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A B S T R A C T   

Harvest estimation is a central part of adaptive management of wildlife. In the absence of complete reporting, 
statishods are required to extrapolate from the available data. We developed a Hierarchical Bayesian framework 
tailored for partial reporting where hunting areas covered by reporting hunting teams are available. The 
framework accounts for autocorrelation at the national, county, and hunting management precinct levels. We 
derived and evaluated an approximation for the probability of harvest on non-reported areas under a non-linear 
relationship between harvest area per team and harvest rate. We applied the framework to reports of red fox 
(Vulpes vulpes), wild boar (Sus scrofa), common eider (Somateria mollissima), and grey partridge (Perdix perdix) 
harvest in Sweden from the hunting years 1997/1998–2019/2020. The approximation was evaluated and 
determined to be sufficiently accurate. We showed that accounting for autocorrelation in harvest reduced un
certainty and increased predictive accuracy, particularly for game hunted in low numbers and variably between 
teams. The analysis also revealed that hunting rate has a sub-linear relationship with a team’s area for all 
considered species. Further, the framework revealed substantial differences across regions in terms of parameters 
modeling the distribution of huntable land across teams as well as parameters modeling harvest rates. We 
conclude that the framework is useful to detect shifts in hunting rates and/or practices.   

1. Introduction 

Estimation of game harvest is essential for informed management 
(Elmberg et al., 2006; Apollonio et al., 2017; Aebischer, 2019). Game 
management must be adaptive, which requires adjustments to changes 
in ecosystems and society as well as development and application of new 
knowledge (Walters, 1986). To sustain adaptive management systems, 
access to relevant data of sufficient quality and spatial/temporal reso
lution is vital. Harvest statistics are a basic and important component in 
most game management programs, and, for some species, it may be the 
only data available (Cretois et al., 2020). Systems for data collection as 
well as data availability may vary among countries and game species, 
such as voluntary versus mandatory reporting (Aubry et al., 2020). 

In the absence of complete reporting, statistical methods are required 
to extrapolate from available data to obtain estimates of the total har
vest. The approach must be tailored to the data structure and data type, 
and several statistical methods have been developed to address issues 
associated with different types of surveys (Aubry and Guillemain, 2019; 

Aubry et al., 2020). These typically target a subset of a known popula
tion of hunters from which the harvest of the entire population is 
estimated. 

The Swedish system, however, faces a different issue. Hunting teams 
rather than individual hunters report the team’s harvest, and there is no 
information available about the total number of hunting teams or how 
many hunters belong to each team (Fig. 1). Thus, there is neither in
formation about the number of reporting hunters nor the non-reporting 
population for which the bag must be estimated. However, the reports 
include, in ha, the area covered by each team, and the total area of 
huntable land has been estimated from land-cover maps (Jonsson et al., 
2020). Consequently, estimation of the unreported bag must be per
formed by estimating the bag of the unreported area based on the re
ported area. 

Analysis of longitudinal reporting data faces additional challenges. 
Ecological time-series typically exhibit temporal autocorrelation (Pimm 
and Redfearn, 1988; Lindström et al., 2012), which can arise through 
environmental drivers that are themselves typically positively 
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autocorrelated (Vasseur and Yodzis, 2004; García-Carreras and Reuman, 
2011) or through intrinsic factors (Blarer and Doebeli, 1996; White 
et al., 1996); rarely is the subsequent population size independent of the 
current. The population of hunters and their interest in various game 
species are also unlikely to change rapidly over time. Autocorrelated 
time series can pose a problem for statistical analyses, and tests that 
disregard dependence over time can increase the risk of both type I and 
II errors and underestimate parameter uncertainty. 

However, autocorrelation also offers statistical opportunities. 
Quantifying the autocorrelation pattern of an ecological process offers 
insight into the studied system (Hamel et al., 2012). Also, statistical 
models that acknowledge dependency between adjacent time steps 
facilitate borrowing of strength over time. That is, by acknowledging 
that the behavior of a process at time t+1 exhibits similarities with the 
behavior at time t, time-specific parameters at time t+1 can indirectly 
be informed by data for time t and vice versa. This is particularly useful 
for analyses of weak data. 

In this study, we developed a Bayesian framework for analyses of 
longitudinal hunting report data. The model accounts for autocorrela
tion at the national, county, and HMP levels, and we compared the 
framework to equivalent models applied to independent years. The aim 
was to define a statistical model for the available data, solve computa
tional issues, estimate unreported harvest at all levels of interest, and 
evaluate the potential benefit of including dependence between years in 
the estimation. 

2. Methods 

2.1. Study species 

This study focuses on four game species representing different 

taxonomic groups, hunting practises, and spatiotemporal dynamics. 
Red fox (Vulpes vulpes, henceforth ”fox”) is a small predator that is 

distributed and hunted throughout Sweden. It is hunted by specialized 
trappers for its pelt, but also to reduce its predation on other game 
species. 

Wild boar (Sus scrofa) was present in Sweden historically but was 
eradicated. The present population stems from escapes from enclosures 
during the 1980s and population densities have increased rapidly. Wild 
boar is present in the southern and middle parts of Sweden and is har
vested in large numbers. 

Common eider (Somateria mollissima, henceforth ”eider”) is a marine- 
living diving duck, meaning that only hunters with access to the coast
line have an opportunity to hunt this species. It was historically an 
important source of meat and down for people living in the Swedish 
archipelago, but interest from hunters and harvest have diminished over 
time. 

Grey partridge (Perdix perdix, henceforth ”partridge”) is only found 
in agriculture areas. It is one of the few bird species that can be released 
without permission from authorities. The release of captive-reared birds 
may result in an extremely patchy harvest where some hunting teams 
with small hunting areas may harvest large quantities whereas similar- 
sized neighboring teams have no harvest. 

2.2. Data 

Starting in 1938, the NGO Swedish Association for Hunting and 
Wildlife Management (SAHWM) has a public commission from the 
Swedish Government that includes estimation of annual harvest for all 
game species with voluntary reporting (presently 32 bird species and 14 
mammal species). Annual harvest estimates are thus available since 
1939 for many game species. Earlier harvest estimates were calculated 
per county, but from 1995 and onward, estimates are instead calculated 
per Hunting Management Precinct (HMP, in Swedish Jaktvårdskrets, a 
geographic division based on the SAHWM organization, the total num
ber of HMPs varies slightly over time, but there are ≈ 320) (Fig. 1). The 
main reasons for this change were to increase the homogeneity of con
ditions within each area of estimation and to provide local management 
with data at finer spatial scales. 

In this study, we included data from the hunting years (July 1 - June 
30) from 1997/1998 to 2019/2020. We will henceforth refer to the 
hunting years by their start year, i.e. 1997–2019. Hunting teams report 
their annual total harvest to SAHWM on a voluntary basis. Reporting on 
paper forms occurs, but most commonly harvest is reported directly into 
the SAHWM-owned database Viltdata (www.viltdata.se). Hunting teams 
can choose to report their harvest continuously during the hunting year 
or on one occasion at the end of the hunting year. In the Swedish 
legislation system, the hunting rights belong to the landowner. As a 
result, the same families, groups, or organizations may hunt on the 
ground for generations, and no other hunting teams are allowed to hunt 
there. 

All reports are checked by local personnel of SAHWM, who, if 
needed, contact the reporting person for clarifications. Examples of in
consistencies that are scrutinized are unusual harvest numbers, null- 
harvest (report of zero felled game) in areas where the species in ques
tion is common, or reported harvest of a species outside its normal 
distribution area. The reported information includes hunting area (here 
and henceforth meaning the size of the area for which each team holds 
the hunting rights), number of individuals harvested for each species, 
and the HMP in which the hunting ground is located. The geographic 
position of teams within the HMP is not known, and HMP is the finest 
spatial resolution that can be considered from the data. All individual 
reports are confidential, and data is only presented at the HMP and 
higher levels. For the hunting years 1997–2019, data consists of 131,420 
reports. 

Fig. 1. Panel A shows Sweden with county borders indicated in blue and 
Hunting Management Precinct (HMP) borders of 2019 indicated in grey. Vår
gårda HMP, highlighted in red, is used in panels B and C, to illustrate 
conceptually that the available data includes only the area and harvest of, in 
2019, nine (though smaller ones are difficult to make out) reporting teams with 
areas from 0.01 to 16 km2 and harvest of red fox ranging from 0 to 18. The 
shape and position (beyond the level of HMP) of reporting teams are not 
known. The number and area of non-reporting teams must be inferred from the 
reporting teams, and panels B and C illustrate two potential realizations with 
either overall similar sized areas (B) or with large differences between teams 
(C). Legend indicates harvest (K) for red fox, Vulpes vulpes. 
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2.3. Statistical models 

We developed a statistical framework based on the trade-off between 
sufficient detail and computational pragmatism. In this section, we first 
introduce models for hunting area per team and hunting rate (i.e. 
number of animals harvested per year, which depends on the hunting 
area), focusing on a single HMP in a single year. For equational neatness, 
we exclude indexing for HMP and year until we, subsequently, extend 
these models to a hierarchical framework. 

2.3.1. Hunting area per team 
Previous analysis has demonstrated a nonlinear relationship between 

a team’s area and hunting rate (Lindström and Bergqvist, 2020). Thus, 
accounting for how an HMPs total huntable area, here denoted H, is 
distributed across hunting teams is needed to estimate total harvest. 
Defining Ai as the area reported by team i and 

xi = Ai/H (1)  

as the proportion of huntable area covered by team i and x =

[x1, x2,…, xN], where N is the total number of teams in the HMP, the 
distribution of area across teams was modelled as 

x ∼ Dirichlet(a), (2)  

where a of dimension N is the shape vector, in which all elements are 
identical and denoted a ∈ R>0. The reason for implementing the iden
tical concentration parameter a is that we lack any team-level covariates 
that could explain hunting areas of specific teams, and we can only 
account for random variability. For a small a, there is a large difference 
in the relative area of teams within the HMP. For large a, hunting teams 
hunt on similar sized areas. 

However, the total number of teams is typically not known, neces
sitating estimation of the Q number of non-reporting teams. Defining the 
proportion covered by each of the M reporting teams as x̌1, x̌2, …, x̌M, 
covering a total proportion of ̌h =

∑M
i=1x̌i, the Q unobserved proportions 

as x̂1, x̂2,…, x̂Q of total proportion ĥ = 1 − ȟ =
∑Q

i=1 x̂i, and X =

[x̌1, x̌2,…, x̌M, ĥ], then 

X ∼ Dirichlet(ã), (3)  

with 

ãi =

{
aifi = 1, 2,…,M

aQifi = M + 1
. (4)  

Thus, Eqs. 3 and 4 sidesteps any concerns with individual x̂i and models 
the observable data conditional on two parameters, a and Q. The latter is 
inherently discrete, yet, for computational reasons (Stan’s HMC sampler 
is not suitable for discrete parameters) and to promote a straightforward 
hierarchical model, we relax this constraint and define Q ∈ R>0 and 
N ∈ R>M. That is, we allow the non-reported area to be occupied by, e.g., 
10.2 teams rather than 10. Yet, we always make predictions of unre
ported harvest for the entire non-reported area, using an approximation 
(see Section 2.5) that side-steps dependence on individual teams’ areas. 
Eq. 2 can be conditionalized into 

ĥ ∼ Beta(Qa,Ma) (5)  

and 

[x̌1, x̌2,…, x̌M ]
/

ȟ ∼ Dirichlet([a, a,…, a] ) (6) 

Because HMPs vary in size and non-reported area, it would not be 
precarious to assume that e.g. HMPs within the same county are 
necessarily similar in terms of N (total number of teams) or Q (the 
number of non-reporting teams). Thus, to borrow strength between 

HMPs, we found it more sensible to construct a hierarchical model 
around the average area per team, defined as m = H/N = H/(Q + M). 

2.3.2. Analysis of hunting rate 
The statistical model for hunting rate was defined by three param

eters: μ, modeling the average hunting rate per area unit of a team with 
average-sized area; ϕ, modeling the potentially nonlinear effect of area 
on hunting rate per team; and β, modeling how hunting rate variability 
(between teams within an HMP) scales with the average. To derive the 
model, we started with the assumption that the probability of the re
ported bag Ki by team i can be modeled as 

Ki ∼ Poisson(ri), (7)  

where team specific rate parameter ri ∈ R>0 was modelled as 

ri ∼ Gamma(αi, β). (8)  

Here, the shape parameter αi depends on νi = E(ri)as αi = νiβ, where β ∈

R>0 is the Gamma rate parameter. 
We modeled the non-linear relationship between a team’s area and 

its hunting rate with the parameter ϕ as 

νi = μm
(xi

x

)ϕ
, (9)  

where the division by average proportion, x, and multiplication with 
average team area m facilitates the interpretation of μ ∈ R>0 as the 
average hunting rate per area unit (km2) of a team with average area. 
We excluded the possibility of a negative relationship between a team’s 
area and hunting rate by defining ϕ ∈ R>0. 

Defining the Negative Binomial (also denoted Gamma-Poisson 
mixture) by its mean and shape parameter, Eqs. (7)–(9) can be com
bined into 

Ki ∼ NegBin(νi,αi). (10)  

by integrating out individual ri. 
For each species, we excluded from the analysis of hunting rate 

counties outside of the range where the game is hunted. The reason was 
primarily pragmatic; including a large number HMPs with null-harvest 
led to weak identifiability of the model. Though this could be solved 
with, e.g., informative priors, we deemed it justifiable to exclude HMPs 
in counties with exclusively null-harvest for all years 1997–2019. 
However, parameters modeling hunting area per team were still 
informed by all data. 

2.3.3. Spatiotemporal hierarchical models 
We implemented a hierarchical model structure for the parameters 

defining the model at the HMP level, m,a,μ,ϕ, and β. All these param
eters were defined as strictly positive, and for simplified notation, we 
use θk,t to indicate either mk,t ,ak,t ,μk,t ,ϕk,t , or βk,t for HMP k in year t. For 
mk,t and μk,t for HMP k in year t, we modeled 

log
(
θk,t

)
= ωθ,t + λθ,l(k),t + χθ,k,t, (11)  

where ωθ,t ,λθ,l(k),t , and χθ,k,t are year, t, specific nationwide, county, and 
HMP level effects, respectively, with l(k) indicating the county in which 
HMP k is located. 

We limited a,ϕ, and β to county-level parameterization, i.e. assuming 
that these higher-order parameters are identical across all HMPs within 
a county and year, and defined 

log
(
θk,t

)
= ωθ,t + λθ,l(k),t. (12) 

Thus, we assumed that variability in hunting area per team, 
nonlinear effect of hunting area on hunting rate, and within–HMP 
variability in hunting rate, as modelled by a,ϕ, and β, respectively, were 
equal for all HMPs within a county and year. The reason was primarily 
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pragmatic (computational), aiming at reducing the dimensionality of 
the model. We deemed it more important to prioritize HMP-level pa
rameters for the most central parameters for harvest estimation, i.e., 
averages m and μ. We used posterior predictive p-values to investigate 
potential mismatch between observations and predictions, which would 
indicate that the model lacks important features. 

This model structure of Eqs. 11 and 12 facilitates borrowing of 
strength between counties and, in Eq. 11, between HMPs within 
counties. To incorporate temporal dependence at different spatial levels, 
we modeled first-degree autoregressive (AR) effects, such that the effects 
of one year can be written as conditional on the previous. For nation
wide effects, this was modeled as 

ωθ,t ∼ Normal
(
ωθ,t− 1, σω,θ

)
ift > 1, (13)  

where σω,θ models the similarity between adjacent time steps. The 
parent node for ωθ,1 is the prior, which is defined in Appendix B. For 
county and HMP effects, we obtained an identifiable model by defining 

λθ,l(k),t ∼

⎧
⎨

⎩

Normal
(
0, σλ,θ

)
ift = 1

Normal
(

ρλ,θλθ,l(k),t− 1,
(

1 − ρ2
λ,θ

)
σλ,θ

)
ift > 1

(14)  

and, when applicable, 

χθ,k,t ∼

⎧
⎨

⎩

Normal
(
0, σχ,θ

)
ift = 1

Normal
(

ρχ,θ χ⌣θ,k,t− 1,
(

1 − ρ2
χ,θ

)
σχ,θ

)
ift > 1.

(15)  

Here, ρλ,θ, and ρχ,θ are the county and HMP level correlation parameters 
and σλ,θ, and σχ,θ are the corresponding standard deviation of effects 
around zero. The interpretation of Eqs. (13)–(15) is that the yearly effect 
of the focal parameter θ differ from the previous year with standard 
deviation σω,θ. For small values, the focal parameter changes little over 
time at the national scale. The county (λθ,l(k),t) and HMP (χθ,k,t) effects are 
distributed around the yearly effects with standard deviation σλ,θ and 
σχ,θ, respectively, and small values means that there is little difference 
among counties or among HMPs within counties. To account for the 
tendency of counties and/or HMPs to remain at a similar difference from 
the national average over time, ρλ,θ, and ρχ,θ models the autocorrelation 
in these effects. For instance, for ρλ,μ close to one, there is a high con
sistency over time in terms of which counties hunt the focal game at high 
or low rates. For ρλ,μ close to zero, hunting intensity would change 
randomly among counties between years. 

In most cases, χ⌣
θ,k,t− 1 = χθ,k,t− 1, but HMPs are occasionally changed 

between years, necessitating special considerations. There are three 
types of changes in the data: merging of two or more HMPs into one 
larger HMP (e.g. two becomes one), splitting of one HMP and merging 
the parts with other HMPs (e.g. three HMPs become two), and complete 
redrawing of HMPs within a county. In case of the two former, we 
defined 

χ⌣
θ,k,t− 1

=

∑u

j=1
pj,kHjχθ,j,t− 1

Hk
, (16)  

where u is the number of obsolete HMPs merged into the new HMP k and 
pj,k is the proportion of HMP j incorporated into HMP k. 

Complete redrawing of HMPs within a county only occurred twice in 
the data: the county of Södermanland between the years 2010 and 2011 
and Gotland between 2007 and 2008. In these instances, we treated the 
HMP level effects as unrelated to previous HMPs by modeling χθ,k,t ac
cording to the t = 1 option in Eq. 15. However, temporal autocorrelation 
at the county-level was still included. 

To provide overall estimates of parameters we defined 

θ =

∑

t

∑

k
Hk,tθk,t

∑

t

∑

k
Hk,t

, (17)  

i.e. the weighted (by area) mean estimate. For m and a, the summation 
included all HMPs and years. For β and ϕ, the summation excluded 
HMPs located outside of the hunting range of the species. To provide 
comparable measures of nationwide hunting rate, we included HMPs 
outside of the counties where hunting occurs as μk,t = 0 when defining μ. 

We define prior distributions in Appendix B. For θ parameters, we 
obtained prior distributions for plotting by kernel-smoothed samples 
from the prior. 

To evaluate the benefit of accounting for autocorrelation when 
estimating harvest, we analyzed the reporting data for each species and 
data configuration (full data or split into training and validation sets, see 
Section 2.6) in two ways: jointly with all 23 considered years with 
autoregression (AR) or as 23 independent year (IY) analyses, each 
focusing on a separate year. The latter obviates all ρ parameters and 
implements models strictly according to the t = 1 condition in Eqs. (13)– 
(15). 

2.4. Computation 

We used Stan (Carpenter et al., 2017; Stan Development Team, 2021) 
and the R-package rstan (Stan Development Team, 2020) to sample from 
posteriors. Stan’s Hamiltonian Monte Carlo algorithm efficiently sam
ples from continuous target distributions and often outperforms other 
MCMC software (Monnahan et al., 2017). However, efficient sampling 
may require reparameterization of the model. Specifically, we found 
that applying non-centered parameterization and avoiding sharp gra
dients were necessary to facilitate computation. Also, we avoided 
repeatedly evaluating the same calculations whenever possible. 

Divergent transition, i.e., when the numerical integration breaks 
down due to the simulated trajectory of the HMC deviating from its true 
trajectory (see chapter 15 in Stan’s refernce manual for details, (Stan 
Development Team, 2021)), posed a problem for some analyses, and we 
addressed this by gradually increasing the targeted average acceptance 
probability in Stan’s sampler. For diagnostics, we used scale reduction 
factor (SRF) to investigate if chains had converged and effective sample 
size (ESS) to estimate how many independent samples the (typically 
autocorrelated) posterior samples represent (Gelman et al., 2004). 
Computational details and results are elaborated on in Appendix C. 

2.5. Estimating unobserved harvest 

We focus on prediction at the HMP level and again drop indices for 
HMP and year. Assuming gamma-distributed variables with equal β, the 
bagging rate of all non-reporting teams are 
∑

r̂ i ∼ Gamma
(∑

α̂i, β
)
= Gamma

(
β
∑

ν̂i, β
)
, (18)  

where accent ∧ indicate parameters of non-reporting teams. Defining 
the average hunting rate of the non-reporting teams as ν =

∑
ν̂i/Q, the 

likelihood of the total unreported bag K̂ is 

K̂ ∼ NegBin(Qν,Qνβ). (19)  

Parameters Q and β were directly inferred by the statistical model, but 
νrequires further deduction, which was done in two steps. First, we 
derived an approximation for x̂, the unreported area proportions, based 
on the assumption that Q is large, in which case the distribution’s 
properties could be approximated by a continuous distribution, f(x̂). 
Secondly, we derived an expression g(ν̂) as a function of f(x̂), from 
which νis given as the first moment as 
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ν ≈

ba
((

1
μm

)1
ϕ
)a(

b
(

1
μm

)1
ϕ
)− a− ϕ

Γ(a + ϕ)

Γ(a)
, (20)  

which is finite for a and ϕ ∈ R>0. This is derived in Appendix A. 

2.5.1. Evaluating the approximation of K̂ 
To investigate if the approximation was “good enough” for the pur

pose, we performed a simulation study for selected HMPs. For each 
species, we selected three 2019 HMPs based on estimates of Q being low 
(median estimate of Q at the 2.5th percentile of all 2019 median esti
mates of Q), intermediate (median estimate at the 50th percentile), or 
high (median estimate at the 97.5th percentile). For each exemplifying 
HMP, we performed both exact and approximate simulations of K̂ based 
on posterior samples. Exact simulations require discrete Q, and we 
rounded sampled Q to the nearest integer when evaluating the approx
imation. For the approximate simulations, K̂ was directly simulated 
according to Eq. 19 for each posterior sample. 

For exact simulations, the unreported harvest was simulated 
explicitly for each non-reporting team. This required the proportion of 
unreported area covered by each non-reporting team to be sampled 
according to Eq. A.4. Subsequently, each team was assigned a unique 
rate of harvest according to Eq. 8, and the harvest was simulated ac
cording to Eq. 7. Finally, K̂ was calculated as the sum of all simulated 
teams’ harvests. 

To minimize Monte Carlo errors in the comparison, which could 
obscure small differences, we performed 100 simulations for every 
posterior sample. 

2.6. Model comparison and validation 

To investigate if AR modeling reduced uncertainty in estimated 
harvest, we calculated for each level of interest (nation, county, and 
HMP) the average ratio of the width of the 95% credible intervals esti
mated with AR over the corresponding width for IY estimates. We refer 
to this statistic as the ’range ratio’, with values below one indicating less 
uncertainty for AR estimates compared to IY estimates. 

To evaluate predictive performance, we split the data into training 
and validation sets by randomly assigning (with equal probabilities) 
each report to either set. In analyses of these data, only the training data 
were included for parameter estimation. To evaluate predictive perfor
mance, we subsequently performed predictions of harvest for the area 
covered by the validation data, imitating the issue of an unknown 
number of teams covering the unreported area. Using Eqs. 19 and 20, we 
evaluated for each HMP and year with at least one report assigned to the 
validation data the probability of observing harvest K̂ in the validation 
data. We define MPM as the mean predictive mass for each HMP, which 
integrates over the posterior by taking the mean value of posterior 
predictive probability over all post–warm up samples from the MCMC. 

The same reports were assigned to either the training or the valida
tion set, making it possible to compare predictive performance of AR and 
IY modeling. Akin to the log pointwise predictive density commonly 
used in Leave One Out Cross Validation (LOO-CV) (Vehtari et al., 2017), 
we considered HMP-wise difference in log MPM between AR and IY 
models and defined ALMPMD (average log mean predictive mass dif
ference) as the average (over validation HMPs) difference between 
models. We also calculated the associated standard error to provide an 
estimate over how variable the difference in predictive performance is 
across HMPs. Further, to provide an estimate of total support of one 
model over the other, we calculated the product (over HMPs and years) 
of MPM ratio (AR over IY), abbreviated MPR. 

We also utilized the validation data to evaluate posterior predictive 
p-values. This is elaborated on in the supplementary information, Ap
pendix D. 

3. Results 

In this section, we first present the results of the parameter estima
tion stage, focusing on estimates from the AR model applied to the full 
data. Subsequently, we present results from posterior predictions based 
on parameter estimates, including for comparison also the IY analyses 
and the training and validation data application. Finally, we evaluate 
the approximation used for posterior prediction and to calculate the 
probability of the validation data. Analyses of posterior predictive p- 
values indicated a good fit between model predictions and data. See 
Appendix D for details. 

Computational diagnostics revealed that all chains converged and 
gave acceptable effective sample size (ESS). Computational performance 
was consistently better for AR than for IY analyses, both in terms of scale 
reduction factor and ESS. For IY analyses, there were also MCMCs where 
divergent transitions could not be circumvented by increasing the tar
geted average acceptance probability. These years were excluded from 
all further analyses. Computational aspects are elaborated on in sup
plementary information, Appendix C. 

3.1. Parameter estimates 

Figs. 2 and 3 present posterior estimates of high-level parameters 
modeling hunting area and hunting rate, respectively. For the consid
ered period 1997–2019, the average area per team, m, was estimated at 
33.2 [33.1, 33.8] km2 (presented here and henceforth by median and 
95% central credible interval in brackets). The average concentration 
parameter, a, modeling variability in area per team, was estimated at 
1.42 [1.41, 1.43]. As a reference, a = 1 indicates an expected coefficient 
of variation of 1, and a > 1 indicates that, at the HMP level, the standard 
deviation of hunting areas per team is smaller than the mean hunting 
area. 

The analysis revealed substantial differences in hunting rate for the 
focal species (Fig. 3 A), with μ, modeling the average hunting rate per 
area unit of a team with average hunting area, ranging from 7.39⋅10− 3 

[5.97⋅10− 3,9.39⋅10− 3] km− 2 for eider to 0.207 [0.205, 0.209] km− 2 for 
fox. Fox also obtained the highest estimate of β (2.28⋅10− 3 [2.24⋅10− 3,

2.337⋅10− 3] km2), whereas partridge obtained the lowest (1.77⋅10− 4 

[9.85⋅10− 5, 3.72⋅10− 4] km2) (Fig. 3 C). The β parameter models how 
variance in hunting rate scales with the average, and the reuslts indicate 
that there was less variability in hunting rate among teams within a HMP 
for fox than for eider. 

Across all species, we found strong support for ϕ < 1 (Fig. 3 B), 
indicating that teams with larger hunting areas harvest less game per 
area unit than do teams with smaller hunting areas. This sub-linear ef
fect of hunting area on harvest rate was most pronounced for eider (ϕ =

0.274[0.147,0.508]). 
The standard deviation σω,θ (θ again indicating either μ, ϕ, or β) 

models differences between subsequent years in terms of national av
erages, whereas σλ,θ and σχ,θ parameters models variability in space as 
the difference among counties and among HMPs within counties, 
respectively. Across all parameters and species, we found support for a 
smaller σω,θ than the corresponding σλ,θ and (when applicable) σχ,θ with 
a probability > 0.99. This indicates that between-year changes in system 
are smaller than the differences that are observed across space. 

Estimates of yearly variability (Fig. 3 D–F) were largely overlapping 
across species, but σω,μ estimates for wild boar stood out as higher than 
for other species (Fig. 3 D), indicating comparably large differences 
between years in terms of average hunting rate. Wild boar also obtained 
the highest estimates of σλ,μ. These posterior estimates however largely 
overlapped with other species, except for fox. This indicates that, 
compared to other species, fox is hunted at more similar rates across 
counties. Fox also exhibited the lowest estimate of σχ,μ (Fig. 3 G), indi
cating greater similarity also at the HMP scale. 

To investigate if variability was smaller at the HMP scale compared 
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Fig. 2. Parameter estimates and priors for parameters modeling the distribution of area among hunting teams. Parameter m (panel A) quantifies average hunting area 
per team and concentration parameter a (panel B) quantifies variability in hunting area per team within hunting management precincts (HMPs). For θ indicating 
either m or a, standard deviation σω,θ (panel C and D) quantifies between-year variability in the focal parameter at the national level, σλ,θ and (when applicable) σχ,θ 

quantifies variability between counties and between HMPs within counties, respectively, and ρλ,θ and ρχ,θ (panel E) are the corresponding autocorrelation parameters, 
quantifying continuity in county and HMP differences over time. 

Fig. 3. Parameter estimates and priors for parameters modeling hunting rates. Parameter μ (panel A) quantifies average hunting rates per km2 of hunting teams with 
average-sized hunting area, ϕ (panel B) quantifies how hunting rate per team depend on team area (with ϕ=1 indicating a linear response), and β (panel C) 
quantifying variability in hunting rates among teams within hunting management precincts (HMPs) (lower β indicating more variability). For θ indicating either μ,ϕ, 
or β, standard deviation σω,θ (panel D–E) quantifies between-year variability in the focal parameter at the national level, σλ,θ (panel G, I, K) and (when applicable) σχ,θ 

(panel M) quantifies variability between counties and between HMPs within counties, respectively, and ρλ,θ and ρχ,θ (panel H, J, L, N) are the corresponding 
autocorrelation parameters, quantifying continuity in county and HMP differences over time. 
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to the county scale, we calculated (based on posterior samples) the 
probability P

(
σχ,μ < σλ,μ

)
, which estimated at 1.00, 0.914, 0.999 for wild 

boar, partridge, and fox, respectively, providing support (if however 
weak for partridge) for larger variability in hunting rate across counties 
than at the scale of HMPs within counties. The corresponding statistic 
for eider was 0.074, thus showing a weak trend in the opposite direction. 
Similarly, the probability P

(
ρχ,μ < ρλ,μ

)
was estimated at 1.00, 0.990, 

and 0.995 for wild boar, partridge, and fox, respectively, providing 
support for higher temporal consistency at the scale of counties 
compared to HMPs. For eider (P

(
ρχ,μ < ρλ,μ

)
= 0.421), no such support 

was found. 
However, both ρλ,μ and ρχ,μ indicated high spatiotemporal autocor

relation for all species (Fig. 3 H and N), with the lowest estimate found 
for ρχ,μ for fox at 0.976 [0.971, 0.980]. Estimates of ρχ,ϕ and ρχ,β (Fig. 3 J 
and L) indicated high temporal consistency in terms of spatial differ
ences in higher-order parameters ϕ and β. Spatial differences were also 
largely consistent over time for parameters modeling the distribution of 
hunting area per team, as is captured by estimates of ρλ,m ρχ,m, and ρλ,a in 
Fig. 2 E. 

3.2. Harvest estimates 

Fig. 4 shows the yearly harvest as estimated by either AR or IY 
models. The AR model produced tighter predictive envelopes, particu
larly for eider, partridge and early years of wild boar harvest. The range 
ratio analyses (Table 1) showed that 95% predictive credibility intervals 
were substantially reduced at the national, county and, HMP levels. 
Notably, AR modeling reduced intervals to less than 20% of the corre
sponding IY estimate for eider at both national and county levels and to 
less than 30% for partridge at the county level. The training and vali
dation data analyses showed that AR modelling also increased predictive 
accuracy (Table 1, ALMPMD and MPR). 

3.3. Evaluating the approximation used for prediction 

The parameter estimates and unreported area of the exemplifying 
HMPs used to evaluate the approximation of unreported harvest, K̂, are 
listed in Table A.2. The corresponding estimates of K̂ are shown in Fig. 5. 
The bars indicating the approximate methods (red) are largely con
cealed by the bars indicating exact sampling (dashed black) due to 
almost indistinguishable estimates. 

4. Discussion 

In this study, we developed a framework for analysis of harvest data 
for systems where harvest is reported by area. The primary aim was to 
extrapolate from available information to predict annual unreported 
harvest at the national, county, and HMP scale. We found strong support 
for positive temporal autocorrelation across all considered parameters 
and species (Fig. 3). This is expected—areas with, for instance, high 
hunting rates one year are likely to remain high the next year, due to 
similar game availability or cultural differences in game preferences. 
Beyond the insight that the system exhibits spatiotemporal consistency, 
the presence of autocorrelation also permits borrowing of strengths 
between years. With limited information, it is beneficial to inform what 
happens the subsequent year by what happened the previous and vice 
versa. Incorporating autocorrelation (AR) into the model resulted in less 
uncertainty at all considered spatial scales as well as higher predictive 
performance (Table 1, Fig. 4). Thus, our study concludes that AR 
modeling substantially improves estimation of harvest rates. 

From a wildlife management standpoint, the proposed method has 
obvious benefits. Estimates with narrow uncertainty envelopes will in
crease the possibilities to detect changes in harvest rate, potentially in 
response to, e.g., altered climate, habitat, population structure or 
hunting practises. Identifying shifts in harvest rate may warrant further 
investigations and/or changes in hunting regulations for that species. 
Accounting for autocorrelation particularly reduced uncertainty in 
harvest estimates for eider and partridge, species that are hunted at 

Fig. 4. Annual harvest, indicated by median and 95% credibility interval estimated with autoregressive (AR) and independent years (IY) models.  

Table 1 
Comparison of autoregressive (AR) and independent years (IY) models. Average 
log mean predictive mass difference (ALMPMD, parenthesis indicate standard 
error) and mean predictive ratio (MPR) evaluated over validation data after 
fitting to training data. Values above 0 (ALMPMD) and 1 (MPR) indicate higher 
predictive accuracy for AR compared to IY. The range ratio is based on analysis 
of all available data and is defined as the average ratio between the width of 95% 
credible intervals at different levels of interest (nation, county, and HMP). 
Values below 1 indicate narrower predictive intervals by AR compared to IY 
models.  

Species ALMPMD MPR Range ratio    

Nation County HMP 

Eider 0.0700 (7.06⋅10− 5) 1.00 ⋅10198 0.175 0.199 0.547 
Partridge 0.0555 (5.78⋅10− 5) 4.55⋅10154 0.499 0.297 0.500 
Wild boar 0.147 (9.57⋅10− 5) 9.17⋅10420 0.786 0.749 0.842 
Fox 0.167 (9.18⋅10− 5) 6.95⋅10523 0.807 0.747 0.787  

T. Lindström and G. Bergqvist                                                                                                                                                                                                               



Ecological Indicators 141 (2022) 108960

8

comparably low rates and with high variability. Substantial differences 
between AR and IY models are also seen for wild boar in the first 
considered years (Fig. 4 C), i.e., when wild boar were rare (Bergqvist and 
Elmhagen, 2016). This indicated that, for the purpose of estimating 
harvest, the benefit of AR modeling is most beneficial for game that is 
hunted variably and in low numbers. 

The understanding that borrowing strength (also labeled Bayesian 
shrinkage) through hierarchical Bayesian models reduces uncertainty is 
well established in ecology (Webb and King, 2009; Iknayan et al., 2014; 
Lindström et al., 2015; Huang et al., 2020). For harvest data, He and Sun 
(2000) and Lindström and Bergqvist (2020) have presented methods to 
borrow strength in space. In this study, we demonstrated the potential 
for improving harvest estimation by also borrowing strength in time, 
particularly when data are weak. We believe this insight could be useful 
for hunting harvest estimation also in other systems, and our study 
demonstrates the value of systematic long-term data collection. 

The framework also addresses aspects beyond average harvest rate, 
which promotes quantitative insight into hunting patterns. For instance, 
we found the most pronounced sublinear relationship between a team’s 
area and its harvest rate, as indicated by ϕ, for eider. This may reflect 
how and where eiders are hunted; there is a large discrepancy between 
those who do and those who do not hunt by the coastline. Though the 
fractal properties of coastlines (Kappraff, 1986; Husain et al., 2021) may 
have non-trivial effects, a reasonable null-expectation is that access to a 
one-dimensional coastline is approximately proportional to the square 
root of the area, thus giving an expected value of ϕ = 0.5. Yet, most of 
posterior density of ϕ is located < 0.5 for eider and < 1 for all species 
(Fig. 3 B), necessitating other explanations. It is plausible that teams 
with small areas simply keep their areas small because it is located 
where game availability is sufficiently large. Alternatively, to compen
sate for lower game availability, hunters with smaller areas may in
crease their effort, which has been shown to be an important predictor of 
harvest rate where this information is available (MMcDonald and Har
riscDonald and Harris, 1999; Tomeček et al., 2015; Vajas et al., 2020). 

The estimated harvest rate for eider varied substantially among 
HMPs (Fig. 3 M) within counties and among teams within HMPs (Fig. 3 

C). Unlike other species, the estimated autocorrelation was not lower at 
the HMP level than at the county level (Fig. 3 H, N). These findings also 
agree with the expectation that eider hunting is driven largely by access 
to specific habitats that are stable over time. 

The variability of hunting rate among teams was also high for par
tridge (Fig. 3 C). Partridge can be released for immediate harvest and 
this is done to such an extent that the hunting bag may increase at the 
same time as the wild population is decreasing (Ottvall et al., 2009). 
Similar practices occur also in other countries (Ewald et al., 2010; 
Delibes-Mateos et al., 2013). Thus, specialized teams release a large 
number of partridge that are subsequently harvested. Other teams do 
not hunt this game at all or only rarely. This leads to a large discrepancy 
at the local scale. The high posterior estimate of σλ,β (Fig. 3 K) suggests 
that the release and harvest practice vary among counties and, as 
inferred by large ρλ,β (Fig. 3 L), that the practice is consistent over time. 

Conversely, fox was the most homogeneously harvested game at all 
considered scales (Fig. 3 C,G,M). Fox is a generalist that can adapt to a 
wide range of habitats (Larivière and Pasitschniak-Arts, 1996). It is an 
available game to most hunters. Across the period, fox was also hunted 
at the highest rate of the considered species(Fig. 3 A), but wild boar 
harvest has surpassed that of fox in recent years (Fig. 4 C, D). 

These examples demonstrate that higher-order parameters—beyond 
average harvest rates—gives additional insight for managers into har
vest dynamics and hunting practices. We argue that this can be valuable 
when assessing the status of species. For instance, game could face 
greater risk of stochastic over-hunting if the harvest is driven by a few 
teams that harvest in high numbers (low β). While we here have focused 
on the average parameters, the framework explicitly estimates unique 
non-linear effects of hunting area on harvest rate (ϕ) and random 
within–HMP variability (β) for each year and county. Studying spatio
temporal patterns of these higher-order parameters can pinpoint shifts 
in hunting practices. These aspects of the model also have important 
implication when estimating average harvest rates, particularly when 
reporting is low; the harvest observed per area unit for a handful of 
reporting hunting teams may not be representative for the entire pop
ulation of hunters within an HMP. 

Fig. 5. Posterior predicted distributions of unreported harvest, K̂, for three HMPs with low (top-row panels), medium (second-row panels), and high (third-row 
panels) estimated number of non-reporting teams, using either exact sampling or approximate method of simulation. 
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The framework also provides insight into the distribution of habitats 
across teams. Some between-year variability was observed, both in 
terms of average area per team and concentration parameters, but this 
variability was small in comparison to the substantial differences among 
counties as well as among HMPs within counties—differences that 
remain constant over time (Fig. 2 E). This indicates that, in terms of the 
size of hunting area per team, the Swedish system is highly variable 
across the nation but mostly consistent over time. 

Autoregressive modeling presented fewer computational challenges 
than IY (Table C.2) due to more well-behaved distributions. Certainly, it 
would be possible to address the challenges found in IY modeling by 
other means than increasing the targeted average acceptance probabil
ity in Stan’s sampler. This could involve either parameter trans
formations or more restrictive prior distributions. However, special 
solutions for individual species or years would render the methodology 
cumbersome to implement for the 46 game species for which SAHWM 
are commissioned to estimate the harvest. Though running the analysis 
for multiple years takes longer than for single years, it reduces 
man–hours. 

Through the approximation of unreported harvest, we sidestepped 
sampling of individual non-reporting teams. The closed-form solution 
also permitted us to evaluate the likelihood of total harvest of the vali
dation area in the training and validation data analysis. Even though the 
approximation was derived under the assumption of many non- 
reporting teams, the simulation analysis revealed that the approxima
tion produced indistinguishable predictions from those of the exact 
sampling even at low number of non-reporting teams (Fig. 5). We 
believe the methodology—inferring a likelihood for count data of an 
unknown number of unobserved sections based on observed sections 
given non-linear effects of section size—could be useful outside the 
scope of analyzing harvest reports. 

Reporting and sampling biases are important to consider when 
analyzing hunting data (Aubry et al., 2020), and the Swedish system is 
not immune to these challenges. Non-response may be higher for null 
harvest (Aubry and Guillemain, 2019), which could overestimate the 
total harvest. There are two aspects of the Swedish system that may to 
some extent mitigate such bias. First, because harvest is reported at the 
team level, it reduces the impact of null-harvest of individual hunters. 
Second, reports are entered jointly for all species, meaning that species 
for which the bag is zero are reported whenever a team enters data into 
the system. Nevertheless, the underlying assumption that the non- 
reporting population does not differ from the reporting is an impor
tant caveat that should be acknowledged. Future studies should aim to 
address this. Though it is beyond the scope of this study, we believe 
carefully designed surveys could gather additional information about 
hunting rates. A benefit of the Bayesian paradigm is its flexibility, and 
the presented framework could be expanded to incorporate such addi
tional data. We believe the closed-form approximation is useful for such 
endeavors since it can be used to probabilistically define the hunting 
rate over Sweden’s entire huntable land. Thus, it would be possible to 
incorporate in the framework a non-reporting factor that scales the rate 
of non-reported areas to best fit with additional, (hopefully) unbiased 
information. 

Also, while reporting bias poses a problem for estimating the abso
lute harvest numbers, the framework is arguably less sensitive in terms 
of revealing trends, at least if reporting-bias does not change dramati
cally between years. The reduced uncertainty and increased precision 
obtained through AR modeling will increase the reliability of harvest 
estimates when they are used for wildlife monitoring. Previous harvest 
estimates have been used to analyze, e.g., climate effects on mammal 
populations (Elmhagen et al., 2015), population trends in goose species 
(Liljebäck et al., 2021) and effects of deer community composition on 
forest damage (Pfeffer et al., 2021). 

We conclude that the presented framework provides important 
insight into hunting rates and practices. While the analysis was tailored 
for the focal data, we believe the benefit of accounting for dependence 

between years is applicable across systems. The study demonstrates the 
value of long-term harvest data, and by borrowing strength in time, 
information is transferred between years. We hope the framework will 
inspire new statistical approaches for valuable yet often imperfect citi
zen science data. 
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