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A B S T R A C T   

Recycling of magnetic materials based on Rare Earth Elements (REE) is of major interest in the view of growing 
clean energy production and transportation. One of the major challenges in its realization is the need to separate 
smaller amounts of Late Transition Metals (LTM) from REE. Hybrid adsorbents are very attractive in finding such 
a solution. Here, novel silica-based nanoadsorbents were synthesized by grafting the surface of dense silica 
nanoparticles with a diamino functional ligand grafted via an arene linker to improve selectivity towards LTM. 
The produced adsorbent materials were characterized using SEM, TEM, AFM, XPS, FTIR, and TGA in its pure 
form and by DLS in suspension, and tested for the adsorption and separation of LTM (Co2+ and Ni2+) and REE 
(Sm3+ and Nd3+) in single and mixed solutions. Prepared organo-silica material showed rapid uptake of all tested 
cations with higher affinity towards LTM. Adsorption capacities reached values of 1.18–1.45 mmol/g for Co2+

and Ni2+, respectively, with a 1:1 metal-to-ligand stoichiometry for Ni cations. Investigation of reusability 
demonstrated the potential of the prepared materials as an environmentally friendly alternative in specific 
separation of LTM to conventional separation techniques. Investigations of the molecular structures of the Ni2+

complex with the selected molecular function and of Co3+ with a closely related tris-aminoethyl amine ligand in 
combination with XPS data for corresponding surface complexes helped explaining the molecular mechanisms 
for adsorption and desorption of the LTM cations.   

1. Introduction 

Rapid population growth and accelerated advances in industriali-
zation and urbanization and overconsumption of fossil fuels are coupled 
with increase emissions of climate-changing greenhouse gases [1,2]. 
The rise of green (low-carbon) technology with smart electrical grid 
programs substituting fossil-driven vehicle parks, and vehicle-to-grid 
technology are among the new tools for successful decarbonization 
and preventing further global temperature rises. Many of these fast- 
growing technologies, in particular, wind turbines and electric vehi-
cles, utilize rare earth elements (REE) sourced via mining from a 
monopolized supply chain where there is increased demand [3–7]. 
Principal components in these applications are permanent magnets, i.e., 
FeNdB and CoSm magnets, where REE, neodymium (Nd) and samarium 
(Sm) are represented together with late transition metals (LTM) [8]. 

Scarce REE and LTM, especially copper, nickel, cobalt, platinum, and 
silver, are predicted to face market pressure as the production of green 
energy technologies intensifies [9,10]. To solve the supply issue and to 
meet future demands, there is a need to exploit recycling schemes for the 
recovery of REE from secondary resources with an emphasis on their 
selective separation from LTM, as a green alternative to mining and 
processing of solid REE [11–13]. In the recycling, the separation of REE 
from LTM represents thus a principal challenge. While iron can easily be 
separated by controlled increase in pH, separation of Co, Ni and Cu re-
quires application of advanced approaches including fractional crystal-
lization [14], solvent extraction [15–16] or use of solid adsorbents [17]. 
The drawback of the crystallization approach is the need in multi-step 
procedures. The solvent extraction uses large amounts of organic sol-
vents and hazardous extractants. The solid adsorption is generally 
considered as a greener alternative. 
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Current hydrometallurgical recycling techniques for permanent 
magnets include acid leaching using inorganic acid (HCl, H2SO4, or 
HNO3) and subsequent separation methods, such as several precipita-
tion steps or liquid phase extraction (solvent extraction processes, ionic 
liquid extraction) [18]. Liquid phase extraction uses large volumes of 
reagents and solvents that can release volatile organic compounds 
(VOC), produce toxic and flammable wastes, and requires repetition of 
cycles to achieve appropriate metal purity due to the difficulties of REE 
separation from LTM. Additional disadvantages are poor contact be-
tween the extractant and desired elements and the formation of an un-
wanted third (heavy organic) phase due to the splitting of the organic 
phase into two layers, which can affect the efficiency of the extraction 
process, requiring additional separation steps before the extraction can 
be considered complete [19,20]. Solid-liquid extraction using adsor-
bents compensate for these disadvantages [21] and enables rapid uptake 
of the aqueous metals and easy separation of the treated solution from 
the solid sorbent [11]. In this context, adsorption represents an envi-
ronmental, eco-friendly, and non-expensive alternative to the use of 
liquid phase extraction and meets the requirements of “Circular econ-
omy schemes” proposed by the European Union for resource recovery 
from solid waste or wastewater to solve scarce resource problematics, 
realizing the “waste to product” concept [22]. 

Next-generation adsorbents - nanoadsorbents with high adsorption 
capacity and selectivity - have gained the science community’s interest 
[23–32]. These properties arise from the increased surface area and 
reactivity of nanoadsorbents compared to their bulk counterparts. A 
further important characteristic is their possibility for surface func-
tionalization allowing the grafting of ligands targeting specific metal 
cations or contaminants. In addition to these characteristics, superior 
nanoadsorbents are easily dispersed in liquid media, chemically stable, 
uniform in size, cheap and reusable [33–37]. 

In our search for separation between REE and LTM, we turned to the 
application of polyamino ligands. It is well-known that such ligands 
have high affinity for LTM cations, forming stable complexes in neutral 
and basic medium that potentially can be destroyed at rather low pH, 
releasing hydrated LTM cations [38]. At the same time, it is well known 
that complexation between REE and polyamino ligands can be followed 
only in non-aqueous medium and not in water [39]. In our recent 
studies, we demonstrated that tris(aminoethyl)-amine, an example of 
polyamino ligand displayed different mechanisms in interacting with 
LTM and REE cations respectively. While complexation was observed 
with LTM in a pH-neutral medium, REE produced hydroxides as result of 
hydrolysis of their cations with precipitation of hydroxides and the 
formation of protonated ammonium salts [40]. This difference could be 
traced in lower adsorption of REE cations compared to LTM, on a 
biopolymer adsorbent grafted with tris(2-aminoethyl)-amine as well as 
easier desorption. 

In the present work, we aimed to further increase selectivity of the 
interaction, and opted for introduction of an aromatic ring in direct 
proximity to a diamino function. This could result, either in improved 
control of hydrophilicity/hydrophobicity of the surface via ligand self- 
organization through π-stacking, or create more specific coordination 
surrounding for LTM with ability to distinguish between Ni2+ and Co2+

via possibility of dπ -pπ contribution. In the current study, the synthesis 
and characterization of hybrid silica nanoadsorbents, prepared by sur-
face grafting of dense silica nanoparticles of an approximate size of 100 
nm, with the commercially available ligand (aminoethylaminomethyl)- 
phenethyltrimethoxysilane (AEAM-PTMS), featuring the desired struc-
ture are presented. To the best of our knowledge, this is the first use of 
this ligand for selective metal uptake and adsorption. The difference in 
reactivity of Ni2+ and Co2+ was revealed via structural studies of mo-
lecular model compounds. 

2. Experimental methods 

2.1. Reagents 

Tetraethyl orthosilicate (TEOS, 99 %, CAS No. 78-10-4), ethanol 
(99.7 %, CAS No. 64-17-5), ammonium hydroxide solution (25 %, CAS 
No. 1336-21-6), nickel(II) nitrate hexahydrate (94.5-105.5 % (EDTA 
titration), CAS No.13478-00-7), cobalt(II) nitrate hexahydrate (98 %, 
CAS No. 10026-22-9), neodymium(III) nitrate hexahydrate (99.9 %, 
CAS No. 16454-60-7), samarium(III) nitrate hexahydrate (99.9 %, CAS 
No. 13759-83-6), toluene (≥99.5 %, CAS No. 108-88-3), murexide (≥95 
%, CAS No. 3051-09-0), Xylenol orange tetrasodium salt (≥95 %, CAS 
No. 3618-43-7), ammonium chloride (≥99.5 %, CAS No. 12125-02-9), 
acetic acid (≥99.7 %, CAS No. 6444-19-7), N-Benzylethylenediamine 
(97 %, CAS No. 4152-09-4), and Tris(2-aminoethyl) amine (96%, CAS 
No. 4097-89-6) were purchased from Merck. Nitric acid (65 %, CAS No. 
7697-37-2) was purchased from Riedel-de Haën, sodium acetate trihy-
drate (≥99.0 %, CAS No. 6131-90-4) was purchased from VWR, ethyl-
enediaminetetraacetic acid tetrasodium salt dihydrate (EDTA, 99 %, 
CAS No. 10378-23-1) was purchased from AppliChem, and amino-
ethylaminomethyl)phenethyltrimethoxysilane (AEAM-PTMS, 80 %, 
CAS No: 74113-77-2) was purchased from Gelest. 

All chemicals, except toluene, were used as received without further 
purification. Toluene was dried via a distillation process. For the prep-
aration of all aqueous solutions, Milli-Q water was used. 

2.2. Synthesis and characterization of nanoadsorbents 

2.2.1. Synthesis of dense silica particles 
Dense SiO2 nanoparticles (NPs) were synthesized using a modified 

Stöber method as described earlier [41]. Hydrolysis of precursor TEOS 
was performed in an alcoholic solution using ammonium hydroxide as a 
catalyst. The reaction mixture consisted of 200 mL 96% ethanol, 35 mL 
Milli-Q water, and 7.5 mL of 25 % ammonium hydroxide solution and 
was mixed in a reaction flask at 70 ◦C and under the nitrogen atmo-
sphere. 11.16 mL of TEOS was added dropwise with a PET syringe 
supplied with a stainless steel 0.80x80mm needle, stirring the reaction 
mixture for 2 h. When the reaction stopped, the SiO2 NPs were centri-
fuged (12000 rpm, 10 min), washed twice with ethanol (95 %) and three 
times with Milli-Q water. Particles were dried under nitrogen before 
further use. 

Fig. 1. Ligand N-(aminoethylaminomethyl)phenethyltrimethoxysilane.  
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2.2.2. Grafting of silica particles 
Prior to the grafting step, dry silica particles were pre-treated with 1 

M HNO3 to enhance the surface grafting onto surface silanol groups 
[42,17]. 500 mg of dry and acid-pretreated silica particles were 
dispersed in 20 mL of dry toluene. 1 mL of ligand N-(amino-
ethylaminomethyl)phenethyltrimethoxysilane (AEAM-PTMS) was then 
added (see Fig. 1), and the components mixture was kept in a reaction 
flask equipped with a reflux condenser for 24 h at 80 ◦C and under ni-
trogen flow. 

2.3. Synthesis of model compounds 

To reveal the molecular structure of metal complexes on the surface 
of prepared nanoadsorbent, we attempted crystallization of the com-
plexes between Ni(II) nitrate and N-aminoethyl aminomethyl benzene 
ligand in 1: 1, 1: 2 and 1: 3 M ratios and Co(II) nitrate with both N- 
aminoethyl-aminomethyl benzene and with tris(aminoethyl) amine li-
gands in in 1: 1 M ratio. Light violet (lilac) coloured crystals were iso-
lated in all cases where Ni2+ cation salts were used and proved as the 
same crystalline material of compound 1. In the case of Co2+ cations, the 
color of solution turned in all cases greenish brown with formation of a 
glassy product. The color indicated oxidation of Co(II) into Co(III) with 
formation of hydroxo complexes. Thus, to avoid hydrolysis of Co(III) 
species, the pH of the solution was adjusted to 3.0 by addition of nitric 
acid. The solutions then turned bright red. In the case of N-aminoethyl 
aminomethyl benzene, only a glassy solid could be isolated, while in the 
case of tris(aminoethyl) amine, massive crystallization of a single crys-
talline product compound 2 was observed. 

2.4. Physical characterization of obtained adsorbent material 

Scanning electron (SEM) micrographs of prepared adsorbent mate-
rial were obtained using an Hitachi FlexSEM 1000II with acceleration 
voltage of 5 kV, a spot size 20, and a working distance of 5 mm. For 
Transmission Electron Microscopy (TEM) experiments, dispersions of 
adsorbent particles were deposited on holey carbon grids (Pelco® 50 
mesh grids: Pitch 508 μm; hole width 425 μm; bar width 83 μm; trans-
mission 70%) and observed using a Philips CM/12 microscope (Thermo 
Fisher Inc.) fitted with LaB6 and operated at 100 kV. 

Nanoadsorbent’s selectivity to metals was characterized by 
elemental analysis of surfaces using energy-dispersive X-ray spectros-
copy (EDS). EDS spectra were obtained using an acceleration voltage of 
20 kV, a spot size of 40 and a working distance of 10 mm on the Hitachi 
FlexSEM 1000II microscope. 

Atomic Force Microscope (AFM) images were taken with a Bruker 
Dimension FastScan instrument using a FastScan-B probe with a nomi-
nal tip radius of 5 nm and a scan rate of 1–3 Hz. Gwyddion 2.56 software 
was used for data processing. 

The thermogravimetric analysis (TGA) of samples was carried out 
using a PerkinElmer Pyris 1 instrument in an air atmosphere at a heating 
rate of 5◦/min in the 25–800 ◦C interval. 

Fourier-transform infrared (FTIR) spectra were recorded as KBr 
pellets on a PerkinElmer Spectrum 100 instrument from 4000 to 400 
cm− 1. 

Dynamic Light Scattering (DLS) measurements for determination of 
the particle size and charge (zeta-potential) were carried out with a 
Malvern Zeta-Sizer Instrument in aqueous dispersions produced by 
ultrasonication. 

X-ray structure determinations. Single-crystal X-Ray Diffraction anal-
ysis was performed using a Bruker D8 Quest ECO diffractometer. The 
data were collected at room temperature in the 2–50.05 2theta range for 
a full hemisphere using MoKα radiation (λ = 0.71073 Å). Compound 1. 
C18H28N6NiO8, MW = 515.17 Da, Monoclinic, Space group P2(1)/c, a =
10.206(2), b = 11.324(2), c = 10.377(2) Å, β = 95.145(4)◦, V = 1194.4 
(4) Å3, Z = 2. The structure was solved by direct methods, obtaining 
coordinates of the majority of non-hydrogen atoms from the initial 

solution. The coordinates of the rest of the non-hydrogen atoms were 
obtained from difference Fourier syntheses. All non-hydrogen atoms 
were refined first in isotropic and then in anisotropic approximation. 
The coordinates of hydrogen atoms at the carbon atoms and the terminal 
nitrogen atom N(1) were obtained by geometric calculation, while those 
on the solvating water molecule were located in difference Fourier 
syntheses. All hydrogen atoms were refined in riding approximation 
bound to corresponding non-hydrogen atoms using temperature factors 
of these atoms to define the isotropic temperature factors of the 
hydrogen atoms defined as 1.200 Ueq for H-atoms located at C or N 
atoms and 1.500 Ueq for those in the solvating water molecule. The final 
discrepancy factors were R1 = 0.0951, wR2 = 0.22183 for 1554 
observed reflections [I > 2sigma(I)], and R1 = 0.1193 and wR2 =
0.2291 for all 2096 data. 

Compound 2. C6H14CoN7O10, MW = 403.17 Da, Orthorhombic, Space 
group Pna2(1), a = 25.6816(11), b = 7.2953(3), c = 7.9417(3) Å, Z = 4. 
The structure was solved by direct methods, obtaining coordinates of the 
non-hydrogen atoms connected to the cobalt cation from the initial so-
lution. Coordinates of nitrogen and oxygen atoms belonging to the ni-
trate counterions were located in subsequent difference Fourier 
syntheses. All non-hydrogen atoms were refined first in isotropic and 
then in anisotropic approximation. The coordinates of hydrogen atoms 
at the carbon atoms and the terminal nitrogen atoms N(2), N(3) and N 
(4) were obtained by geometric calculation, while those on the solvating 
water molecule were identified in subsequent difference Fourier syn-
theses. All hydrogen atoms were refined in riding approximation bound 
to corresponding non-hydrogen atoms using temperature factors of 
these atoms to define the isotropic temperature factors of the hydrogen 
atoms defined as 1.200 Ueq for H-atoms located at C or N atoms and 
1.500 Ueq for those in the solvating water molecule. The final discrep-
ancy factors were R1 = 0.0683, wR2 = 0.1904 for 2372 observed re-
flections [I > 2sigma(I)], and R1 = 0.0727, wR2 = 0.1972 for all 2528 
data. 

Full details of data collection and structure solution and refinement 
are available free-of-charge from the Cambridge Crystallographic Data 
Centre (CCDC) at https://www.ccdc.cam.ac.uk citing the deposition 
number 2,239,325 for compound 1 and 2,260,061 for compound 2. 

X-ray Photoelectron spectroscopy (XPS) was performed using a 
Quantera II Scanning XPS Microscope from Physical Electronics equip-
ped with an Al Kα source. For charge compensation a low-energy flood- 
gun, set at 1.0 V and 20.0 μA, was employed. The survey spectra were 
recorded using a pass energy of 224 eV and a resolution of 0.8 eV, and 
for the high-resolution spectra a pass energy of 55 eV and 0.1 eV reso-
lution were employed. The samples were suspended in deionized water, 
dropped on glass slides, and dried under a desktop lamp. The binding 
energy was calibrated against the C 1 s peak of adventitious carbon at 
284.8 eV from a reference sample. The data was treated in the CASA XPS 
software [43]. The spectra were smoothed using a Savitzky-Golay al-
gorithm with either a 5 or 9-point window. 

2.5. Functional characterization of the adsorbent material 

2.5.1. Adsorption isotherms 
For adsorption experiments, 20 mg of nanoadsorbent was added to a 

50 mL falcon tube, followed by the addition of 20 mL of an appropriate 
metal stock solution with concentrations of 0.5, 1, 2, 3, 4, and 10 mM. 
After adding NaNO3 solution to retain a constant ionic strength, the 
samples were left to equilibrate for 48 h before collecting the particles 
via centrifugation. The pH of initial solution was 7.5 apparently due to 
protonation of the ligand amino functions. The amount of metal uptake 
was determined by complexometric titration of the supernatant with 5 
mM EDTA. Xylenol orange indicator and 1 M acetate buffer were used 
for REE (Sm, Nd) determination, and murexide and 1 M ammonia buffer 
were used for LTM (Co, Ni) determination. The titrations were repeated 
in triplicates for each sample, and the average value was calculated. The 
relation between the adsorbed metal and adsorbent mass at a fixed 

M. Lakić et al.                                                                                                                                                                                                                                   

https://www.ccdc.cam.ac.uk


Separation and Purification Technology 323 (2023) 124487

4

temperature are presented as adsorption isotherms. The shape of ob-
tained isotherms provides considerable data regarding the nature of the 
adsorption process. Adsorption isotherms generally show a plateau at 
high metal concentrations, corresponding to the saturation of the 
adsorbent surface. To rationalize the shape of an adsorption isotherm, 
Langmuir and Freundlich isotherm models are used [44–46]. 

The Langmuir adsorption isotherm proposes that metal uptake oc-
curs on a homogeneous adsorbent surface by monolayer sorption 
without interactions between adsorbed molecules. Eq. (1) presents 
linear and Eq. (2) nonlinear forms of Langmuir isotherm: 

Cad,e

qad,e
=

1
qmax × KL

+
Cad,e

qmax
(1)  

qad,e =
KL × qmax × Cad,e

1 + KL × Cad,e
(2) 

Reversible and multilayer adsorption on a heterogeneous adsorbent 
surface is proposed by the Freundlich adsorption isotherm, where the 
adsorbed amount increases with the concentration in accordance with 
the following nonlinear (Eq. (3)) and linear equations (Eq. (4)). 

qad,e = Kf × Cad,e (3)  

lnqad,e = lnKf +
1
n
× lnCad,e (4)  

Cad,e denotes the equilibrium concentration of metal ions (mg/L), qad,e is 
the amount of metal adsorbed per specific amount of adsorbent (mg/g), 
qmax is the maximum adsorption capacity of adsorbent (mg/g), and KL is 
an equilibrium constant that reflects the affinity between the adsorbent 
and adsorbate (L/mg). The values of qmax and KL were calculated by both 
linear (from the slope and intercept of the linear plot of Cad/qad,e versus 
Cad) and non-linear (by OriginPro 9) methods. 

2.5.2. Adsorption kinetics 
Adsorption kinetics control the adsorption rate, determining the time 

required to reach equilibrium for the adsorption process. For adsorption 
kinetic experiments, 20 mg of grafted silica nanoparticles was suspended 
in 20 mL of 10 mM metal solution and shaken at RT. Samples were taken 
at predetermined intervals of 15 min, 30 min, 1 h, 3 h, 6 h, 18 h, and 24 
h, and titrated against 5 mM EDTA. 

Kinetic models can give information regarding adsorption pathways 

and probable mechanism involved [47,48]. The tested kinetic models 
were pseudo-first order, given by Eq. (5), and pseudo-second order, 
given by Eq. (6): 

qad,t = qad,e × (1 − e− k1×t) (5)  

qad,t =
k2 × q2

ad,e × t
1 + k2 × qad,e × t

(6)  

qad,t denotes the adsorption capacity in given time (mg/g), qad,t is the 
equilibrium adsorption capacity (mg/g), t is the adsorption time (h), k1 
is the constant of pseudo-first-order model (1/min), and k2 is the con-
stant of pseudo-second-order model (g/mgmin). 

2.5.3. Metal selectivity 
10 mg of dry particles were equilibrated for 24 h in 10 mL of equi-

molar (5 mM) aqueous metal mixtures on a shaker at RT. The metal 
release was done using 1 M HNO3 for 24 h at RT. The samples were dried 
under an N2 atmosphere before metal mapping using EDS. 

2.5.4. Desorption and reusability studies 
For the desorption test, we studied two different desorption media, 

HNO3 with three different concentrations and pH values (pH 0, pH 1, 
and pH 3) and 10 mM EDTA with pH 4.9. Desorption efficiencies were 
studied in an equimolar mixture of two (Co/Sm, Ni/Nd, Ni/Co, and Sm/ 
Nd) or with all four tested metals. Reusability studies were carried out 
by three successive adsorption and desorption steps, using one metal 
solution (20 mM) in the adsorption step and 1 M HNO3 as the desorption 
media. Desorption was carried out for 24 h, mixing the samples on the 
shaker. Afterwards, the samples were centrifuged (10000 rpm, 10 min), 
the supernatant collected, neutralized with ammonia to a pH value of 
6.5, and titrated with 5 mM EDTA to calculate the amount of desorbed 
metal. 

3. Results and discussion 

3.1. Preparation of nanoadsorbents 

The morphology of the synthesized material was analyzed by SEM, 
TEM and AFM techniques, proving the formation of highly uniform 
spherical particles with an average particle size of 100 nm preserved on 

Fig. 2. SEM (A) and AFM (B & C) images of prepared pristine dense silica nanoparticles, and TEM images of D, E: SiO2-AEAM-PTMS; F, G: SiO2-AEAM-PTMS + Ni.  
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all further steps of treatment, both on ligand grafting and with subse-
quent adsorption of metal cations (see Fig. 2). 

The material produced by ligand grafting contained the required 
amounts of organics corresponding to monolayer formation. According 
to the TGA study (see Fig. S1 in Supplementary material), the first step of 
weight loss corresponding to approximately 3 % was observed at 
25–120 ◦C and occurred due to dehydration of the silica surface and 
evaporation of the residual organic solvent (dry toluene). Above 120 ◦C, 
16.7 % weight loss was observed until 500 ◦C, attributed to decompo-
sition of the surface grafted ligand. The losses above 500 ◦C were related 
to the carbonization of organic residues on SiO2 NPs and combustion of 
the residual carbon. The calculated amount of grafted ligand AEAM- 
PTMS was estimated from TGA data as 1.47 mmol/g. 

The chemical nature of grafting of the ligand was revealed by FTIR 
(see Fig. 3). The spectra of surface grafted SiO2 NPs showed character-
istic peaks of SiO2 around 1090 cm− 1, 800 cm− 1, and 460 cm− 1 corre-
sponding to δ(Si–O–Si), υ(Si–O–Si) and υas(Si–O–Si) vibrations. 
Bands at 1640 cm− 1 and 950 cm− 1 confirmed the presence of residual 
hydroxyl functions δ(O–H) and υas(Si–OH), respectively. Peaks at the 
app. 3300 cm− 1, 2935 cm− 1, and 1610 cm− 1 corresponded to υ(N–H), 
υas(CH2-NH2), and δ(N–H and NH2) vibrations, respectively [49,50], 
and confirmed successful functionalization of the silica nanoparticles 
with the amino-containing ligand AEAM-PTMS. 

The surface properties of the particles were changed strongly at each 
step of surface transformation as revealed by surface charge changes 
(zeta-potential values) obtained from DLS experiments. The pristine 
silica nanospheres at pH = 6.5 had a highly negative zeta-potential of −
50.6 mV (±1.18 mV), typical for a hydroxyl-terminated silica. Grafting 
of a ligand monolayer resulted in recharging of the surface with positive 
zeta-potential + 9.27 mV (±1.15 mV), emerging apparently due to 
protonation of the amino functions with formation of positively charged 
ammonium centers on the surface. Adsorption of Ni2+ cations led to 
recharging with a final negative zeta-potential of − 9.6 mV (±0.369 
mV). The positive charge was apparently removed due to complexation 
of the cations with chelating ligands and formation of close ion pairs as 
demonstrated by the investigated molecular models (please see part 
3.3.1 below for details). 

3.2. Adsorption equilibrium isotherms and adsorption kinetics 

Fitting of the adsorption data was carried out following Langmuir, 
Classical Freundlich and Extended Classical Freundlisch, and D-R 
models [44–46] (see Fig. 4A and S5). The comparison demonstrated that 
the adsorption isotherms followed the Langmuir model over the con-
centration range studied for all metals (Fig. 4A), indicating that the 
adsorption sites were homogeneous and that adsorption of the metal 
cations proceeded with formation of a monolayer of adsorbate on the 
uniform material surface with no interactions between adsorbed mole-
cules [51–54]. The AEAM-PTMS ligand as expected, showed affinity 
towards LTM, due to the existence of two amino donor sites in its 
structure [55]. Nevertheless, the adsorption capacity for REE was also 
pronounced. The prepared nanoadsorbent had the highest affinity to-
wards Ni (1.45 mmol/g) and Co (1.18 mmol/g), followed by Sm and Nd 
(0.56 and 0.47 mmol/g, respectively). Maximum adsorption capacity 
and metal/ligand stoichiometry results are presented in Table 1. Based 
on these results, it is possible to conclude that the prepared material, 
silica grafted with AEAM-PTMS ligand, offered a promising nano-
adsorbent for LTM sequestering, obtaining near 1:1 metal to ligand 
stoichiometry (0.99 for Ni, and 0.80 for Co). 

Adsorption kinetics were rapid for all tested metals. The kinetic 
curves reached equilibrium in 6 h, as seen in Fig. 4B. The adsorption 
kinetics showed that most of the uptake (70–90 %) occurred within the 
first 3 h of the interaction of metals with grafted silica nanoparticles. All 
the kinetics followed pseudo-second-order, which assumes that the 
metal uptake process is controlled by the adsorption reaction at the 
liquid/solid interface in the adsorbent and not by diffusion. Comparison 
of the fitting of pseudo-1st and pseudo-2nd order models [47,48] is 
presented in Fig. S6. 

The mechanism behind metal adsorption onto the surface of the 
adsorbent is a complex phenomenon and dependent on various factors, 
such as physico-chemical properties of the metal cations and electro-
static attractions, ionic exchange or complexation (Lewis acid–base 
interaction) between positively charged metals and negatively charged 
surfaces of the adsorbent as well as pH of the microenvironment 
[56–58]. The adsorption isotherm study proved the formation of a 
monolayer on the surface of the nanoadsorbent and can indicate the 
chemisorption of targeted metals onto surface functional moieties/ 

Fig. 3. FTIR spectra of synthesized control and AEAM-PTMS grafted silica particles.  
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active sites. Prepared model molecular compounds of metals and ligand 
in the form of single X-ray quality crystals gave molecular insights into 
metal complexation (described under 3.3.1). 

3.3. Nanoadsorbent selectivity 

EDS analysis was used to study average nanoadsorbent selectivity 
after metal uptake by determining the elemental ratios between metals 
on different areas of the adsorbents. The results are presented in Table 2. 
When the adsorbent was used in the mixture of LTM and REE, Ni/Nd, 
and Co/Sm, the selectivity was 8.6/1 and 3.2/1, respectively. When the 
adsorbent was tested in an equimolar mixture of two LTMs, the adsor-
bent did not show selectivity towards Co or Ni. In the case of the equi-
molar mixture of REE, the adsorbent showed slightly higher selectivity 
towards Sm. The results show an adsorbent preference to preferentially 
bind LTM over REE. Fig. 4. Adsorption isotherms fitted with Langmuir model (A) and adsorption 

kinetics fitted with the pseudo-2nd order model (B) of prepared nano-
adsorbent material. 

Table 1 
Maximum adsorption capacities of prepared nanoadsorbent and obtained metal/ 
ligand stoichiometry.  

Metal Maximum adsorption capacities (mmol/g) Metal/ligand stoichiometry 

Co  1.18  0.80 
Ni  1.45  0.99 
Sm  0.56  0.38 
Nd  0.47  0.32  

Table 2 
Selectivity of prepared nanoadsorbent material.  

Metal mixture  Atomic metal ratio 

Ni/Co  1/1 
Ni/Nd  8.6/1 
Co/Sm  3.2/1 
Sm/Nd  1.4/1  

Fig. 5. Molecular structure of the complex [Ni(η2- 
H2NC2H4NHCH2C6H5)2(H2O)2](NO3)2. Only one hydrogen bonded nitrate 
anion is displayed for clarity. 

Fig. 6. The packing of [Ni(η2-H2NC2H4NHCH2C6H5)2(H2O)2](NO3)2 structural 
units displayed along the a-axis. 
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3.4. Molecular insights into selective action – Crystallographic models 

In order to gain better understanding of the observed selective action 
of the absorbents, we investigated the complex formation between the 
ligand function, N-aminoethyl-aminomethyl benzene and metal cations. 
Independent of the applied ratio of reagents, the product turned to be a 
salt containing a centrosymmetric “propeller-like” cationic unit [Ni(η2- 
H2NC2H4NHCH2C6H5)2(H2O)2]2+ with two ligand molecules attached 
to the metal cation, along with two nitrate anions connected to the 
complex via short hydrogen bonding (see Fig. 5). Formation of the 
complexes with Ni: L = 1: 2 ratio has been reported earlier by Patel et al. 
[55], but no structural characterization has been provided. Coordination 
of the nickel cation is octahedral with four nitrogen atoms in the 
equatorial plane and two hydrating water molecules in the axial posi-
tions. The square planar arrangement in this case is apparently not 
associated with low-spin coordination of Ni(II) or any Jahn-Teller 
distortion, as the bond length to the nitrogen atoms 2.076(2) and 
2.130(2) Å are apparently comparable with the bond length to the sol-
vating water molecules, 2.107(2) Å. 

In the crystal structure of the compound, the molecules are aligned 
with each other as seen from the packing motif (see Fig. 6), but are 
situated too far from each other for manifestation of π-π stacking – the 
distance between parallel benzene ring planes being equal to the length 
of the unit cell parameter, i.e. ca. 10 Å. 

The absence of π-π stacking is also revealed via the apparent flipping 
movement of the benzene rings (see Fig. S2 and S3). In non-restricted 
refinement, the thermal ellipsoids of carbon atoms in the ring are 
characteristically elongated. Any attempt of splitting the ring atoms into 
separate positions for explanation through positional disorder were 
unsuccessful, making refinement unstable. 

In the surface layer, the attachment of Ni2+ cations to the ligands 
should follow the same pattern of chelation, but only one ligand can be 
bound to the metal centre due to steric reasons. This explains the 
observed 1: 1 cation-to-ligand stoichiometry. The density of ligand 
grafting is close to maximum coverage of a smooth silica surface, 
implying that the separation in space between the ligand molecules 
should be in the range 6.3–6.8 Å [59]. It should allow better alignment 
of benzene rings, but is too long for orbital interactions requiring at 
maximum about 4.4 Å distance between the centroids [60]. 

No single crystals could be isolated from the Co2+ solutions with N- 
aminoethyl-aminomethyl benzene as ligand, but the color changes (see 

Fig S4.) indicated rapid oxidation into Co3+ species. Since analogous 
behavior has been observed earlier with a related tris(aminoethyl) 
amine ligand [40], an attempt to crystallize the cobalt derivative was 
carried out and successful, resulting in a quantitative yield of the related 
complex [Co(H2NC2H4)3N(H2O)(NO3)](NO3)2 (2) (see Fig. 7). The 
Chemistry of Co2+ cations in interaction with chelating amino-ligands is 
discussed in detail in N.N. Greenwood and A. Earnshaw [61], where 
both the analogies in reactivity and specific stability of 3d6 electronic 
configuration are described and explained.The coordination of the Co3+

cation is octahedral with 4 positions occupied by the nitrogen atoms of 
the ligand, where N(1) provides for the tertiary amino function and N 
(2), N(3) and N(4) – for the primary amino functions. The residual two 
places in the inner coordination sphere are occupied by a solvating 
water molecule O(1) and an oxygen atom of directly bound nitrate anion 
O(11). An important feature is that all the bonding distances are much 
shorter compared to Ni2+ and are very close to each other except for a 
considerably longer bond to the solvating water molecule: Co(1)-N(1) 
1.919(6), Co(1)-O(11) 1.924(5), Co(1)-N(3) 1.930(12), Co(1)-N(2) 
1.938(10), Co(1)-N(4) 1.966(9), and Co(1)-O(1) 1.970(10) Å. This in-
dicates formation of the low-spin 3d6 electron configuration, charac-
terized by strong metal–ligand bonding and high activation energy of 
ligand exchange – a potential hinder for Co3 + cation desorption at low 
pH. 

Chelating inner sphere complexation of the polyamino ligands with 
LTM explains the observed affinity of the functionalized adsorbent and 
hindered desorption of the Co-cations. REE, as demonstrated recently, 
do not bind to amino functional ligands, but instead can form thin layer 
deposits of hydroxides [40], making the adsorbent much less efficient to 
REE compared to LTM. 

3.5. Molecular insights into selective action – XPS spectroscopy data 

The hybrid adsorbents, as prepared and after uptake of Co, Ni, and 
Nd, were analyzed by XPS (see Fig. 8). For the Co, Ni, and Nd containing 
samples, two shifts for N 1 s binding energies were seen, one major at 
about 400 eV and one minor between 406.2 and 407.3 eV. The minor 
shift is characteristic of NO3

–, originating from the NaNO3 used for 
maintaining the ionic strength during adsorption [62]. The major shift at 
398.5 eV for the adsorbent not bearing metal cations (Fig. 8, bottom) 
corresponds to a protonated amino group [63]. After adsorption of the 
metal cations, the major N 1 s signal is slightly upshifted with about 1 
eV, in good agreement with previous reports of these metal ions in 
complexation with nitrogen containing ligands [64–66]. 

High resolution XPS spectra were recorded for all three metal cat-
ions. In the case of cobalt cations, as indicated by both the color change 
on their adsorption and seen from the molecular structure model 
(Fig. 7), their uptake was associated with oxidation of Co2+ into Co3+, 
and the observed signal at 781 eV corresponded well to the literature 
data on octahedrally coordinated Co3+ cations [67]. In the nickel 
spectrum, the observed signals at 872.4 and 854.9 eV corresponded well 
to octahedrally coordinated Ni2+ cations [68], which also correlated 
with the investigated molecular model (Fig. 5). The spectrum of neo-
dymium showed a split peak for Nd3+, indicating potential variety in its 
coordination. This was expected due to a combination of the surface 
complexation with the growth of a hydroxide layer caused by the local 
pH rise via protonation of the amino functions. 

3.6. Desorption and reusability study 

We tested the desorption efficiency after metal uptake from equi-
molar metal mixtures of two or four metals. Results were obtained by 
EDS mapping after samples were shaken for 24 h using four different 
desorption solutions, HNO3 with 3 different pH values, and 10 mM 
EDTA. 

Results of metal release after uptake from an equimolar mixture of 
REE and LTM metal are presented in Fig. 9A for Co/Sm and Fig. 9B for 

Fig. 7. Molecular structure of the complex [Co(H2NC2H4)3N(H2O)(NO3)] 
(NO3)2 (2). 
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Ni/Nd mixture. HNO3, with the lowest pH value (pH 0), exhibited the 
highest removal rate of adsorbed Co, while all desorption media 
removed almost all adsorbed Sm (98–100 %). When the desorption step 
was repeated using acid with pH 1, the removal rate for Co rose from 
52.5 to 75 %. In the case of the Ni/Nd equimolar mixture, the desorption 
efficiency was high for all metals, varying from 90.5 % (Nd at pH 1) to 
100 % (Ni at pH 1). Overall, HNO3 with pH 0 had the best desorption 
efficiency. Results of metal release after uptake from an equimolar 

mixture of LTM cations are presented in Fig. 9C and for the release of 
REE cations in Fig. 9D. Typically, the Co cations appeared more resilient 
to acid treatment, as described earlier by our group [40]. This was 
apparently due to kinetic hinders caused by the crystal field activation 
energy for the formed Co3+ cations with 3d6 electron configuration. 
Characteristically, the desorption efficiency for Ni cations decreases 
when we try to remove them after uptake from Ni/Co mixtures 
compared with removal after uptake from mixtures of Ni/Nd. When we 

Fig. 8. XPS spectra of the hybrid adsorbent (below) and the adsorbent after uptake of Co, Ni and Nd cations respectively.  
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tried to release the REE cations from Sm/Nd mixtures, the desorption 
media with higher pH values (i.e. 10 mM EDTA and HNO3 pH 3) 
exhibited slightly higher desorption efficiency. 

When the desorption efficiency study was carried out after uptake 
using a four metal mixture, the desorption efficiency was highest using 
HNO3 with pH 0 for all metals except for Co (see Fig. 10). 

Table 3 shows the possibility of nanoadsorbent reusability. We can 
observe that samples showed good desorption rates in each cycle 
ranging between 70–––100 %. A decrease in adsorption rates was noted 
after the first and second desorption cycles for Co. However, the nano-
adsorbent had good adsorption/desorption rates even after three cycles 
for all other metals. 

Fig. 9. Desorption efficiency after uptake from two metal equimolar solutions: (A) Co/Sm; (B) Ni/Nd, (C) Ni/Co, and (D) Sm/Nd.  

Fig. 10. Desorption efficiency after uptake from a four metal equimolar solution.  

Table 3 
Nanoadsorbent reusability test study, where A stands for the adsorption step and 
D for the desorption step.  

Metal 1st cycle 2nd cycle 3rd cycle 

A 
(mmol/g) 

D 
(%) 

A 
(mmol/g) 

D 
(%) 

A 
(mmol/g) 

D 
(%) 

Co  0.750 81.3  0.662 46.2  0.574 67.6 
Ni  1.144 100  1.144 92.1  1.100 90 
Sm  0.517 97.9  0.474 94.8  0.474 85.6 
Nd  0.484 94.1  0.484 100  0.430 90  
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3.7. Comparison with earlier reported adsorbents 

The task of separating REE and LTM with focus on LTM separation is 
of great importance for developing approaches to recycling of magnetic 
materials, but still remains a relatively scarcely addressed challenge. 
High selectivity has been proven for mesoporous silica based materials 
(see Table 4), but they are rather costly and suffer from hinders in 
desorption of adsorbed components. This emphasizes the need for un-
derstanding the principles of constructing adsorbents featuring higher 
selectivity towards LTM compared to REE. The material reported in the 
present work combines good adsorption capacity and quick desorption 
kinetics with pronounced selectivity towards LTM and even consider-
able difference in behavior between Co and Ni species, which opens new 
possibilities for many other potential applications. 

4. Conclusions 

We demonstrated a one-step grafting synthesis of hybrid SiO2 
nanoadsorbents permitting sequestration and separation of REE and 
LTM – a new and highly requested area of applications. The prepared 
material was characterized and tested for its adsorption, separation, and 
reusability properties in single or mixed equimolar metal solutions. 

The produced adsorbent showed relatively rapid adsorption kinetics 
for LTM and REE at room temperature. Adsorption capacity achieved 
higher values for LTM, demonstrating the formation of surface com-
plexes with 1:1 composition for studied Ni cations. The adsorbent 
revealed pronounced selectivity towards LTM compared to REE. Mo-
lecular insights into the origin of selective action were obtained through 
studies of the complex formation between the Ni(II) and the N-benzyl- 
ethylenediamine ligand function and Co(III) with tris(aminoethyl)amine 
ligand, showing chelation as a principal factor guiding LTM adsorption 
and desorption. Relatively dense packing of ligands on the silica surface 
was shown to have potential effects on their ordering permitting high 
adsorption capacity, resulting in 1:1 cation-to-ligand stoichiometry. The 
insights obtained from the model molecular structures were supported 
by the results of the XPS studies. 

The desorption of target cations was investigated after uptake from a 
single metal solution and an equimolar mixture of 2 or 4 metals. The 
prepared nanoadsorbent exhibits high desorption rates even after three 
cycles of adsorption and desorption. 

To summarize, this work proposes that the evaluated sorbents have 
potential as an environmentally friendly alternative to the conventional 
liquid phase separation techniques for LTM separation from REE. 
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