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A B S T R A C T   

Emissions of greenhouse gases (GHG), especially methane (CH4), from dairy production have received much 
research attention in the past 15 years, with the main focus being to identify factors affecting CH4 production and 
measures to reduce CH4 emissions from dairy cows. However, measurement of CH4 production by dairy cows in 
commercial herds is time-consuming and requires expensive equipment, so there is a need to find alternative 
ways to estimate individual and herd CH4 emissions. Regular milk analyses are performed for many cows, so data 
from mid-infrared spectroscopy (MIRS) on individual milk samples could perhaps be utilised to predict CH4 
emissions intensity (MI, CH4 g/kg milk production). This study investigated the potential and limitations of 
predicting individual MI by integrating data from CH4 measurements made by an infrared sniffer (IRS) and milk 
MIRS data taken from fortnightly morning milkings during the full lactation records of 37 multiparous cows. 
Partial least square regression was used to create prediction models for six-week lactation sub-periods and for full 
lactations, which were validated using leave-one-cow-out cross-validation. Coefficient of determination in pre-
dicting MI was low, indicating that the method is not suitable for predicting variations in individual MI, although 
it should further be evaluated at herd level.   

Introduction 

The carbon footprint of cattle production has been intensively dis-
cussed in recent decades and many efforts have been made to reduce 
greenhouse gas (GHG) emissions from ruminant production [1–3]. 
Production and losses of methane (CH4) contribute to GHG emissions 
and also represent a loss of energy for the animal, corresponding to 
roughly 6–8% of gross energy consumed. Methane production is related 
to the ability of ruminants to convert human-inedible feeds and 
by-products into nutritious foods for human consumption (i.e. milk and 
meat), which is achieved mainly through fermentation of fibrous com-
ponents by rumen microorganisms. Differences in rumen fermentation 
result in different concentrations and proportions of volatile fatty acids 
(VFA) being absorbed from the rumen, which also affects milk compo-
sition, e.g. fatty acid composition [4]. Thus, it can be hypothesised that 
there is a relationship between milk composition and CH4 production, 
because both are affected by the amount and proportions of hydrogen 

and VFA formed by microbial fermentation in the rumen [5,6]. 
It has been suggested that breeding for animals with lower CH4 

production per unit product would increase production efficiency and 
contribute to GHG mitigation [7,8]. There can be large variation be-
tween individuals in terms of CH4 production, even when feeding and 
stage of lactation are taken into account [9], and CH4 production has 
moderate heritability [10]. 

As a first step in investigating CH4 production on the individual cow 
or farm level or in evaluating strategies for reducing CH4 production, 
accurate measurements of CH4 are needed [11]. Methods for estimating 
CH4 production from individual cows on a large scale would therefore be 
valuable. Emissions of CH4 can be measured with several techniques, 
such as respiration chambers (RC), sulphur hexafluoride (SF6) tracer, 
laser CH4 detector (LMD), infrared sniffers (IRS) [12], the GreenFeed 
(GF) system [13] and others [14]. Although continuous measurements 
in RC give the most accurate estimates of CH4 production, this technique 
has the major drawbacks that is expensive, can be used on a limited 
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number of animals and is laborious. The use of spot sampling techniques 
such as IRS to measure CH4 provides a greater number of observations, 
involves reduced animal handling and is more cost-efficient [12,15,16]. 

While direct measurements can be performed in a cost-efficient way 
on many animals, they still require calibration and maintenance, and 
thus their use is not likely to be widespread in commercial farming. 
Thus, identification of an easily measured proxy for CH4 emissions is 
required. Several equations have been developed to estimate CH4 [17, 
18], but these are often based on variables for which data are not 
available on commercial farms, such as dry matter intake. On modern 
dairy farms, many dairy cows are enroled in a milk recording scheme, 
where milk is regularly sampled and analysed by mid-infrared spec-
troscopy (MIRS) to determine its content of fat, protein, lactose, urea 
and casein [19–21]. In addition to these compounds, the MIRS analysis 
could be extended to other milk-related or cow-related traits. Many 
studies have used MIRS or Fourier transform infrared (FTIR) spectros-
copy to predict milk species [22], feed intake [23], energy balance [24], 
mastitis [25] and many other parameters that could be challenging to 
measure directly. Moreover, many models using milk MIRS to predict 
CH4 emissions have been developed, with varying results [26–30]. The 
measurement period in those studies was often short and different ani-
mals contributed data at different lactation stages, which could have 
increased random variation and lowered accuracy. 

Therefore, the aim in this study was to evaluate the potential for 
using information generated from MIRS analysis of milk samples to es-
timate CH4 emissions intensity during lactation in dairy cows. 

Materials and methods 

Animals and experimental design 

The data used were taken from a previously published study by [31] 
in which diets with a low starch content were fed to dairy cows at the 
Swedish Livestock Research Centre at Lövsta, Uppsala, Sweden. All 
handling of animals was approved by the Uppsala Ethics Committee for 
Animal Research, Sweden (diary number C 99/16). In total, 37 cows (13 
Swedish Holstein and 24 Swedish Red) were included in the study for 
one full lactation period. In average (mean±SD), the total daily dry 
matter intake was 25.8 ± 5.2 kg, daily CH4 production was 406.9 ±
56.3 g and daily milk yield was 32.9 ± 6.9 kg. The cows were all 
multiparous, with 20 in their second lactation and 17 in their third to 
seventh lactation. The cows were randomly divided into two treatment 
groups fed two different levels of byproduct-based concentrates and 
given ad libitum access to grass-clover silage. Full details of the exper-
imental design, diet formulation and chemical composition, and the 
main findings related to production, energy balance, feed efficiency and 
fertility, can be found in [31]. The cows calved between February and 
July 2017, and milk MIRS data and CH4 data were collected between 
April 2017 and May 2018. 

Methane and milk MIRS data collection and processing 

Individual CH4 emissions were measured using the infrared sniffer 
(IRS) method [12] with a similar set-up as previously described in [32]. 
In brief, a CH4 analyser (Guardian Plus; Edinburgh Instruments Ltd., 
Livingston, UK) was calibrated using standard mixtures of CH4 in ni-
trogen. The analyser was attached to the automatic milking system 
(AMS) and the sampling tube was attached to the concentrate trough 
within the AMS. The CH4 concentration was logged every second on a 
data logger (Simex SRD-99; Simex Sp. z o.o., Gdansk, Poland) and then 
visualised using logging software (Loggy Soft; Simex Sp. z o.o.). Times of 
entry to the milking station and cow ID were recognised using the data 
management software DelPro (version 5.1/5.2.1; DeLaval International 
AB), and the values were coupled with corresponding CH4 values from 
the logger. To reduce the risk of variation in head position only data 
from the first five minutes of the visit were used, where we assumed that 

the cow kept the head still in the feed bin and did not finish the con-
centrates provided in less than five minutes. On average, milking data 
were recorded 2.6 times a day for each cow. Methane production for 
every visit (g/d) was calculated using the equation developed by [12]. 

For each milking, mean peak height and integral were calculated, 
together with peak frequency (eructation rate). Milking occasions with 
fewer than three recorded peaks were removed from the analysis. On 
average, 2.2 readings of CH4 per animal and day were recorded. Daily 
milk yield was calculated as the total yield over 24 h. Milk samples were 
taken fortnightly from one milking between 12 am to 12 pm, preserved 
with bronopol and analysed within three days by MIRS (CombiScope 
FTIR 300 HP, Delta Instruments B. V., Drachten, the Netherlands). Each 
full MIRS dataset consisted of 935 absorbances in wavenumbers ranging 
from 397.307 to 4000.071 cm− 1. Spectral data was plotted in a principal 
component analysis (PCA) for identification of outliers, however, no 
outliers were observed. Mean CH4 intensity (MI, g/kg milk yield) was 
averaged into one value for two weeks (one week before and one week 
after milk sampling) to match the MIRS data. In total, after pre- 
processing (averaged fortnightly and merged), 593 records from first 
week of lactation until the 46th week were used for further data analysis. 

Prediction analysis using partial least square regression (PLSR) analysis 

The prediction analyses were performed by partitioning the lactation 
into six-week intervals, which created seven lactation sub-periods in 
total. The Caret package version 6.0–92 [33] in R software [34] was 
used for the prediction analysis. The partial least square regression 
(PLSR) method was used as the tool for prediction from the multivariate 
MIRS data. The prediction analyses of CH4 intensity were validated by 
leave-one-cow-out (LOCO) cross-validation, which was performed by 
calibrating the model on data from 36 of the cows and then using it to 
predict data from the last cow. This procedure was repeated until data 
had been predicted once for every individual cow. Using this validation 
strategy, each cow had a chance of being predicted from data for the 
other 36 cows. Individual cow MI was predicted for every lactation 
sub-period and for the complete lactation. 

From the LOCO procedure, the prediction error was calculated as: 

êij = Yij − Ŷ i′j′ (1)  

where ̂eij is the prediction error of MI for observation j for cow i, Yij is the 
observed MI value j for cow I, and Ŷ i′j′ is the predicted value of MI for 
observation j for cow i considering the model built without cow i. In this 
case, a positive prediction error implies model underprediction and a 
negative prediction error implies model overprediction. The coefficient 
of determination (R2) for LOCO cross-validation was calculated as the 
square of the correlation between predicted and observed values. 

Data variation and model evaluation 

The random variation in predicted and observed values of MI was 
evaluated according to two models: 

Yij = μ + Ci + ε(i)j (2)  

Yijk = μ + Gi + C(i)j + ε(ij)k (3)  

where Yij is the MI corresponding to the observed or predicted value j for 
cow i, µ is the general constant (fixed effect), Ci is the effect of cow i, ε(i)j 
is the random error for the model (2), Yijk is the observation or predicted 
value k for the cow j during the period i, Gi is the effect of lactation 
subperiod i, C(i)j is the effect of cow j nested within lactation sub-period 
i, and ε(ij)k is the random error for model (3). 

Models (2) and (3) were applied to interpret the datasets for the 
seven lactation sub-periods and the full lactation dataset, respectively. 
All effects in the models (except the general constant) were considered 
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random and interpreted according to the normal distribution. The var-
iances associated with each effect were estimated by the restricted 
maximum likelihood method. The analyses were performed using the 
MIXED procedure in SAS. 

The performance of the models was evaluated using the Model 
Evaluation Software (MES) developed by [35]. Model validation was 
performed using four different approaches. The first approach consisted 
of evaluating the significance of the mean prediction error, using a 
simple t-test based on a bilateral alternative hypothesis (α = 0.05). 

The second validation approach was based on adjustment of linear 
regression of observed (Y) on predicted (X) values. The adjusted model 
was evaluated according to the hypotheses: 

H0 : β0 = 0 and Ha : β0 ∕= 0 (4)  

H0 : β1 = 1 and Ha : β1 ∕= 1 (5)  

where β0 and β1 are the intercept and slope of the model, respectively. 
Predicted and observed values were assumed to be equal when both null 
hypotheses were not rejected (P > 0.05). 

The third approach was based on calculation of concordance corre-
lation coefficient (CCC) and its components [36] according to the 
equations: 

CCC = ρ̂ × Cb (6)  

Cb =
2

v + 1
v + u2 (7)  

v =
so

sp
(8)  

u =
Yo − Yp
̅̅̅̅̅̅̅̅̅̅̅̅̅̅so × sp

√ (9)  

where CCC is within the range -1 ≤ CCC ≤ 1, ̂ρ is the correlation between 
predicted and observed values, Cb is the bias correction factor (0 < Cb ≤
1), v is the scale shift, so and sp are the standard deviation of observed 
and predicted values, respectively, u is the location shift, and Yo and Yp 

are the mean of observed and predicted values, respectively. 
The fourth validation approach was based on decomposition of the 

mean squared error of prediction following an existing method [37]: 

MSEP =
1
n
×
∑

ij
ê2

ij = SB + U + I (10)  

SB =
(
Yo − Yp

)2 (11)  

U =
(
so − sp

)2 (12)  

I = 2 × so × sp × (1 − ρ̂) (13)  

where MSEP is mean squared error of prediction, SB is the squared bias, 
U is the component of MSEP associated with unequal variances, and I is 
the component of MSEP associated with incomplete (co)variation. The 
other terms are as defined previously defined. The terms SB, U and I 
were estimated as percentages of MSEP. 

Results and discussion 

Descriptive evaluation of random variation 

The observed values of MI indicated that, in general, the variation 
between cows was larger than the variation within cows (Fig. 1) and this 
predominance of variation between rather than within cows tended to 
increase from early to late lactation. This could have been due to dif-
ferences in dry matter intake (DMI) to meet nutritional requirements 
depending on lactation stage and milk production level [38]. It is well 
known that DMI is positively correlated with CH4 production [39]. DMI 

Fig. 1. Partitioning of total variance in model-observed (O) values of CH4 intensity (MI, g/kg milk) in Swedish dairy cows and model-predicted (P) values based on 
information from milk mid-infrared spectroscopy (numbers inside bars are absolute values of variance). 
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is also associated with milk yield [40], and hence these parameters are 
intercorrelated with each other. Thus predicted MI might not only 
reflect the amount of CH4 produced, but also variations in milk pro-
duction between cows. 

The variation in predicted MI showed a different pattern to that in 
observed MI. Except for the measurements taken between lactation 
weeks 25 and 36, most of the random variability in predicted values was 
associated with variations within cows (i.e., among measurements) 
instead of between cows. The variation in predicted MI was also sub-
stantially smaller than that in observed MI. The models were thus not 
able to reproduce the individual variation in MI. For 16 out of 17 vari-
ance components, the estimates associated with predicted MI were 
numerically lower than those for observed MI. The only exception to this 
was the variation between measurements obtained from the 7th to 12th 
week of lactation. This overall pattern provided the first evidence that 
MI prediction from milk MIRS was unable to account for the variation 
found in the observed data. The individual variation in MI was not 
captured in the predictions based on milk MIRS for any of the lactation 
subperiods. 

After pre-processing of the milk MIRS data, we tested several ways of 
including the number of variables (wavenumbers) in the prediction 
model. It is worth noting that the more wavenumbers included as 
explanatory variables in the prediction model, the better the prediction 
accuracy. Similarly, a study by [27] found that the coefficient of 
determination (R2) was improved when full spectra were used instead of 
selected wavenumbers. To ensure that no important information was 
excluded, all 935 wavenumbers in the MIRS data were used for pre-
dictions in the present study. In some previous studies [23,41,42], milk 
composition parameters (e.g. fat and protein) have been included as 
variables together with milk MIRS values. However, since milk 
composition was derived from milk MIRS, and thus reflected in the 
spectra data, we did not include more variables related to milk 
composition in the prediction model, to avoid having multiple or 
redundant information in the model. 

Evaluation of model performance 

There are various ways of evaluating the performance of prediction 
models. The most common methods, which also make it easy to un-
derstand model outcomes, are explained by [35], who tested various 

methods for summarising and evaluating mathematical models specif-
ically used in agriculture. In the present study, we used regression 
analysis, CCC analysis and decomposition of MSEP to evaluate the 
models, based on the dataset where data were partitioned into seven 
lactation sub-periods. 

Overall, MI showed a numerical increase as the lactation period 
progressed (Table 1) and this trend was perceived for both observed and 
predicted values. The average predicted and observed values were close 
to each other, resulting in mean prediction errors that were non- 
significant (P ≥ 0.81) and numerically close to zero. However, despite 
the similarity in average values, the R2 for LOCO cross-validation was 
low, indicating poor prediction capacity of the models. 

Corroborating the pattern seen with LOCO cross-validation R2, the 
regression analysis indicated disagreement between predicted and 
observed MI values, with an intercept different from 0 and a slope 
different from 1 (P ≤ 0.046), regardless of the lactation sub-period 
Table 1). This indicates that in all lactation sub-periods, the relation-
ship between predicted and observed values was different from unity. 
When the full dataset was used for prediction, neither of the null hy-
potheses (Eqs. (4) and ((5), testing the difference of the intercept from 
0 and the difference of the slope from 1), was rejected (P ≥ 0.13). 
However, graphical evaluation of the ordered pairs showed quite a 
dispersed pattern that was far from an ideal relationship Fig. 2). This 
pattern was confirmed by the numerical estimates of the intercept and 
slope, which were far from the ideal parametric values (Eqs. (4) and 
((5)), with the standard error for intercept and slope comprising 66% 
and 17% of the respective estimates for the full dataset. The poor quality 
of MI prediction from milk MIRS was also indicated by weak CCC, which 
ranged in value from -0.224 to 0.122 (Table 1). All bias correction factor 
estimates were far from unity, confirming the deviation from the para-
metric slope in the linear relationship described above. This indicates a 
high degree of bias in the linear relationship between predicted and 
observed MI. On the other hand, the values associated with location 
shifts were low and close to zero, corroborating the findings for mean 
prediction bias. The main constraint identified was high values of the 
scale shift characteristic, in agreement with the observation that the 
variation in observed values was wider than that in predicted values. 
Joint evaluation of these two characteristics indicated that milk MIRS 
information was able to produce adequate mean values of MI, both 
within lactation sub-periods and for the full lactation but was not able to 

Table 1 
Statistics for comparison between observed methane intensity (g/kg milk yield ± SD) in Swedish dairy cows and values predicted using information from milk mid- 
infrared spectroscopy.   

Lactation week 
Item 1–6 7–12 13–18 19–24 25–30 31–36 >36 Overall 

Number of records 71 95 87 80 88 87 85 593 
Prediction and validation         
Observed 11.13 ± 2.23 10.86 ± 1.85 12.32 ± 2.25 13.18 ± 2.46 14.29 ± 2.96 15.06 ± 3.84 18.32 ± 6.73 13.62 ± 4.28 
Predicted 11.16 ± 0.82 10.82 ± 0.67 12.31 ± 0.51 13.13 ± 1.34 14.26 ± 1.09 15.14 ± 1.89 18.53 ± 4.05 13.61 ± 1.24 
MPE -0.033 0.035 0.014 0.045 0.028 -0.070 -0.204 0.002 
P-value (H0: MPE = 0) 0.903 0.874 0.956 0.876 0.930 0.879 0.811 0.989 
R2 for cross-validation 0.007 0.124 0.051 <0.001 0.024 <0.001 <0.001 0.054 
Regression analysis         
Intercept 8.59 ± 3.63 21.47 ± 2.93 24.59 ± 5.72 12.63 ± 2.74 8.32 ± 4.11 15.55 ± 3.35 18.10 ± 3.46 2.81 ± 1.86 
P value (H0: β0 = 0) 0.020 <0.001 <0.001 <0.001 0.046 <0.001 <0.001 0.131 
Slope 0.228 ± 0.324 -0.980 ± 0.270 − 0.995 ± 0.464 0.041 ± 0.208 0.418 ± 0.288 − 0.031 ± 0.220 0.012 ± 0.183 0.793 ± 0.136 
P value (H0: β1 = 1) 0.019 <0.001 <0.001 <0.001 0.046 <0.001 <0.001 0.130 
Concordance analysis         
CCC 0.055 − 0.224 − 0.098 0.019 0.101 − 0.012 0.006 0.122 
Scale shift, v 2.703 2.782 4.395 1.836 2.700 2.027 1.664 3.456 
Location shift, u − 0.025 0.032 0.013 0.027 0.016 − 0.026 − 0.040 0.001 
Bias correction 0.650 0.636 0.432 0.840 0.651 0.793 0.882 0.534 
Decomposition of MSEP         
MSEP 5.281 4.707 5.792 7.634 8.871 18.362 60.627 17.376 
Squared bias (%) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Unequal variance (%) 7.6 29.7 17.9 21.4 4.5 20.4 26.1 52.6 
Incomplete (co)variation (%) 92.4 70.3 82.1 78.6 95.5 79.6 73.9 47.4 

CCC: concordance correlation coefficient; MPE: mean prediction error; R2: coefficient of determination; MSEP: mean square error of prediction. 
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adequately simulate the pattern and range of data variation. Thus, using 
milk MIRS data to predict MI would result in a small range of predicted 
values that would not deviate far from the average observed values. In 
addition, it appears that the model used in the present had limitations in 
accurately predicting data with high MI values. 

The evaluation of MSEP confirmed the findings for model perfor-
mance obtained using the other diagnostics (Table 1). Prediction of MI 
from milk MIRS had no bias, which allowed accurate prediction of the 
average values. The main constraints in prediction of values were 
associated with reproducing the variation in actual data in terms of 
range (unequal variances) and direction (incomplete (co)variation). 

Physiologically, many events occur during the milk production 
process, from rumen fermentation to synthesis of milk compounds [32]. 
Theoretically, when one mol of glucose from cellulose is completely 
fermented to acetate, there is net production of one mol of methane 
[43], so the correlation between acetate production and methane pro-
duction should be strong and positive. However, the final metabolic fate 
of acetate is not deterministic, as it can be used in many different 
metabolic pathways. Synthesis of milk components is one such meta-
bolic pathway but, while all acetate can be used for milk fat synthesis, 
the exact type of fatty acid in which it is incorporated cannot be pre-
dicted. This partitioning of fermentation products into different meta-
bolic pathways, including milk synthesis, would weaken the association 
between rumen fermentation pattern and milk composition, thus 
affecting the relationship between MI and milk MIRS. 

The dataset used in the present study was unique, because the data 
were collected from 37 individual cows for which MI observations 
throughout the whole lactation were available. This made it possible to 
study differences in the predictive ability of models built for different 
lactation sub-periods, and for the full lactation. Despite the limitations 
with using milk MIRS to predict individual MI identified in this work, 
one specific pattern emerged from the different validation processes, 
namely that there was no bias in predicting average MI based on the full 
dataset. This indicates that while MIRS information cannot be used to 
predict MI for an individual cow, it may provide an accurate estimate of 
average MI at herd level. If the average predictions across animals in a 

group or herd could be used, this would be useful for different appli-
cations, such as to discriminate MI between herds or to provide infor-
mation for MI inventory. For methane inventories in particular, 
predicting methane using the information from milk MIRS could provide 
benefits, as it is a cheap, fast, high-throughput and easily available 
method [20,44]. However, the potential for using milk MIRS for this 
purpose requires further evaluation. In addition, it was evident that the 
MI measurements made during the first part of the lactation showed 
higher variation than those made later in the lactation. Therefore, 
measurements should perhaps be performed later in lactation if the aim 
is to evaluate differences in MI between cows. 

Conclusions 

Information from milk MIRS sampled fortnightly at morning milk-
ings proved to be unsuitable for predicting methane intensity (g/kg milk 
production) in individual multiparous cows in any stage of lactation, 
with low prediction accuracy and poor capacity to reproduce between- 
cow variation. Predicted between-cow variation was closer to that in 
observed values in the latter half of lactation, so that period might be 
more suitable for evaluating methane intensity in individual cows. The 
average prediction values for the present dataset were consistently ac-
curate, suggesting that predictions on herd level using milk MIRS may be 
achievable. The potential to use milk MIRS for this purpose should be 
evaluated in future studies. 
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Fig. 2. Relationship between observed values of CH4 intensity (MI, g/kg milk yield) in Swedish dairy cows and predicted values based on information from milk mid- 
infrared spectroscopy (solid and dashed line correspond to equality line and least square straight line, respectively; for details, see Table 1). 
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