimate: the 
nearly additive, obligatory parameters (those that will defi-
nitely be estimated) and the candidate parameters (those 
that will be tested, and only changed from the default value 
if the improvement in the fit to the calibration data is suf-
ficiently large).

Step 4a. Identify the obligatory parameters

The obligatory parameters are parameters that are 
nearly additive, i.e., such that changing the parameter has 
a similar effect for all environments for some variable in 
the objective function. Usually, a parameter that represents 
degree days to a measured stage is a good choice as an 

obligatory parameter for time to that stage. Estimating a 
truly additive parameter, which adds the same constant 
amount to days to a stage for all environments, will exactly 
eliminate bias for that stage. That is, the mean of simulated 
values will exactly equal the mean of observed values (see 
Supplementary Eqs. 1-2). Estimating an almost additive 
parameter will nearly eliminate bias. Once bias is nearly 
eliminated, one may already have a fairly reasonable fit to 
the data. Each almost additive parameter must affect a dif-
ferent variable or combination of variables. There cannot 
be more almost additive parameters than the number of 
variables in the objective function. Otherwise, the parame-
ters would be very poorly estimated, or non-estimable. The 
protocol does allow fewer almost additive parameters than 
observed variables. In that case, bias is only nearly elimi-
nated on average over several variables, and not for each 
variable. The choice of obligatory parameters is up to the 
modeling team, based on knowledge of the model. How-
ever, the protocol gives fairly detailed recommendations, 
namely that they should be nearly additive, that degree 
days to stages are usually a good choice, and that the num-
ber of obligatory parameters cannot exceed the number 
of different variables. For each obligatory parameter, one 
must provide the default value and what one considers a 
reasonable range for that parameter (for an example of 
choice of bounds see Tao et al. 2018). The documenta-
tion for step 4a is a table with one row for each obligatory 
parameter (see example in Table 4).

Step 4b. Identify candidate parameters

The role of the candidate parameters is to reduce the vari-
ability between environments that remains after estimation 
of the obligatory parameters. It is the role of the modeler 
to identify the candidate parameters and to order them by 
amount of variability likely to be explained. In the calcula-
tion step (step 5), each candidate parameter is tested, and only 
those that lead to a reduction in the BIC criterion are retained 
for estimation. Otherwise, the parameter is kept at its default 
value. The documentation for step 4b is a table with one row 
for each candidate parameter (see example in Table 5).

Table 2  Example of protocol documentation for Step 1, “Choose 
default parameter values”. The first row shows cultivar characteristics 
of the observed cultivar. The second row shows characteristics of the 

cultivar that provides the default parameter values. This example is 
for the French data set, variety Apache, modeling team M21.

Cultivar Characteristics

Cultivar of observations: Apache A soft winter wheat. Stem elongation—semi-early. Heading—early. Vernalization requires 
40 days where full vernalization occurs if daily average temperature is between 3 and 
10°C. There is no vernalization below −4°C or above 17°C. Otherwise, there is a pro-
portional reduction in vernalization effectiveness.

Cultivar used to provide default parameter values: 
Soissons

Soissons seems to be close to Apache in terms of vernalization requirements and earliness.

Table 3  Example of documentation for protocol Step 2, “Identify cor-
respondence between observed and simulated variables”. The table 
has one row for each measured variable, showing the corresponding 
simulated variable if any. This example is for the French data sets and 
modeling team M21.

Measured variable Corresponding simulated value

Days to BBCH stage 30 Days to end juvenile stage
Days to BBCH stage 55 Days at maximum LAI
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Step 5. Calculation of the optimal parameter values

The protocol prescribes the use of a simplex algorithm 
for searching for the optimal parameter values. The Nelder-
Mead simplex method (Nelder and Mead 1965) is a robust, 
derivative-free method, which is appropriate for crop mod-
els which may have multiple discontinuities. The results 
of the simplex are sensitive to starting values (Press et al. 
2007), so the protocol calls for multiple starting points. In 
the first calculation step, the obligatory parameters are esti-
mated and the BIC value is calculated. This is the initial list 
of parameters to estimate. Then each candidate parameter is 
tested in turn. If estimating the new candidate together with 
the previous list of parameters to estimate leads to a reduc-
tion in BIC, the candidate is added to the list of parameters 
to estimate. If not, the candidate returns to its default value 
and will not be estimated. The documentation for step 5 is 
a table with one row for each step in the calculation (see 
example in Table 6).

The first calculation step, searching for the optimal 
values for the obligatory parameters, only involves a rela-
tively small number of parameters, and furthermore, these 
parameters are chosen to be nearly additive. It is expected 
then that this step should not present serious numerical 

difficulties. Subsequently, only one new candidate is added 
at a time. The previously chosen parameters are also esti-
mated, but it is expected that their previous best values 
should be good starting values, so that once again there 
should not be serious numerical difficulties. Overall, the 
protocol takes advantage of the particular structure of crop 
phenology models, in particular the possibility of identi-
fying the most important, almost additive parameters, in 
order to separate the search for optimal parameter values 
into relatively easy steps.

Step 6. Examine goodness-of-fit

Many diagnostics are possible and useful. We emphasize 
particularly a graph of simulated versus observed values, 
calculated MSE and its decomposition for each variable (see 
example in Table 7) and comparison with the two bench-
mark models (see example in Table 8). It is expected that 
squared bias should be small after calibration, and this is the 
case in the example of Table 7.

3.2  Comparison of protocol and usual calibration

None of the modeling teams, in their usual procedure, used 
the same procedure as the protocol for choosing parameters 
to estimate. In most cases, for usual calibration, the choice of 
parameters was based solely on expert opinion. A few teams 
used expert opinion but tested a few alternative choices to see 
which gave the best fit to the data. Finally, some teams based 
the choice on sensitivity analysis (Wallach et al. 2021c). 
Using usual or protocol calibration led to important differ-
ences in the calibrated models. For example, the number of 
estimated parameters in the final model was different between 
protocol and usual calibration (Supplementary Figure S1, 
Table S1).

The differences between simulated values after usual 
and protocol calibration were small for BBCH10, for which 
there were no calibration data. For the other stages, the simu-
lated values differed appreciably (Supplementary Figure S2, 
Table S2).

Table 4  Example of documentation for protocol Step 4a, “Identify 
the obligatory parameters.” These are parameters that are almost 
additive, i.e., that have nearly the same effect for all environments. 
There is one row for each obligatory parameter. The number of 
obligatory parameters cannot exceed the number of observed vari-
ables which have a simulated equivalent, and each obligatory param-
eter must be nearly additive for a different variable or combination of 
variables. This example is for the French data set, variety Apache for 
modeling team M21.

Obligatory parameter Explanation Default value 
(lower–upper limits)

stlevamf Degree days sowing 
to end juvenile stage

233 (150–400)

stamflax Degree days sowing 
to maximum LAI

354 (150–500)

Table 5  Example of documentation for protocol Step 4b, “Iden-
tify candidate parameters.” These are parameters that seem likely to 
explain a substantial part of the variability between environments 
that remains after fitting the obligatory parameters. There is one row 

for each candidate, which should be in the order of presumed impor-
tance. This example is for the French data set, variety Apache for 
modeling team M21.

Candidate parameter Brief explanation (units) Default value (lower–upper bounds)

jvc Number of vernalizing days (days) 38 (25–60)
sensrsec Index of root sensitivity to drought (1=insensitive) (unitless) 0.5 (0–1)
belong Parameter of the curve of coleoptile elongation (1/°days) 0.012 (0.005–0.03)
JVCmini Minimum vernalizing days required (days) 7.0 (2–15)
stressdev Maximum development delay allowed due to stresses (unitless) 0 (0–1)
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3.3  Goodness of fit and evaluation of prediction 
error for usual and protocol calibration

Nineteen modeling teams participated, and were all able to 
implement the protocol, showing that the protocol, though 
detailed, is nonetheless sufficiently flexible to be applica-
ble to a wide range of models. The protocol was tested in 
comparison with the “usual” calibration procedure for each 
modeling team, which was possible because each modeling 
team had previously calibrated their model using the same 
data as here. To our knowledge, this is the first example of 
such a stringent test for a new calibration procedure. It pro-
vides a realistic test of whether the proposed protocol really 
improves calibration.

Figures 2 and 3 show RMSE using usual and protocol cali-
bration for the French and Australian data sets respectively. 
Table 9 shows RMSE values for each data set, averaged over 
modeling teams, for usual and protocol calibration for the 
calibration and evaluation data (results by modeling team 
are in Supplementary Tables S3-S8). The protocol reduces 
RMSE by 10–22% compared to the usual calibration method. 
The p-values for a one-sided paired t-test of the hypothesis 
that RMSE is larger for usual calibration than for protocol 
calibration are also shown. On average over stages other than 
BBCH10, all three data sets have significantly larger RMSE 
values with usual calibration than with protocol calibration 
for the calibration data (p<0.05). For the evaluation data, the 
reduction in RMSE is highly significant (p<0.01) for the two 
French data sets, but less significant (p=0.15) for the Austral-
ian data set. Table 9 also shows the proportion of modeling 
teams where RMSE is larger for the usual calibration than for 
the protocol calibration. Looking at the averages over stages 
and then averaging over data sets, 75% of models have lower 
RMSE for protocol calibration than for usual calibration 
for the calibration data (Supplementary Tables S3, S5, S7). 
For the evaluation data, 60% of models have lower RMSE 

for protocol calibration than for usual calibration (Supple-
mentary Tables S4, S6, S8). Presumably, a major reason 
that protocol calibration reduces RMSE compared to usual 
calibration is that the protocol uses an improved method of 
choosing the parameters to estimate, which combines expert 
knowledge and a statistical model selection criterion. Using 
a model selection criterion has the advantage that it avoids 
overfitting and in general will avoid estimation of parameters 
whose estimators are highly correlated.

Almost all modeling teams did better than the two bench-
mark models for all stages, both for usual calibration and 
protocol calibration, with slightly better results for proto-
col calibration (Supplementary Tables S3-S8). Since the 
protocol specifically aims to reduce bias, one would expect 
squared bias to be a smaller fraction of MSE for protocol 
calibration than for usual calibration, and this is the case, 
both for the calibration data and the evaluation data (Sup-
plementary Tables S9-S23).

3.4  Between‑model variability

The variability between simulated results for different mod-
eling teams is shown in Table 10. The standard deviation 
is similar for usual and protocol calibration for BBCH10, 

Table 6  Example of documentation for Step 5 “Calculation of the 
optimal parameter values”. The first line shows the optimization 
results for the obligatory parameters, and the resulting sum of squared 
errors and BIC criterion. Each subsequent line corresponds to a can-
didate parameter. If estimating the candidate together with the previ-
ously selected parameters leads to a decrease in BIC compared to the 
smallest value so far, the candidate is added to the list of parameters 

to estimate. If not, the candidate returns to its default value and is not 
considered further. In this example, the first candidate parameter (jvc) 
is accepted. All the subsequent candidate parameters increase BIC 
and are therefore rejected. The model finally chosen (minimum BIC) 
has three estimated parameters. This example is for the French data 
set, variety Apache, modeling team M21.

Estimated parameters Initial parameter values Final values Sum of squared 
errors

BIC

stlevamf, stamflax Multiple 227, 360 405 81.47
stlevamf, stamflax, jvc 227, 360, multiple 212, 367, 55.91 349 80.64
stlevamf, stamflax, jvc, sensrsec 212, 367, 55.91, multiple 209, 367, 58.40, 0.057 322 81.71
stlevamf, stamflax, jvc, belong 212, 367, 55.91, multiple 212, 367, 55.91, 0.012 349 83.97
stlevamf, stamflax, jvc, jvcmini 212, 367, 55.91, multiple 197, 362, 55.28, 20.88 319 81.45
stlevamf, stamflax, jvc, stressdev 212, 367, 55.91, multiple 212, 367, 55.91, 0.00 349 83.97

Table 7  First example of documentation for protocol Step 6, “Exam-
ine goodness-of-fit.” In this table, there is one row for each observed 
variable with a simulated equivalent, showing mean squared error 
(MSE) and its decomposition into three terms. Of particular interest 
is the  bias2 contribution, which should be small if there is an almost 
obligatory parameter corresponding to this variable. This example is 
for the French data set, variety Apache, modeling team M21.

MSE  (days2) Bias2  (days2) SDSD  (days2) LCS  (days2)

BBCH30 19.64 0.25 5.93 13.46
BBCH55 5.29 0.02 0.03 5.24
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for which there are no data for calibration, but is systemati-
cally smaller for protocol calibration for the other stages. 
Considering the average over stages other than BBCH10 
and taking the average over data sets, protocol calibration 
reduced the standard deviation of simulated values by 31% 

for the calibration data and by 22% for the evaluation data 
(see Table 10).

3.5  Comparison of usual and protocol calibration 
for ensemble of models

The choice of usual or protocol calibration has little effect on 
the predictive accuracy of the ensemble models e-mean and 
e-median. Averaged over development stages and over data 
sets, for the evaluation data, RMSE for e-median is respec-
tively 5.7 and 5.8 days for usual and protocol calibration. 
The values for RMSE of e-mean are 6.1 and 6.2 days for 
usual and protocol calibration, respectively (Supplementary 
Tables S4, S6, S8).

Recently, many crop model studies have been based on 
ensembles of models (Jägermeyr et al. 2021). Many studies 
have found that the ensemble mean and median are good 
predictors, sometimes better than even the best individual 
model (Martre et al. 2015; Wallach et al. 2018; Farina et al. 
2021). It has thus, become quite common to base projec-
tions of climate change impact on crop production on the 

Table 8  Second example of documentation for protocol Step 6, 
“Examine goodness-of-fit”. In this table, there is one row for each 
observed variable with a simulated equivalent, showing root mean 
squared error (RMSE) for the calibrated model and for two bench-
mark models. The “naïve” benchmark assumes that all environments 
have the same number of days to the given development stage, equal 
to the average of the observed days to that stage. The “onlyT” bench-
mark assumes a constant number of degree days to the stage in ques-
tion, with a simple vernalization calculation in the case of winter 
wheat. This example is for the French data set, variety Apache, mod-
eling team M21.

Naive onlyT M21

Variable RMSE (days) RMSE (days) RMSE (days)
BBCH30 12.5 8.4 3.1
BBCH55 8.3 9.5 3.8

Fig. 2  Root mean squared error 
(RMSE) following protocol cal-
ibration versus RMSE following 
usual calibration, for each 
modeling group. Points below 
the diagonal indicate smaller 
RMSE for protocol calibration 
than for usual calibration. a 
French calibration data, variety 
Apache. b French evaluation 
data, variety Apache. c French 
calibration data, variety Ber-
mude. d French evaluation data, 
variety Bermude.
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ensemble median (e.g., Asseng et al. 2019). The e-mean 
and e-median results here, compared to the individual 
modeling teams, are in keeping with previous results. The 
e-median model is among the better predictors though not 
the very best, and is somewhat better than e-mean. How-
ever, this does not imply that individual model results are 

unimportant. First, there will continue to be studies based 
on a single model or on a very small ensemble, and for those 
studies, it is important to improve individual models. Also, 
even for larger ensembles, it is important to reduce variabil-
ity between models because this reduces variability in the 
ensemble results.

Fig. 3  Root mean squared error 
(RMSE) following protocol cal-
ibration versus RMSE following 
usual calibration, for each mod-
eling group. Points below the 
diagonal indicate smaller RMSE 
for protocol calibration than for 
usual calibration. a Australian 
calibration data. b Australian 
evaluation data.

Table 9  Comparison of errors for usual and protocol calibration. The 
table shows root mean squared error (RMSE) averaged over modeling 
teams for each stage and for the average over stages, separately for the 
calibration and evaluation data. For each calibration and evaluation 
data, the first column is RMSE for simulations using the usual cali-
bration method, the second column is RMSE using protocol calibra-

tion, and the third column is the p-value of a one-sided paired t-test 
that tests whether RMSE for usual calibration  (RMSEu) is larger than 
for protocol calibration  (RMSEp). Below the p-value is the fraction of 
modeling teams for which RMSE for usual calibration is larger than 
for protocol calibration.

Calibration data Evaluation data

Usual RMSE Protocol RMSE p-value Usual RMSE Protocol RMSE p-value

France Apache BBCH30 7.7 6 0.007
10/16

6.7 6.2 0.20
9/16

BBCH55 5 4 0.02
11/17

7.3 5.8 0.005
13/17

average 6.4 5 0.004
14/17

7 6 0.006
14/17

France Bermude BBCH30 7.1 5.4 0.05
11/16

8.8 7.5 0.07
9/16

BBCH55 6.8 5.7 0.04
11/17

6.9 6.1 0.08
11/17

average 7 5.6 0.029
13/17

7.8 6.8 0.008
11/17

Australia BBCH30 13.3 2.0 0.09
9/17

15.1 14.8 0.38
8/17

BBCH65 11.4 9.0 0.06
14/19

11.1 11.4 0.60
10/19

BBCH90 11.9 9.9 0.096
11/18

9.0 6.2 0.20
12/18

average 12.2 10.2 0.049
13/19

11.7 10.7 0.15
10/19
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4  Conclusions

We propose an original, detailed protocol for calibration of 
crop phenology models and showed that it can be applied by 
a wide range of wheat models and for data sets with differ-
ent structures. The application here is to wheat phenology 
models. However, the same protocol could undoubtedly be 
used for phenology models of other crops.

This protocol could also be the basis for a calibration pro-
tocol for general crop models using multiple kinds of data. 
The procedure proposed here for the choice of parameters 
to estimate could be applied in the more general case. How-
ever, there would be the additional problem of dealing with 
multiple types of data, for example, phenology, biomass, 
yield, etc.

The protocol was tested with data sets representing a 
diversity of conditions. Comparison with usual calibration 
practices showed that on average over modeling teams, the 
protocol led to a better fit to the calibration data and to a 
better fit to out-of-sample data. The error of the mean or 
median of simulations was nearly identical with usual or 
protocol calibration, but the protocol substantially reduced 
between-model variability compared to usual calibration, 
which reduces the uncertainty of the mean or median. Thus, 
application of the protocol would be advantageous not just 
for individual modeling studies, but also for studies based 
on ensembles of models.
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Table 10  Variability of simulated values. This table shows the stand-
ard deviations of values simulated by the different modeling teams 
(days), for each simulated development stage and for the average over 
stages other than BBCH10. BBCH10 is not considered, since there 
were no observed values for BBCH10. Separate standard deviations 
are given for the calibration and evaluation data, and simulation using 
usual calibration or protocol calibration.

Calibration data Evaluation data

Usual Protocol Usual Protocol

France Apache BBCH10 4.2 4.1 4.8 5.2
BBCH30 6.4 4.3 6.2 5.5
BBCH55 4.5 3.0 6.3 3.7
average 5.4 3.6 6.2 4.6

France Bermude BBCH10 4.3 4.4 4.8 6.6
BBCH30 6.9 4.3 6.7 6.2
BBCH55 4.8 3.5 5.8 4.3
average 5.9 3.9 6.2 5.3

Australia BBCH10 8.6 7.5 9.6 8.0
BBCH30 11.3 7.3 10.2 8.1
BBCH65 10.3 7.4 8.2 7.1
BBCH90 11.2 9.3 11.1 6.9
average 10.9 8.0 9.8 7.4
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