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Abstract: Soy (Glycine max) is used in a wide range of products and plays a major role in replacing
animal-based products. Since the cultivation of soy is limited by cold climates, this review assessed
the nutritional, sensory, and functional properties of three alternative cold-tolerant crops (faba bean
(Vicia faba), yellow pea (Pisum sativum), and oat (Avena sativa)). Lower protein quality compared with
soy and the presence of anti-nutrients are nutritional problems with all three crops, but different
methods to adjust for these problems are available. Off-flavors in all pulses, including soy, and in
cereals impair the sensory properties of the resulting food products, and few mitigation methods are
successful. The functional properties of faba bean, pea, and oat are comparable to those of soy, which
makes them usable for 3D printing, gelation, emulsification, and extrusion. Enzymatic treatment,
fermentation, and fibrillation can be applied to improve the nutritional value, sensory attributes,
and functional properties of all the three crops assessed, making them suitable for replacing soy in a
broad range of products, although more research is needed on all attributes.

Keywords: faba bean (Vicia faba); pea (Pisum sativum); oat (Avena sativa); soy alternative; plant-based
food; plant-based proteins

1. Introduction

The food industry produces 37% of total greenhouse gas emissions worldwide. The
production of plant-based foods accounts for approximately 29% of these emissions, while the
production of animal-based foods is responsible for more than 57% [1]. Therefore, shifting
toward a more plant-based diet is one solution to reduce the environmental impact of food [1,2].
Owing to its characteristic gelling properties and its ability to form an anisotropic fiber
structure [3], soy (Glycine max) can play a major role in supporting this dietary shift [4] and
is already used in dairy [5], fish, and meat analogues [6,7]. However, in northern Europe,
soy cultivation is limited by the cold climate [8]. Thus, this review explores the potential of
three alternative cold-tolerant crops (faba bean (Vicia faba), yellow pea (Pisum sativum), and oat
(Avena sativa)) to replace imported soy. Faba bean and pea are the most cultivated legumes
in Sweden, with great potential for increased cultivation [9]. Both crops are primarily used
as animal feed [9], but both have potential for various food applications [10,11]. Oat plays a
major role in dairy replacement products [12], which is why it was also included in the review.
To evaluate the potential use of the individual crops in food products, an overview of their
nutritional, sensory, and functional properties was made.

2. Nutritional Properties

The consumption of legumes and cereals has beneficial effects on human health [13,14],
with increased consumption reported to lower the risk of heart disease [15], reduce blood
cholesterol, and lower the risk of certain types of cancers [16]. While possessing these health-
promoting properties, faba bean, pea, and oat have lower protein quality than soy when
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evaluated using the Digestible Indispensable Amino Acid Score (DIAAS) [17,18]. Table 1
provides an overview of the amino acid composition, the DIAAS and the macronutrient
and micronutrient concentrations found in faba bean, pea, oat, and soy. The high DIASS
score for soy (≥75) means that it is considered a high-quality protein, whereas oat, faba
bean, and pea (DIAAS ≤ 75) are categorized as no-quality proteins. This can be attributed
to the limited levels of cysteine and methionine in faba bean [19] and pea [20], and of lysine
in oat [18]. Additionally, factors such as the folding and cross-linking of the proteins, ionic
strength, and the presence of secondary molecules and antinutritional factors influence the
digestibility of faba bean, pea, and oat proteins [21]. To improve the digestibility, different
processing techniques can be used (see below) or different complementary protein sources
can be combined to increase the DIAAS score [18].

Table 1. Concentrations of macronutrients and micronutrients in soy, pea, faba bean, and oat
protein and their DIAAS score, where DIAAS ≥ 100 indicates an excellent protein source meeting all
physiological requirements [17,18].

Soy Pea Faba Bean Oat Sources

Carbohydrates (%) a 20–30 28–65 55–71 69–76

[3,4,10,11,22–29]

Protein (%) a 36–40 23–31 23–35 12–20
Globulins (%) 90 49–70 60–78 70–80
Prolamins (%) NA 4–5 3–8 4–14
Albumins (%) NA 15–25 18–22 1–12
Glutelins (%) NA 11 10–18 <10

Fiber (%) a 5–12 22–27 4–17 5–10
Fat (%) a 18–20 1–2 0.7–3.2 5–18

Saturated fatty
acids (%) 6 18–25 0.4 19–22

Monounsaturated
fatty acids (%) 21 22–33 0.6 36–40

Polyunsaturated
fatty acids (%) 73 42–61 1.3 40–43

Ash (%) a 5–6 2–4 2.6–4.4 1–2

Amino acids
(mg/g protein)
Essential amino acids

Recommended
intake d,

mg/g
Histidine 16.5 20.0 29.2 b 14.1 15

[24,30]

Isoleucine 20.9 28.8 24.5 b 20.3 30
Leucine 55.0 71.3 57.8 b 59.4 59
Lysine 37.4 58.8 52.5 b 20.3 45
Methionine 3.3 3.8 NA 1.6
Phenylalanine 35.2 46.3 30.7 b 42.2 30 *
Threonine 25.3 31.3 31.3 b 23.4 23
Valine 24.2 33.8 37.1 b 31.3 39

Non-essential amino
acids

Arginine 52.8 73.8 93.2 b 48.4
Alanine 30.8 40.0 52.6 a 34.4
Cysteine 2.2 2.5 10.01 b 6.3
Glutamic acid 136.3 161.3 144.7 a 171.9
Glycine 29.7 35.0 34.1 a 26.6
Proline 36.3 38.8 37.7 a 39.1
Serine 37.4 45.0 44.3 a 34.4
Tyrosine 24.2 32.6 NA 23.4

DIAAS c 91–92 66–70 55 44–57 [17,18]

Vitamins a

[19,31–34]

Vitamin B1 (mg) 1.0 0.7 0.55 1.1
Vitamin B2 (mg) 0.46 0.27 0.29 0.18
Vitamin B3 (mg) 3.6 NA 2.8 0.9
Vitamin B6 (mg) 1.1 0.12 0.37 0.15
Vitamin B7 (µg) 30 NA NA 38
Vitamin B9 (µg) 250 274 423 37
Vitamin E (mg) 29.5 5.11 0.08 3.3
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Table 1. Cont.

Soy Pea Faba Bean Oat Sources

Elements a

[11,33–36]

Calcium (ppm) 2680 850 1030 100
Magnesium (ppm) 1820 1450 1500 1600
Potassium (ppm) 12,690 10,000 13,300 5100
Phosphorus (ppm) 6177 5500 6560 4100
Zinc (ppm) 40 43 48.5 40.8
Copper (ppm) 14 7 16.6 8.6
Iron (ppm) 91 60 26.5 94.1
Manganese (ppm) NA NA 14.4 40.3

a per 100 g of the major bean/grain. b average of different cultivars. c FAO FN Paper 92 2011, ages 0.5–3 years,
AA ref standard (mg/g protein) [37]. d mean nitrogen requirement of 105 mg/kg per day (0.66 g protein/kg per
day) [38]. * value corresponds to phenylalanine + tyrosine [38].

In addition to proteins [39], micronutrients such as vitamins [40,41], minerals [36,42],
β-sitosterol, and β-glucan (in oats [43]) play a major role in human nutrition. However, the
presence of bioactive compounds such as tannins, phytic acid, and lectins can lower the
bioavailability of certain nutrients [44,45]. For example, negative effects of phytate on the
bioavailability of zinc and iron have been widely reported [46,47]. The concentrations of
bioactive compounds vary between crops [48], varieties [30], growing conditions [49], and
fraction of the raw material [11]. By air-classifying faba beans, Coda et al. (2015) found that
anti-nutritional compounds are mostly found in the protein-rich fraction [50]. For phytate,
this can be attributed to the high binding capacity between phytate and protein during
seed maturation, resulting in proteins extracted from plants containing high amounts of
phytic acid [51].

To improve the bioavailability of nutrients, inhibitors [52] and lectins can be fraction-
ated during processing [53]. Lectins are inactivated during heat treatment [53]. Tannins,
saponins, and phytic acid are heat-stable and can be reduced by dehulling, soaking, ger-
mination, or fermentation [19,45]. However, a recent study showed that plant-based meat
substitutes available on the Swedish market, including products made from soy, pea, faba
bean, and oat, lack available iron [54], despite extensive product processing. This indi-
cates that more research efforts are needed—specifically, to reduce the phytate content in
plant-based raw materials—in order to meet the dietary recommendations for iron and zinc.
Aside from anti-nutrients, the compounds vicine and convicine, found in faba beans [55],
can cause a severe form of hemolytic anemia in susceptible individuals [19,25]. Vicine and
convicine are unstable in acidic media and degrade at higher temperatures [56], while fer-
mentation [57] can also be used to detoxify faba beans. Despite the overall good nutritional
quality of legumes and cereals, further processing is essential to improve the digestibility
of proteins [21] and minerals [58] and to eliminate potentially harmful substances [56].

3. Functional Properties and Processing

The functional properties of proteins are essential for food processing and influence
the organoleptic characteristics of food products. The functionalities are governed by the
charge, hydrophobicity, topology, molecular weight, and structure of the proteins [59–61].
Plant-based proteins mainly consist of globulins [62–65] (see Table 1), which have limited
solubility and a tendency to aggregate during extraction [59,66–68]. The functional proper-
ties of globulins differ between sources and extraction protocols, making it impossible to
claim that one protein is better than another [66]. Plant-based proteins need high tempera-
tures to undergo appreciable structural changes [59,69], further limiting their functional
properties. To overcome these limitations, environmental factors such as pH, temperature,
or ionic strength may need to be adjusted [61,69].

3.1. Gelation

Heat-induced protein gelation is an important step in the production of many foods.
Like soy protein, faba bean and pea protein have a denaturation temperature below
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95 ◦C [70–72]. Oat differs in its high denaturation temperature (approximately 110 ◦C) [73],
which limits its gel formation in certain applications. Oat protein is reported to have poor
gel properties at acidic and neutral pHs [74], although stronger gels at acidic and neutral
pHs have been reported more recently [75]. The limited gelation of oat protein at certain
pHs can be improved by, e.g., acylation [76].

Both pea and faba bean proteins have the capability to form heat-induced gels at an
acidic pH [70,77]. Overall, the heat-induced gelation of pea protein appears qualitatively
similar to that of soy protein [66], but pea protein forms weaker and less elastic gels when
prepared under the same conditions [78]. Faba bean protein gelation has been less studied,
but shows comparable behavior to soy in terms of its rheology and microstructure at
different pHs and similar development of the storage modulus value during heating and
cooling [23,77]. A slightly lower minimum gelling concentration has been reported for faba
bean protein compared with pea and soy protein extracted using the same procedure [79].

Heating is the most common way to induce the gelation of food proteins, but gelation
can also be induced by other means, such as pressure, pH shifting, and enzymatic cross-
linking [80]. However, there has been little research on the gelation of oat, pea, and faba
protein by methods other than heating [14,81–83].

3.2. Foaming and Emulsification

Proteins play a key role in foaming and emulsification, as they can act as a surfactant
and help to stabilize foams and emulsions [84]. However, plant-based proteins typically
show relatively poor foaming and emulsifying properties, so modification of the protein
is necessary [84].

An alkaline pH appears to be beneficial for the foamability of faba bean protein, as
it increases the surface hydrophobicity of the protein, improving air entrapment in the
system [85,86]. Similar results have been reported for pea [87] and oat protein [88], although
the effect of pH on foam stability varies between studies. A comparison of pea isolate and
pea concentrate showed better foaming and emulsifying properties of the isolate, which
was attributed to the higher purity of the protein [89].

Enzymatic hydrolysis increases surface hydrophobicity, and thereby foaming and
emulsifying properties, at both acidic and neutral pHs. In one study, faba bean exhibited
good emulsifying properties following ultrasonication and alcalase treatment, and it was
able to partly replace egg yolk in low-fat mayonnaise [90]. Table 2 lists some enzymes
that improve foaming and emulsion properties. Protein denaturation by high-pressure
processing and heating has been shown to improve the foaming and emulsifying prop-
erties in faba bean and pea [91]. Konak et al. (2014) improved the foaming properties of
oat by the selective removal of non-polar lipids using super-critical CO2 extraction, and
they concluded that lipid-binding tryptophanins are the foam-active proteins in oat [88].
Therefore, defatting of the raw material may be necessary to produce stable foams.

3.3. Extrusion

During extrusion, protein molecules unfold and align in the direction of flow to form
a fibrous structure supported by intermolecular bonds and aggregations [59]. Soy protein
is frequently used for producing meat [7,92,93] and fish analogues [3,69], mainly using low-
moisture (10–35%) extrusion (LME) [93] and high-moisture (40–80%) extrusion (HME) [94].
Products made using LME need to be rehydrated before use, which can lead to limitations
in their taste and texture [7]. Therefore, only HME is discussed further here.

Products made with HME have a high moisture content, no requirement for rehydra-
tion, and a fiber structure closer to that of meat [95]. The extrudates are generally made
from soy and pea proteins, gluten [94], polysaccharides [27,96], and other non-protein
ingredients that are important for the structure, flavor, and nutritional profile [7,27]. The
influence of different processing parameters [97] and ingredients [98] on the product qual-
ity of soy protein-based meat alternatives is summarized by Lin et al. [99]. Pea [100,101]
and faba bean [96,102] protein have the capability for producing texturized food products
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comparable to soy-based extrudates [3,7,103]. It has been shown that the ash, fiber, protein
content, and the water-holding capacity of pea and faba bean protein affect the textural
properties of the resulting meat analogues [104]. Different ratios of isolates and concen-
trates further affect the structure [105]. A study using HME showed that enzymatically
hydrolyzed destarched oat-protein concentrate, together with pea protein, can be used to
create meat analogues with a fibrillary structure [106]. Extrusion has also been used to
increase the protein digestibility of pea [107] and faba bean protein [108] without causing a
loss in amino acids [101] or major changes in nutritional value [19]. HME can lead to the
inactivation of trypsin, chymotrypsin, and α-amylase [108] and can reduce the levels of
condensed tannins and phytic acid [19]. Combined extrusion and fermentation [109] or
enzymatic treatment [106] has an effect on the physicochemical, textural, and sensorial prop-
erties of extrudates [109]. Mixing different legume [110,111] and cereal-based [92,112] raw
materials provides the potential to further improve their structure, nutritional value, [97]
and flavor [7].

3.4. 3D Printing

Three-dimensional (3D) printing is a novel technique that allows for production of food
products with personalized nutritional properties and customizable form [113]. Materials
for 3D printing must be easily extrudable through the nozzle, shear-thinning, and maintain
the deposited shape [114]. Challenges associated with 3D printing include ingredient mix
rheology, structure accuracy, shape stability, and the effect of post-processing techniques
and printing speed [115–117]. The emulsifying and water- and fat-binding properties of
pea proteins make them a good ingredient for 3D printing [118,119]. Sridharan et al. (2021)
used pea protein to stabilize rapeseed oil droplets, creating 3D-printed jammed emulsions
that could retain their shape for 48 h [120]. In a subsequent study, the addition of pea
protein also stabilized potato starch 3D structures by promoting cross-linking between
starch granules [121]. However, if the pea protein content exceeded 2%, the protein com-
peted with the starch for moisture and reduced the starch’s gelling abilities and paste
printability [121]. In both oat and faba bean 3D-printed products, fiber is an important
ingredient because of its high water-binding capacity, which improves printability and
shape stability [117,122,123]. It has been shown that the undesirable color changes asso-
ciated with rye and oat products can be avoided by printing at a higher pH and a lower
temperature and by pre-processing the ingredients, thus reducing polyphenol oxidase
activity. However, for successful 3D printing using legume and cereal protein, each ink
formulation needs to be adapted individually [115].

3.5. Fermentation

Fermentation is used to extend shelf-life and also to impart the characteristic aromas,
flavors, textures, and nutritional quality of foods [124]. Fermentation may be applied at
the ingredient level, e.g., isolates, or at the product level, e.g., plant-based milk. Fermen-
tation with lactic acid bacteria (LAB) is the main process studied in most of the available
literature, while fungal and yeast fermentation are less commonly studied. Numerous
LAB strains are capable of fermenting faba bean, pea, and oat, with some of these strains
having been isolated from the raw material, e.g., Pediococcus pentosaceus, Leuconostoc kimchi,
Weissella cibaria, and Weissella confusa have been isolated from faba bean [125]. Leuconostoc
plantarum is also indigenous to plants such as legumes and grains, and it is perhaps the
most studied strain for the fermentation of faba bean, pea, and oat. Moreover, commercial
starters for conventional yoghurt production, containing Streptococcus thermophilus and
Lactobacillus delbrueckii subsp. Bulgaricus, have the capability to ferment dairy analogues
based on pea [126] and oat [127].

A considerable number of studies have observed improved nutritional quality as
a result of fermentation. Increased antioxidant activity as a result of fermentation has
been observed in pea flour [128,129] and oat flour [130], while degradation of condensed
tannins has been found in pea flour [128] and faba bean [131] and the degradation of
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phytic acid in faba bean [125,132] and oat [133]. In addition, fermentation decreases the
vicine and convicine levels in faba bean [131,134]. The indigestible and flatulence-causing
α-galactosides found in legumes (raffinose, stachyose, and verbascose) are reported to
be partly or fully degraded in fermented faba bean [125,131,135]. Oligosaccharides in
oats, e.g., beta-glucan, are not altered by fermentation, suggesting the preservation of
pre-biotic properties [133].

The proteolytic effect of LAB has been verified by the documented release of free
amino acids in pea [128] and faba bean [131]. The latter study demonstrated improved
in vitro protein digestibility and increased concentrations of the amino acids cysteine
and methionine. As a consequence of altered structure and composition, the functional
properties of the protein may change, resulting, e.g., in increased protein solubility, foaming
capacity, and stability in faba bean flour [135]. In contrast, protein solubility, foaming,
and emulsifying properties are hampered in fermented pea flour [136] and pea protein
isolate [137]. Similar findings have been reported for pea proteins, with the exception
that emulsification is not affected by fermentation. Furthermore, fermentation has been
proven to be a successful method for the removal of off-flavors in soy, with recent findings
suggesting similar effects from the fermentation of pea protein [138] and a pea-based
milk analogue [126].

3.6. Enzymatic Treatment

As in fermentation, enzymes are used to catalyze specific chemical reactions and
thereby improve the taste and texture of food [139,140]. An overview of the most com-
monly used enzymes and their effect on different proteins and functional properties are
shown in Table 2. Proteolytic enzymes such as pepsin, papain, trypsin, and alcalase are
used to hydrolyze peptide links between amino acids [59,141]. This leads to changes in
molecular weight and tertiary structure that can increase the surface hydrophobicity, solu-
bility, emulsifying, and foaming properties of pea [59,142,143], faba bean [144–146], and
oat protein [24,26,147]. Trypsin hydrolyzation has been shown to increase the foaming
capacity of oat protein [148,149], while trypsin and papain have been used to improve the
emulsifying and foaming properties of pea protein [150]. While improving the functional
properties, the size reduction of proteins can promote a bitter taste [142,151]. The bitter-
ness of the hydrolysates can be attributed to the occurrence of hydrophobic amino acids
and is correlated with the degree of hydrolysis [59,142,152]. To reduce the bitterness in
pea protein hydrolysates, sec-butanol and β-cyclodextrin treatment has been used [153].
Fermentation followed by enzymatic treatment has the ability to reduce off-flavors, with a
simultaneous increase in functional properties [152]. Hydrolysis and fermentation of oat
can also increase its soluble and insoluble phenolic content and thus produce functional
food ingredients [154]. When producing milk analogues from oat, enzymatic hydrolysis is
used to avoid the gelatinization of starch during the heat treatment [5]. Non-proteolytic
enzymes such as transglutaminases can be used to improve the functional properties of
food proteins by cross-linking glutamine and lysine residues [52,59]. Transglutaminases
can thereby influence the viscosity, emulsification [155,156], gelation [157,158], and foaming
properties and increase the hydrophobicity of food proteins [72,159]. All enzymatic reac-
tions depend strongly on the polypeptide composition, protein conformation, and reaction
conditions, and therefore require individual adaptation to a specific raw material [160–163].
Apart from improving the functional properties, enzymes can also be used to improve the
nutritional quality of the resulting food. By reducing the amount of phytate, especially
the amount of inositol hexaphosphate, through the addition of phytase, the digestibility
of proteins [164] and minerals can be improved [109,165]. Phytase is currently used only
in animal feed products and has not been approved for food products [166], but the use
of phytase can become a promising future tool for improving the nutritional quality of
legumes and cereals.
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3.7. Protein Nanofibrillation

Protein nanofibrils (PNFs) from plant-based protein sources have great potential
to create new textured foodstuffs. PNFs are ribbon-like, β-sheet-rich aggregates linked
together with hydrogen bonds in a cross-β-sheet structure [167]. Most food-related PNFs
are formed at pH 2–3 and 80–90 ◦C, enabling the protein to unfold and hydrolyze the
structure into smaller peptides [168]. Nucleation and elongation of the ribbon-like fibril
are further promoted by the peptides formed; mature fibrils usually have a high aspect
ratio only some nm thick and several µm long. The hierarchical structure of the PNFs gives
them high stiffness and great stability against harsh environments, which could be used
to improve the functional properties of food applications [167,169,170]. PNFs have been
found to stabilize colloid dispersions such as foams and emulsions [171–176], gels [177], and
hydrogel fibers [178], and to be efficient carriers of nutrients such as iron particles [179,180].

In recent years, researchers have focused on the formation and functional properties of
plant-based PNFs [159]. Protein isolates from soybean, faba bean, pea, and oat are reported
to form PNFs under acidic conditions and at high temperatures. However, the PNFs
formed have some differences in morphology, e.g., heat-incubated acidic protein isolates
from soybean and faba bean can form both straight [176,180,181] and curved [181,182]
PNFs, whereas pea protein has been reported to form curved PNFs [183] and oat protein
mainly forms PNFs with straight morphology [182,184]. Curved PNF samples have been
reported to have higher viscosity compared with straight PNFs due to their more flexible
structure, making them promising candidates for stabilizing colloid systems [185,186].

A few in vitro [187,188] and in vivo [179] studies that have been conducted reviewing
the digestibility and toxicity of PNFs concluded that there is no major negative impact of
consuming PNFs. Food-related PNFs have structural similarities to some disease-related
amyloid fibrils. This has led to a concern that PNFs made from food protein could have
a seeding effect on the disease-related amyloids. However, a newly published study by
Rhaman et al. (2023) showed that PNFs from proteins such as faba bean and oat do not
accelerate the aggregation of amyloid-β (Aβ), a peptide related to the development of
Alzheimer’s disease [189]. This result indicates that plant-based PNFs have a future as
texture enhancers in future food applications.
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Table 2. Summary of most commonly used enzymes and their effects on the structure and functional properties of soy, pea, faba bean, and oat protein.

Enzyme Mechanism and Impact on the Structure Soy Pea Faba Bean Oat

Improved functional properties

α-Chymotrypsinα-C

AlcalaseAl

FlavorzymeFl

PapainPa

PepsinPe

TrypsinTr

TransglutaminaseTr

TyrosinaseTy

GlutaminasePg

Hydrolysis of peptide bonds on the C-terminal
side of tryptophan, tyrosine, phenylalanine, and
leucine

Nonspecific serine-type protease used to
produce protein hydrolysates with better
nutritional or functional properties

Selective release of hydrophobic amino acid
residues, producing a debittering effect

Cleaves the peptide bonds of leucine and
glycine; also hydrolyzes esters and amides

Cleaves peptide bonds at the amino-terminal
side of tyrosine, phenylalanine, and tryptophan

Cleaves peptide bonds between the carboxyl
group of arginine or lysine and the amino group
of the adjacent amino acid

Cross-linking between glutamine and lysine
residues

Oxidase protein-bound tyrosine residues which
further react with tyrosines, lysines, or cysteines

Catalyzes the deamidation of glutamine
residues or polypeptides into glutamic acid

↑solubility
(pH 4; pH 7) Al, Pa, Pe, Fl

↑foaming properties
(DH 2.5–10%) Al + Tg

↑foaming activity
(pH 2; pH 6–8) Al, Pa, Pe, Fl

↑sensory characteristics
(improves with DH; 120 min) Fl

↑water-binding capacity Pa

↑oil-binding capacity
(DH 2.5–10%) Al, Pa, Pe, Fl

↑emulsifying properties
(DH 2.5–5%) Al + Tg

↓ allergen fractions Al, Pa, Pe, Fl

↑masking bitter peptides Al + Tg

↑solubility
(DH 3.7, 6.8%; pH 4.6–7) Pa, Tr

↑foaming capacity
(DH 3.7, 6.8%) Pa, Pe, Tr

↑foaming stability
(pH 7; pH 10) Pa, Pe, Tr

↑sensory characteristics
(improves with DH) Pa, Tr, α-C

↑water-holding capacity
(DH 2.3–11.3%) Pa, Pe, Tr, Tg

↑oil-holding capacity
(DH 2.3–11.3%) Pa, Pe, Tr

↑emulsifying capacity
(hydrolysis 15–120 min) Tr, α-C

↓ allergen fractions Pa, Tr

↑gelling properties
(pH 6.5) Tg

↑solubility
(time of hydrolysis, 15–60 min;
pH 5; pH 7; 10–10,000 nkat/g)

Al, Pe, Tr, Fl, Tg, Ty

↑foaming properties
(time of hydrolysis, 15–60 min;

pH5; pH 7) Ty, Tg, Pe, Tr, Fl

↑oil-holding capacity
(time of hydrolysis, 15–60 min;

pH7) Pe

↑emulsion stability
(time of hydrolysis, 15 min;

pH7) Tr, Fl

↑colloidal stability
(DH 9, 16%) Ty, Tg

↑ solubility
(pH 4; pH 7; 10–10,000 nkat/g)

Al, Tr, Tg, Pg

↑foaming properties
(pH4; pH 7; 10,000 nkat/g)

Al, Tr, Tg

↑emulsifying properties
(pH 4.5; pH7; pH 10.5) Pg, Al, Tr

↑colloidal stability
(100–10,000 nkat/g) Tg

↑gelling properties
(pH4; pH7) Al, Tr

Reduced functional properties

↓ water-binding capacity
(DH 2.5–10%) Al, Pe, Fl

↑bitterness
(hydrolysis 10–120 min)

Al, Pa, Pe

↓ foaming stability
(pH 2; pH 6–8) Al, Pa, Pe, Fl

↓ foaming density
(pH 6–8) Al, Pa, Pe, Fl

↓ emulsifying properties
(DH 10) Al + Tg

↓ solubility
(DH 2.3–11.3%; pH 4–10)

Pa, Pe, Tr, α-C

↓ foaming capacity
(DH 2.3–11.3%; pH 4–10) Tr, Pa, Pe

↓ emulsifying capacity
(DH 3.7%) Pa, Tr

↓ emulsifying stability
(pH 4; pH 7; pH 10) Pa, Pe, Tr

↓ foaming properties
(pH 7; 10–10,000 nkat/g) Ty, Tg

↓ emulsion stability
(time of hydrolysis, 15–60 min)

Pe, Tr

↓ solubility
(pH 7; 10–10,000 nkat/g) Ty

↓ foaming properties
(pH 7; 10 nkat/g) Ty

Reference [160,190,191] [141,192,193] [152,155,157,158,194] [72,144,195] [24,72,149,191]

↑ improved/increased specific functional properties; ↓ reduced/decreased specific functional properties; DH: degree of hydrolysis. Different superscript letters refer to the individual
enzymes where a certain effect was observed.
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4. Sensory Properties

Most of the research on the sensory properties of legumes and oat as components
in plant-based foods has focused on the identification and mitigation of off-flavors. Faba
bean and pea are frequently described as “beany”, “grassy”, “astringent”, and “bitter” in
taste [196,197], while the latter term is also associated with oat [198]. However, the meaning
of these descriptions is not consistent throughout the literature [197]. The complexity of
off-flavors is due to the large number of compounds that contribute to flavor. In addition,
consumer perception varies greatly depending on the food matrix and the presence of other
compounds with sometimes very low taste detection thresholds (1 ppm), where minor
changes can have a large impact on perception [199]. An example of a volatile compound
that is responsible for the beany and grassy flavor at low levels is hexanal, a breakdown
product of unsaturated fatty acids during lipid oxidation [200,201].

Off-flavors in oat, faba bean, and pea arise from the breakdown of lipids and protein
and/or the presence of non-volatiles such as phenolic compounds, tannins, alkaloids, and
saponins [196]. Lipid oxidation is reported to be the main cause of off-flavors [199], but
the molecular pathway, concentration, and type of volatile depend on the crop variety,
harvesting and storage conditions, and food processing [202]. Enzymatic lipid oxidation
dominates in legumes, owing to the high activity of lipases and lipoxygenases [200],
whereas autoxidation is more prominent in oat [203].

The amount of key off-flavors present is strongly associated with the activity of
lipoxygenases, rather than the presence of lipids [204], and thus faba bean and pea may
develop more lipid-derived off-flavors than oat despite their much lower lipid content. A
comparison of soybean, pea, and faba bean showed 3-fold higher lipoxygenase activity in
soy compared with faba bean (2-fold higher activity when protein extracts were compared),
while pea had slightly higher activity than faba bean [205]. Another group of low-threshold
volatiles are the pyrazines, which occur naturally in peas but can also originate from
Maillard reaction and which give rise to several off-flavor derivatives [206].

Although the inherent characteristic flavors of pulses are accepted by consumers to
some extent, the majority of published articles focus on the identification and mitigation
of these off-flavors to improve sensory properties [207]. The milling of pulses into flour
is a process step in which volatiles are formed, but their abundance is influenced by the
settings of the mill [208]. Karolkowski et al. (2023) compared fractions of air-classified faba
bean flour and found higher concentrations of volatiles and lipids in the protein fraction
compared with the starch fraction [209]. Similarly, Murat et al. (2013) found more volatiles
in the pea protein isolate compared with pea flour [210]. Many of the identified volatiles
have been further characterized and classified into odor categories. However, knowledge
about consumer perception of these odors in pulse-based foods is scarce. Studies have
shown that faba bean flour can partially substitute wheat flour in bread and pasta without
affecting the sensory profile negatively [211–213]. In addition, faba bean has been included
in meat substitutes [102] and mayonnaise [214] without negatively altering their sensory
properties. Badjona et al. (2023) discuss consumer acceptability of food formulations using
faba beans in more detail [215].

Thermal processing to inactivate enzymes is reported to be a successful method for
minimizing off-flavors in faba beans and peas [216–218]. Other methods to mitigate or
mask off-flavors include soaking and enzymatic treatment to remove bitter compounds, pH
modulation, fermentation, use of flavor additives, and solvent extraction. Table 2 presents
some examples of enzymes that can improve sensory characteristics. Detailed descriptions
of different methods for improving off-flavors can be found in the comprehensive review
by Wang et al. [199].

5. Conclusions

Soy protein has unique nutritional, sensory, and functional properties that make
it versatile. Pea, faba bean, and oat have nutritional and functional properties that can
compete with soy, although the overall protein quality is lower. Combining different protein
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sources can balance the amino acid composition, but the presence of antinutrients can
reduce the overall digestibility of macro- and micro-nutrients. Antinutrient concentrations
can be reduced during processing, but recent studies have shown that even highly processed
plant-based foods are limited in terms of their iron and zinc availability [54]. Therefore,
more research is needed on processing methods and the identification of materials low in
phytic acid. Furthermore, the extraction and classification method can have a major effect
on the functional, nutritional and sensory properties [23] and represent key processing
steps in obtaining products with a desirable taste and texture, but also with adequate
nutritional properties. Moreover, vicine and convicine should be treated as allergens, as the
consumption of these compounds can have severe consequences for susceptible individuals.

The removal of off-flavors remains a major challenge when faba bean, pea, and oat
are processed into foods. This review covered the origin and ways to mitigate off-flavors,
but more research is needed to optimize treatments for specific crops. Furthermore, more
studies that correlate the odor profile with consumer perception are needed.

Gel formation and gel properties depend largely on the extraction process and condi-
tions used during gelation. Further research is needed to identify the underlying reasons
and mechanisms for these differences. In general, heat-induced soy protein gels tend to be
stronger than those prepared from faba bean and pea. However, the overall gel formation
and behavior in response to changes in pH and salt appear to be similar for pea, faba bean,
and soy protein. Future research should also explore the gelation induced by other means,
such as pressure, pH shifting, and enzymatic cross-linking. More studies on foamability
and emulsification at different pHs are needed since existing studies show inconsistent
results. Enzymatic treatments can successfully improve the sensory and functional prop-
erties of faba bean, pea, and oat and also have the potential to improve their nutritional
value. There is great potential to use protein, starch, and fiber extracted from faba bean,
pea, and oat to create texturized food products based on techniques such as 3D printing,
extrusion, or reconstruction of the protein into PNFs. Although extrusion is the most
commonly used method today for creating meat analogues, there are limitations in the
length of fibers that can be produced. Making meat-like fibers in a bottom-up approach
using 3D printing or by PNFs could be a future complement to extruded products to create
plant-based products with longer meat-like fibers and a controlled structure. However,
there is still much research to be done, such as scalability and proper safety studies on the
digestibility and bioavailability of PNFs.

Decades of research made soy the commodity it is today. Further research on the
nutritional, sensory, and functional properties of the cold-climate crops faba bean, pea, and
oat as potential texturizing ingredients to replace soy could make them the commodities of
the future.
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22. Ivanov, D.S.; Lević, J.D.; Sredanović, S.A. Fatty Acid Composition of Various Soybean Products. Food Feed Res. 2010, 2, 65–70.
23. Vogelsang-O’Dwyer, M.; Petersen, I.L.; Joehnke, M.S.; Sørensen, J.C.; Bez, J.; Detzel, A.; Busch, M.; Krueger, M.; O’Mahony, J.A.;

Arendt, E.K.; et al. Comparison of Faba Bean Protein Ingredients Produced Using Dry Fractionation and Isoelectric Precipitation:
Techno-Functional, Nutritional and Environmental Performance. Foods 2020, 9, 322. [CrossRef] [PubMed]

24. Boukid, F. Oat Proteins as Emerging Ingredients for Food Formulation: Where We Stand? Eur. Food Res. Technol. 2021, 247, 535–544.
[CrossRef]

25. Martineau-Côté, D.; Achouri, A.; Karboune, S.; L’Hocine, L. Faba Bean: An Untapped Source of Quality Plant Proteins and
Bioactives. Nutrients 2022, 14, 1541. [CrossRef]

26. Spaen, J.; Silva, J.V.C. Oat Proteins: Review of Extraction Methods and Techno-Functionality for Liquid and Semi-Solid Applica-
tions. LWT 2021, 147, 111478. [CrossRef]

27. Sha, L.; Xiong, Y.L. Plant Protein-Based Alternatives of Reconstructed Meat: Science, Technology, and Challenges. Trends Food Sci.
Technol. 2020, 102, 51–61. [CrossRef]

28. Ciurescu, G.; Toncea, I.; Ropotă, M.; Hăbeanu, M. Seeds Composition and Their Nutrients Quality of Some Pea (Pisum sativum L.)
and Lentil (Lens Culinaris Medik) Cultivars. Rom. Agric. Res. 2018, 2018, 101–108. [CrossRef]
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