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A B S T R A C T   

Estimates of land-atmosphere exchanges of carbon, energy, water vapor, and other greenhouse gases based on 
the eddy covariance (EC) technique rely on the fundamental assumption that the flux footprint area is homo-
geneous. We investigated the impact of source area heterogeneity on flux estimates in single-level EC mea-
surements over a managed boreal forest landscape. For this purpose, we compared single-level measurements 
with those from a two-level approach consisting of concurrent EC measurements at 60 and 85 m above the 
ground. This two-level set-up provided a unique opportunity to obtain nearly congruent diel footprint areas by 
combining data from the higher and lower levels during day- and nighttime, respectively. 

We found that the variation in the averaged footprint area between day- and nighttime was reduced by up to 
89% in the two-level approach compared to the single-level data at the higher level (85 m). Considering spring, 
summer, and fall months, the resulting relative potential bias in flux observations due to landscape heterogeneity 
was highest at short time steps (≤ daily) ranging between 35% and 325% for half-hourly data. During winter 
months, when stable atmospheric regimes prevailed during day and night, the footprints within the diel course 
nearly overlapped also at a given single level and hence no improvement of flux estimates was found. The ab-
solute cumulated sums for the study period (excluding winter months) of gross primary production, ecosystem 
respiration, latent heat, and sensible heat flux were underestimated by about 28%, 52%, 5%, and 3%, respec-
tively, whereas that of net ecosystem CO2 exchange was overestimated by about 109% in the single-level 
approach. Overall this study suggests that footprint heterogeneity may introduce considerable bias in single- 
level flux estimates — particularly at short time scales — with large implications for model-data fusion 
studies, site comparisons, and up- or downscaling of land-atmosphere exchange processes.   

1. Introduction 

Land-atmosphere exchanges of carbon, energy, water vapor, and 
other greenhouse gases are increasingly obtained with the eddy 
covariance (EC) technique. One fundamental assumption in this flux 
measurement method is that the surface of interest is flat and homoge-
neous over a large enough target area, so that the spatial representa-
tiveness is given for the measured fluxes (Giannico et al., 2018; Griebel 
et al., 2016; Rebmann et al., 2018; Schmid and Lloyd 1999). Still, the EC 
technique is also applied over complex and non-homogeneous terrain, 
which may introduce uncertainties in the measured fluxes. For 

heterogeneous surfaces, systematic errors are caused by increased 
occurrence of advection and non-closure of the energy balance, whereas 
random errors are introduced due to changes in the source area from 
which the measured fluxes originate (Giannico et al., 2018; Richardson 
et al., 2012). In regard to the latter, knowledge about the extent and 
position of the flux footprint and the distribution of scalar sinks and 
sources within the landscape that contribute to the vertical flux ex-
change becomes important (Barcza et al., 2009; Giannico et al., 2018; 
Griebel et al., 2016; Kim et al., 2018; Kljun et al., 2002; Rannik et al., 
2012; Schmid and Lloyd 1999). 

Various footprint models with their own advantages and restrictions 
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have been developed to derive flux footprints for different time scales 
(Leclerc and Foken 2014; Schmid 2002; Vesala et al., 2008). The shape 
and extent of the flux footprint depend on wind direction, measurement 
height, surface roughness, and atmospheric stability. Thus, with 
increasing measurement height, for smooth surfaces, and/or more stable 
atmospheric conditions, the size of the footprint increases (Kljun et al., 
2004; Rannik et al., 2012). Furthermore, because the wind direction and 
atmospheric stability usually vary at a sub-daily time scale, the footprint 
source area also varies within the diel course. Because stable regimes 
usually prevail at night and often change to unstable regimes during the 
day, footprint areas for a given tower site are often largest during 
nighttime. Moreover, the length of day and night can vary throughout 
the year depending on the latitude. 

Due to the changing flux footprint area within the diel and seasonal 
course, the various sinks and sources are typically not equally repre-
sented in the observed fluxes of a heterogeneous landscape. Therefore, 
the aggregated flux time series could be biased due to the changing 
surface properties contributing to the net exchange (random error). 
Previous studies have estimated the magnitude of the total random error 
that included instrument and turbulence sampling errors next to the 
uncertainty introduced by footprint variability (e.g., Dragoni et al., 
2007; Hollinger et al., 2004; Schmid et al., 2003). Oren et al. (2006) 
used multiple EC towers on ecosystem-level within a relatively homo-
geneous pine plantation to quantify the implications of spatial vari-
ability in ecosystem activity on turbulent fluxes. They described spatial 
variability on the basis of small heterogeneity in leaf area index and 
estimated the coefficient of spatial variation for flux data based on 
measurements from six EC towers with overlapping footprints. By 
combining the estimated coefficient of spatial variation with the 
observed annual net ecosystem CO2 exchange (NEE) at one tower, they 
found that even in a homogeneous forest nearly half of the uncertainty in 
half-hourly flux data and annual NEE can be accounted to surface het-
erogeneity. Thus, the bias in flux measurements due to footprint vari-
ability over a heterogeneous surface could become even larger, but may 
differ between energy and carbon fluxes due to their specific de-
pendencies on environmental and site characteristics (e.g., albedo, 
physiology, stomatal processes). Furthermore, by deriving relationships 
between physical drivers and fluxes for specific time periods and then 
applying these to other time periods (for instance for gap-filling), could 
include additional uncertainties due to differing sink and source areas 
depending on time of day, season, or intra-annual variability. 

With EC instrumentations mounted to tall towers at higher heights, 

flux measurements can be obtained that are representative for the 
landscape/regional scale (i.e. tens of km2, compared to the stand-level 
or ecosystem scale). One advantage of the larger footprint area is that 
it is more comparable to a large-scale model grid cell or the resolution of 
satellite data (e.g., Baker et al., 2003; Barcza et al., 2009; Chu et al., 
2021; Desai et al., 2007; Keppel-Aleks et al., 2012; Sathyanadh et al., 
2021). Also, the direct measurement of regional fluxes originating from 
a mixture of land cover types/ecosystems can be used to conduct and 
evaluate up- or downscaling procedures (e.g., Desai et al., 2008, 2015; 
Gelybó et al., 2013; Kim et al., 2006; Peltola et al., 2015; Soegaard et al., 
2003; Wang et al., 2006; Xu et al., 2017; Zhang et al., 2014) and to 
improve our understanding of carbon dynamics, net biome production 
(Barcza et al., 2009; Chapin et al., 2006; Chi et al., 2020), and energy 
flux exchange (e.g., Butterworth et al., 2021). Especially, for a managed 
boreal forest landscape that consists of a mosaic of ecosystems including 
forests with different stand ages, clearcuts, peatlands, lakes, and 
streams, which all are coupled in a lateral direction and interact with 
each other, tall tower EC measurements provide a more direct estimate 
of the vertical flux exchange on the landscape scale (Chapin et al., 2006; 
Chi et al., 2019, 2020; Butterworth et al., 2021). However, since such 
tall tower flux measurements are usually conducted over heterogeneous 
terrain, these estimates are potentially biased by the variability in the 
flux footprint area within the diel course. 

Conducting EC measurements on a tall tower, Davis et al. (2003) 
derived their best estimate for NEE of a heterogeneous mixed forest 
landscape in Wisconsin, USA, by combining EC flux data of three 
different measurement heights (30, 122, and 396 m; cf. Berger et al., 
2001). Depending on atmospheric stability, boundary layer depth, and 
data availability, they chose measurements from a certain level for their 
final data set in order to, among other things, decrease the change in the 
footprint area. This dataset of optimized landscape NEE (sometimes 
extended by additional years after Davis et al., 2003) was used in various 
studies that focused on a wide range of different objectives and analysis 
of the land-atmosphere exchange of this mixed forest region (Baker 
et al., 2003; Desai 2010; Desai et al., 2008, 2015; Donnelly et al., 2019; 
Keppel-Aleks et al., 2012; Ricciuto et al., 2008; Schwartz et al., 2013; 
Wang et al., 2006). However, the degree of optimization of the NEE 
estimates was never explicitly stated to our knowledge. Overall, the 
approach of combining EC data from two or more measurement levels 
has rarely been applied within the flux community. 

In this study, we combined flux measurements at two different levels 
on a tall tower to improve flux estimates for a heterogeneous boreal 

Fig. 1. (a) Location of the tall tower at Svartberget within the Krycklan catchment (white border) in northern Sweden, land cover types of the study area (Geo-
grafiska™ Sverigedata product), and footprint climatology (80% contour lines) of the entire study period for day- (dotted lines) and nighttime (dashed lines) and 
both eddy covariance systems. (b) Sketch of instrument set-up on the tall tower for the study time period. Numbers indicate measurement heights in meter. 
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forest landscape in northern Sweden. This two-level set-up provided the 
unique opportunity to select observations at the higher level (in 85 m) 
during daytime and at the lower level (in 60 m) during nighttime to 
obtain data with matching day- and nighttime footprint areas during the 
diel course and to quantify the bias induced by footprint differences. We 
chose day- and nighttime (using global radiation threshold of 10 W m-2) 
as the criterion for the data combination because these time periods can 
be derived easily without any gaps from standard radiation measure-
ments and are thus independent of EC measurements. Furthermore, this 
prevents frequent switching back and forth between different atmo-
spheric stability classes and thus between measurement heights during 
the course of the day. 

The aim of this study was to investigate how diverging day- and 
nighttime flux footprints affect EC flux estimates over heterogeneous 
terrain at various time scales. The main objectives were (1) to quantify 
the potential bias introduced by contrasting footprint characteristics 
during day- and nighttime by comparing NEE, latent heat flux (LE), and 
sensible heat flux (H) estimates from two-level and single-level mea-
surements across various temporal scales, and (2) to analyze the impli-
cations of diel footprint divergence on data gap-filling and source 
partitioning. 

2. Methods and materials 

2.1. Site description 

The study was carried out at the Integrated Carbon Observation 
System (ICOS, https://www.icos-sweden.se) Svartberget station (SE- 
Svb, 64◦ 15′ N, 19◦ 46′ E, 267 m a.s.l.), which is located within the 
Krycklan catchment (https://www.slu.se/krycklan) in northern Sweden 
(Fig. 1a). The study site is also part of the Swedish Infrastructure for 
Ecosystem Science (SITES, https://www.fieldsites.se/en-GB) network. 
The Krycklan catchment represents a typical managed boreal ecosystem 
including forest stands of different age, clearcuts, peatlands, grasslands, 
lakes, and streams (Chi et al., 2019, 2020; Laudon et al., 2013, 2021; 
Martínez-García et al., 2022). The forests are dominated by Scots pine, 
Norway spruce, and some birch including an understory dominated by 
ericaceous shrubs. The mean and maximum tree heights are about 23 m 
and 30 m, respectively, and the average leaf area index (LAI) at peak 
growing season about 2.97 ± 1.35 m2 m-2, but tree height and LAI es-
timates vary strongly within the catchment and stand age (Martí-
nez-García et al., 2022). Forest management activities include 
clearcutting, thinning, drainage, and fertilization (Chi et al., 2020). The 
peatland areas are located predominantly in the northern parts of the 
catchment and are characterized as acid, oligotrophic, and minerogenic 
mires (Laudon et al., 2013, 2021). The climate conditions are cold 
temperate humid with an annual mean air temperature of 2.4 ± 0.8 ◦C 
and a mean annual precipitation sum of 638 ± 107 mm (1991-2020; 
https://www.slu.se/esf-referenceclimate). 

2.2. Meteorological, ancillary environmental, and concentration profile 
measurements 

In the framework of the ICOS data collection, meteorological mea-
surements of air temperature (at 42 m measurement height), precipi-
tation (2.5 m in a nearby open area), shortwave and longwave radiation 
components (50 m), photosynthetic photon flux density (50 m), air 
pressure (2 m), and relative humidity (42 m) are obtained on the tower 
at the study site (Fig. 1b). Furthermore, snow depth, soil temperature, 
soil water content, soil heat flux, tree temperature, and groundwater 
level are measured, each at multiple profiles and depths/heights. All 
these data were retrieved from the ICOS Carbon Portal (https://www.ic 
os-cp.eu/, latest download July 2020, Peichl 2020a, 2020b, 2020c, 
2020d). 

Atmospheric greenhouse gas concentrations (CO2 amongst others) 
are measured with the ICOS atmospheric system (G2401 gas 

concentration analyzer, Picarro, Inc., USA; sequential sampling scheme 
with 5-min measurement periods for each level) on the tall tower at 35, 
85, and 150 m. Additionally, measurements of air temperature (105E 
temperature probe, Campbell Scientific, Inc., USA), CO2, and H2O con-
centrations (LI-7200 closed-path gas analyzer, LI-COR Biosciences, USA) 
are collected in a vertical profile system with measurement levels at 4.2, 
10, 15, 20, 25, 30, 35, 42, 50, 60, 70, 85, 100, 125, and 150 m. The air 
temperature is measured continuously for each level separately (5-min 
frequency). The gas concentrations are measured with a sequential 
scheme with one gas analyzer, where the measurement height is 
switched every 30 s and, thus, each of the fifteen levels is repeatedly 
measured every 7.5 min. More detailed description of the meteorolog-
ical and ancillary instrumentation at Svartberget can be found in Chi 
et al. (2019). 

2.2.1. Quality check and control of ancillary measurements 
All meteorological and environmental measurements were checked 

with thresholds set for the local conditions. Additionally, measurements 
of the ICOS atmospheric system and the vertical profiles were discarded 
when they were obtained during maintenance work on the instruments 
or the tower structure, and were filtered for spikes. These spikes were 
detected by applying limits determined with the mean ± 3x standard 
deviation of the concentration data for a time window of 10 days. 

2.2.2. Gap-filling of ancillary measurements 
The meteorological and environmental measurements were gap- 

filled in multiple steps. First, small gaps (≤ 2 h) were filled via linear 
interpolation. Second, all remaining gaps were filled by using a linear 
relationship (reduced major axis regression after Webster 1997) be-
tween neighboring sensors (e.g., sensors in different measurement 
heights), between two different variables or instruments (e.g., air and 
canopy temperature, concentration measurements of profile and atmo-
spheric system), and/or between two nearby sites (e.g., for all meteo-
rological data between SE-Svb and back-up meteorological stations with 
a maximum distance of 14 km). Third, all remaining gaps ≤ 36 h were 
filled with the mean diurnal course of a 10-days window of the variable. 
Last, all remaining gaps were filled with the rolling mean of a 14-days 
window of the variable. 

2.3. Tall tower eddy covariance flux measurements 

In total, three EC systems were installed on the 150 m tall tower in 
Svartberget, measuring CO2, water vapor, and energy flux exchange 
between the boreal landscape and atmosphere. The ICOS ecosystem- 
level EC system is mounted at 34.5 m (here, we only use its data for 
quality check, cf. Appendix C, and footprint modeling, cf. Section 2.5). 
This study focused on two additional EC systems: (1) EC system con-
sisting of a CSAT3 3-D sonic anemometer and an EC155 closed-path gas 
analyzer (Campbell Scientific, Inc., USA) at 60 m measurement height, 
and (2) EC system consisting of an ultrasonic anemometer uSonic-3 
Omni (METEK Meteorologische Messtechnik GmbH, Germany) and a 
FGGA-24EP closed-path greenhouse gas analyzer (LGR, Los Gatos 
Research, Inc., USA) at 85 m. The FGGA is located on the ground-level 
and connected with an about 100 m long Synflex 1300 tubing with an 
outside diameter of 12 mm (cf. Chi et al., 2020). The air sampling flow 
rate was about 40 L min-1. Both EC systems sample at a 10 Hz frequency. 
The study time period was from 1st September 2018 until 15th July 2019 
(15,264 half-hourly time steps) starting at the installation date of the 85 
m-level EC system in the beginning of September 2018 and ending due 
to an instrument malfunction of the 60 m-level EC system starting 
mid-July 2019. 

2.3.1. Flux raw data processing 
The raw data of the two tall tower EC systems were processed with 

the EddyPro® Software (v7.0.9, LI-COR Biosciences, USA) to obtain 
half-hourly CO2 and energy fluxes. We followed mainly the ICOS 
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protocol after Sabbatini et al. (2018) with the following adjustments. For 
the raw data quality check, the allowance of missing samples in one 
half-hour was increased from 10% to 20%, and the absolute limits of 
sonic temperature were adjusted to the local plausible range and to the 
operating temperature range of the gas analyzers (-30 ◦C to +40 ◦C). 
Sonic temperature raw data obtained with the METEK sonic anemom-
eter in 85 m was crosswind-corrected (METEK GmbH 2012) before the 
flux processing with EddyPro®, because the correction is not imple-
mented in the anemometer’s firmware and the anemometer type was not 
implemented in the EddyPro® version. The double rotation method was 
used for the anemometer tilt correction (Rebmann et al., 2012). To 
correct for the time lag between gas analyzers and anemometers, the 
compensation was done by the time lag optimization approach (Sab-
batini et al., 2018). Due to the long tubing of the 85 m-level EC system, 
the medians of its time lags were 23.9 s and between 23.0 and 29.3 s 
(depending on relative humidity) for CO2 and water vapor, respectively. 
For the high-frequency spectral correction, the approach after Ibrom 
et al. (2007) was applied. As we used the given high-frequency mixing 
ratios from the gas analyzers as input for our flux data processing, a 
correction for density fluctuations was not necessary, except for the 
water vapor concentration of the 85 m-level EC system, where we 
applied the WPL-correction as it is implemented in EddyPro®. 

Due to the differing instrumental set-up, we conducted an instrument 
comparison of the gas analyzers and sonic anemometers of both EC 
systems (Appendix B). For a comparison of wind roses see Fig. S2 in the 
supplementary material. Unfortunately, it was not logistically possible 
to install both EC systems next to each other at the same height for a 
short time period, which would have been optimal. Thus, we compared 
measurements of both EC systems which were obtained under similar 
and optimal conditions and of (presumably) similar flux footprints 
(Fig. B1 in Appendix B). Furthermore, we aligned the concentration 
measurements of both gas analyzers in reference to the measurements of 
the vertical profile. By comparing half-hourly CO2 and H2O measure-
ments between the profile system (reference) and each EC system, the 
absolute offsets and regression slopes were obtained during similar and 
optimal conditions (see description in Appendix B) — to ensure relative 
similar source areas. Then, the CO2 and H2O raw data (10 Hz data) of 
each EC system was corrected based on the estimated offsets and slopes, 
and fluxes were reprocessed with EddyPro®. Thus, in the following 
study, flux estimates of NEE, LE, and H were obtained based on the 
aligned concentration raw data. 

During winter, the sonic anemometers were heated occasionally to 
prevent ice or snow on the instruments, but here data points obtained 
during heating were not discarded before flux calculation (see 
Appendix C). 

2.3.2. Storage term correction of flux data 
The half-hourly fluxes of CO2, LE, and H were corrected with their 

storage terms following the ICOS protocol after Montagnani et al. 
(2018). The storage terms between soil surface and EC systems were 
estimated based on air pressure and the vertical temperature and con-
centration profile measurements, which were obtained between the 
respective EC measurement height and the lowest profile measurement 
level at 4.2 m, where the latter measurements also represented the 
concentration of the bottom layer between soil surface and 4.2 m. The 
profile data was quality-checked, gap-filled (see Section 2.2), and then 
aggregated to 15-min time steps. Storage terms were excluded if they 
were outside a reasonable range (Table A1 in appendix). Before adding 
these filtered storage terms to the flux observations, they were aggre-
gated to half-hourly time steps. In the following discourse the fluxes 
NEE, LE, and H always include the storage terms. 

2.3.3. Quality check and control of flux data 
To ensure a high quality of the processed, half-hourly fluxes, a 

further quality control was carried out as previously described in detail 
by Chi et al. (2019) for the same site. In brief, data were discarded when 

quality criteria were not met and following conditions applied: data 
received bad quality flag in the raw data processing (flag 2 for the 
“0–1–2 system” after Mauder and Foken 2004), was outside absolute 
limits (Table A1), was influenced by wind distortion due to the tower 
structure, was obtained during instrument maintenance, the anemom-
eter or gas analyzer uptime was low, or the power had failed. 

Flux time series were also filtered for periods without adequate at-
mospheric boundary layer mixing. Wharton et al. (2009) introduced 
turbulence intensity parameters (Iw and Iu), looking at the ratio of mean 
unrotated vertical (w) or horizontal rotated wind velocity (u) and a 
modified turbulent velocity scale (uTKE, which is dependent on turbulent 
kinetic energy) to detect time periods with prevailing vertical or hori-
zontal advection fluxes, respectively. The threshold Iw,crit was deter-
mined with the mean ± 1x standard deviation of the time series of the 
turbulence intensity ratio Iw, and the threshold Iu,crit was determined 
with the mean + 1x standard deviation of Iu. Iw,crit and Iu,crit were 
±0.186 and 5.3 for the 60 m-level EC system and ±0.295 and 7.3 for the 
85 m-level EC system, respectively. When positive ratios were larger or 
negative ratios lower than the determined thresholds, flux data were 
excluded. Also, time periods with a lower boundary layer height (hbl) 
than the highest EC measurement level (≤ 85 m) were discarded. Esti-
mates of hbl were taken from the ERA5 hourly data (fifth generation 
ECMWF atmospheric reanalysis) of the corresponding grid cell of our 
study site for 2018 and 2019 (Hersbach et al., 2018). These data were 
resampled to half-hourly data by linear interpolation, and then 
smoothed by taking the mean over a moving window of 12 h to decrease 
uncertainties. 

Furthermore, NEE and LE were discarded when spikes occurred in 
the CO2 and H2O mixing ratios. These spikes were detected by applying 
limits determined with the mean ± 3x standard deviation of the con-
centration data for a time window of 10 days. Also, outliers in NEE, LE, 
and H flux data were detected directly with the mean absolute deviation 
approach with the threshold value 5 for NEE and 7 for LE and H (Papale 
et al., 2006; note that these threshold values are designated as z in 
Papale et al., 2006). 

After flux data raw processing, about 10% for the 85 m-level EC 
system of the half-hourly flux data (NEE, LE, or H) were missing, only up 
to 5% were discarded due to a too low hbl, up to 15% were discarded due 
to filtering for advection, and in total after the complete quality-check 
(incl. filtering for maintenance time, wind distortion etc.) up to 46- 
56% of flux data were removed. For the 60 m-level EC system, relative 
fractions of missing and removed flux data were 16% after flux pro-
cessing, up to 4% due to a too low hbl, up to 11% due to advection, and 
up to 44-51% after the completed quality check (cf. Table A2 in ap-
pendix, Fig. S3 in supplementary material). 

2.3.4. Gap-filling and source partitioning of flux data 
In this study, fluxes from the ecosystem to the atmosphere (upward) 

are defined as positive fluxes, and downward fluxes as negative. NEE, 
LE, and H flux data were gap-filled using the R-package REddyProc 
(v3.6.3, Wutzler et al., 2018). This flux post-processing tool applies the 
marginal distribution sampling strategy that combines a look-up table 
and a mean diurnal course approach for gap-filling. The necessary 
meteorological data (air temperature and vapor pressure deficit) were 
taken from the vertical profile measurements at the respective EC 
measurement height. The gap-filled NEE was partitioned into the two 
flux components gross primary production (GPP) and total ecosystem 
respiration (Reco; NEE = GPP + Reco), using the nighttime flux parti-
tioning approach after Reichstein et al. (2005) (using the relationship 
between NEE nighttime fluxes to air temperature), which is also 
implemented in the REddyProc package. 

2.4. Combination of the two-level eddy covariance measurements 

In this study, we combined flux measurements of the higher level (85 
m) EC system during daytime and the lower level (60 m) during 
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nighttime to acquire data obtained from a more similar footprint area 
during the diel course. For this two-level data, the quality-checked and 
storage term corrected measurements were chosen. The gap-filling and 
source partitioning methods were then applied to these combined two- 
level data in the subsequent step as described in Section 2.3.4. 

We distinguished between day- and nighttime on the basis of a 
threshold for global radiation < 10 W m-2 following Wutzler et al. 
(2018). Time periods with very low radiation due to cloudiness and 
precipitation were correctly associated to night- or daytime by estima-
tions of sunrise and sunset times (by means of latitude, longitude, and 
local time). The considered study period of 10.5 months comprised 15, 
264 half-hours consisting of 6571 daytime (43%) and 8693 nighttime 
(57%) half-hours. 

2.5. Footprint analysis 

For the description of the day- and nighttime flux footprint areas of 
the two EC systems, the two-dimensional parameterization for footprint 
predictions FFP after Kljun et al. (2015) was applied to quality-checked, 
half-hourly turbulence data (filtered for outliers, advection, too low hbl, 
and wind distortion). FFP was selected as it is based on the Lagrangian 
stochastic Particle Footprint model of Kljun et al. (2002) and is one of 
the very few footprint models that is valid for measurements at tall 
towers, where sensors are often above the surface layer. It is also valid 
for convective to stable atmospheric stability conditions (see Kljun et al., 
2015). Next to variables easily obtained with the EC technique, the 
displacement height (d), roughness length (z0), and hbl are needed as 
input parameters for this footprint model. To account for the hetero-
geneity of the boreal landscape, d and z0 were estimated for each 30◦

wind sector, using the turbulence measurements of the 60 m-level EC 
system and the ICOS EC system at 34.5 m (see Chi et al., 2019 and 
Appendix D for a detailed description). As for the flux quality check 
(Section 2.3.3), estimates of hbl were taken from the ERA5 hourly data 
(fifth generation ECMWF atmospheric reanalysis) of the corresponding 
grid cell of our study site for 2018 and 2019 (Hersbach et al., 2018). 
These data were resampled to half-hourly data by linear interpolation. 

The flux footprint indicates the smallest possible source area, from 
which a given relative fraction of the observed flux originates, and is 
derived for each half-hourly data point. For longer time series the so- 
called footprint climatology can be derived as an aggregation of all 
(half-)hourly flux footprints for a selected time period (Kljun et al., 
2015). Here, the footprint climatology was derived for a) the entire 
study period from September 2018 until July 2019, b) each season, and 
c) each month of the study period for day- or nighttime individually. We 

defined the different seasons within our study period depending on 
meteorological conditions and day length. Thus, our usage of the terms 
‘winter’, ‘summer’, and ‘transition’ months (‘fall’: September-October 
2018; ‘spring’: March-April 2019) was based on the magnitudes of net 
radiation, air temperature, and vapor pressure deficit, and was inde-
pendent of, for instance, phenology or ecology (Fig. S1 in supplementary 
material). 

Additionally, the sensitivity of the estimated footprint area was 
tested regarding the input hbl. In this sensitivity analysis, hbl was 
changed by ±5% or ±10%, respectively, and the seasonal footprint 
climatology was derived for each. 

The geospatial data of the land cover types were taken from Chi et al. 
(2019) (Geografiska™ Sverigedata product). The footprint simulations 
and geospatial data had the same spatial resolution of 10 × 10 m2. 

2.6. Bias calculation 

In this study, we chose relative differences to compare the various 
data sets (single- or two-level), and to quantify the bias in flux mea-
surements obtained with a changing footprint area. Estimating the dif-
ference related to an absolute mean flux, makes the bias independent of 
the absolute flux magnitudes and related error magnitudes, both of 
which differ between seasons. With the two-level combination, we 
expect the bias to be reduced due to better matching day- and nighttime 
footprints and thus flux estimates should be improved. Based on these 
judgments, we define the two-level data set in the following analysis as 
reference. The relative differences (Δflux in %) were quantified as the 
difference between the single-level (flux85) and the two-level reference 
(fluxref) data in relation to the absolute mean flux in different time steps: 

Δfluxi,t =
flux85i,t − fluxrefi,t⃒
⃒
⃒
⃒

1
n

∑n

i=0
fluxrefi,t

⃒
⃒
⃒
⃒

⋅ 100 (1)  

where i indicates the data’s time step (e.g., half-hourly, hourly, daily, 
etc.), n the number of data points for which flux85 and fluxref data were 
available, and t the chosen corresponding time window (for each season 
or entire study period). Here, also winter months were always excluded 
(cf. Sections 3.2, 3.3). Moreover, for Δfluxi,t in half-hourly data, the 
direct measurements of the 85 m-level EC system during daytime were 
also excluded because these data points matched between both data sets. 
Positive Δfluxi,t indicates an overestimation of the fluxes by the single- 
level measurements (but note: for GPP, which is here defined to be <
0, a positive Δfluxi,t indicates an underestimation of CO2 uptake and 
more positive numbers), and a negative Δfluxi,t an underestimation of 

Fig. 2. Comparison of half-hourly, quality-checked and storage term corrected day- (gray circles) and nighttime (black circles) measurements of both eddy 
covariance systems (85 m versus 60 m measurement height) for (a) net ecosystem exchange (NEE), (b) latent heat (LE), and (c) sensible heat (H) flux during the study 
time period from September 2018 until July 2019. Equations of each reduced major axis regression (d: daytime, n: nighttime), correlation coefficient and sample size 
are listed in this order. 
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the fluxes. 
Following Eq. (1), the mean absolute difference between single- and 

two-level data was calculated in relation to the absolute mean flux of the 
entire study period in the different time steps: 

PBias =
1
n

∑n
i=0

⃒
⃒
⃒flux85i − fluxrefi

⃒
⃒
⃒

⃒
⃒
⃒1

n

∑n
i=0fluxrefi

⃒
⃒
⃒

⋅ 100 (2) 

This relative potential bias PBias represents the worst-case scenario, 
because the bias adds up for each flux and for the different time steps. 
Again, winter months were excluded, as well as, for PBias in half-hourly 
data, the direct measurements of the 85 m-level EC system during 
daytime were excluded. 

3. Results 

In the following subsections, we first analyzed the directly measured, 
quality-checked EC data of both measurement levels regarding their 
magnitudes (Section 3.1). Second, we applied the footprint model to 
day- and nighttime data of both EC systems, and compared the footprint 
areas and the contributions of the different land cover types between 
both measurement levels (Section 3.2), in order to check how well the 
day- and nighttime footprints matched for the two-level data (combi-
nation of daytime 85 m- and nighttime 60 m-level measurements). In 
Section 3.3, the final gap-filled and source partitioned flux data were 
compared between the single- and two-level data sets across multiple 
time scales. 

3.1. Tall tower eddy covariance flux measurements 

As expected, the half-hourly daytime NEE fluxes were mostly nega-
tive (net CO2 uptake by the ecosystem), and daytime LE and H were 
mostly positive (net energy release) at both EC measurement heights 
(Fig. 2). During nighttime, net CO2 release prevailed with positive NEE, 
LE was mostly positive and close to zero, and H was usually negative. 
According to the regressions’ slopes (> 1.00) of the comparison between 
both measurement levels, the absolute magnitudes of the 60 m-level EC 
measurements were usually larger than those of the 85 m-level. The 
regression slopes for the nighttime NEE and H data were ≥ 1.23, such 
that at the lower measurement level more positive (higher) NEE fluxes 
and more negative (lower) H fluxes were measured than at the higher 
measurement level. By combining the data of both levels, i.e. by 
replacing the nighttime data in the time series of the 85 m-level EC 
system with measurements of the 60 m-level, the amplitudes in NEE and 
H increased in comparison to the original fluxes measured at 85 m 
(Fig. 2). Because Reco is estimated based on the nighttime NEE fluxes, its 

Fig. 3. (a) Footprint area and (b) fraction of area for each land cover type 
depending on relative flux contribution of the study period’s footprint clima-
tology for day- and nighttime. Gray lines in the upper panel represent the areas 
depending on the relative flux contribution of the monthly footprint clima-
tology for day- and nighttime. The inset graph in the upper panel shows the 
footprint area in a logarithmic scale. In both panels, solid lines depict the data 
linked to and/or used for the two-level combination. 

Fig. 4. (a) Footprint climatology for both eddy covariance systems for each season: (a) winter (Nov-Feb), (b) transition months (Sep-Oct, Mar-Apr), and (c) summer 
(May-mid Jul). The 80% contour lines are shown for day- and nighttime individually. Numbers on x- and y-axes indicate the distance from the tower in meters. 
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magnitude will also be larger for the two-level data during night- and 
also daytime, and have an impact on GPP estimates. The time series of 
the half-hourly observations for both EC measurement heights are 
shown in Figure S3 in the supplementary material. 

3.2. Comparison of footprint areas between both measurement levels 

The footprint climatologies of both EC systems for the entire study 
period are shown in Fig. 1a with the 80% flux contribution contour lines 
(red for 85 m- and blue for 60 m-level EC system), where a distinction is 
made between the footprint climatology of day- or nighttime data. 
Because of the higher measurement height, the footprint areas extended 
further for the 85 m-level EC system than for the 60 m-level. Fig. 1a 
already indicates that when combining data of the two measurement 
heights we obtain data measured of a less variable source area in the diel 
course (dotted red and dashed blue contour line). Naturally, with 
increasing flux footprint contribution the area increased (Fig. 3), where 
the 90% flux contribution areas became in all cases relatively large and 
varied a lot between months as indicated by the gray lines in Fig. 3a. The 
area fraction of forest decreased with increasing footprint contribution 
and footprint extent, while the area fraction of clearcuts and peatlands 
mostly increased (Fig. 3b). The fractions of grasslands, lakes, rivers, and 
residential areas were small and did not differ much between footprint 
extents. 

The difference in area between the daytime 85 m- and nighttime 60 
m-level footprint was on average much smaller than between day- and 
nighttime for each single measurement level (Fig. 3a). Furthermore, the 
area fractions of each land cover type matched very well between day- 
and nighttime for the two-level data, better than for each EC system on 
its own. An exception was observed for the area fraction of forest and 
peatlands, where a larger area of peatlands fell within the 40%- and 
50%-footprint contour line of the 85 m-level EC system, but was not 
‘seen’ by the 60 m-level EC system, due to its smaller footprints. 

However, the footprint climatologies for each season indicated dif-
ferences in day- and nighttime footprint proportions between seasons 
(Fig. 4, Table 1, cf. Fig. S4 in supplementary material with footprint 
climatologies for each month). In summer (May-mid July, Fig. 4c) and 

transition months (September-October, March-April, Fig. 4b) the sea-
sonal averaged footprint areas of the two-level data set matched rela-
tively well with a small difference in footprint area size below 4.4 km2. 
The difference between day- and nighttime footprints for the 60 m-level 
EC system was similar in size, but much larger with up to 42 km2 for the 
85 m-level (Table 1). The nighttime footprints were up to 5 times larger 
than the daytime footprints for the 85 m-level. For the two-level com-
bination, the nighttime footprints were about a two fifth (34-41%) 
smaller than the daytime footprints (Table 1). This confirms the above 
described results as seen in Fig. 3. However, in winter months 
(November-February, Fig. 4a) the daytime footprint areas of both EC 
systems were larger due to an increase in stable stratification cases and, 
thus, of a more similar size as the respective nighttime footprint area. 
For each single level, nighttime footprints were about two times larger 
than daytime footprints, and for the two-level combination, nighttime 
footprints were up to three times smaller than daytime footprints. 
Hence, the two-level combination did not decrease the footprint vari-
ability significantly during winter months (Table 1). 

The estimated seasonal footprint climatologies were sensitive only to 
a small extent towards the estimate of hbl (Table 2), where footprint 
areas changed by up to 4.4% due to a change in hbl by 5% or 10%. 
Considering the largest estimated footprint area of about 52 km2 for the 
85 m-level EC system during nighttime for summer, an 5% increased hbl 
estimate would result in a by 2.3 km2 larger footprint area. In general, an 
increase in hbl yielded in a decrease in footprint area, and vice versa, 
with a few exceptions. The relative change in footprint areas of the 85 m- 
level EC system were usually slightly larger than of the 60 m-level. 
However, a clear dependency of the change in footprint area on season 
or day- and nighttime could not be observed. 

Stable atmospheric conditions prevailed during nighttime in all 
seasons and during daytime in winter, as can be seen in the diel courses 
of the atmospheric stability regime (Fig. 5, top panels). During stable 
conditions the half-hourly footprint areas were about 3-5 km2 for the 85 
m-level EC system and about 1-2 km2 for the 60 m-level, and they 
decreased with neutral or convective conditions (Fig. 5, middle panels). 
Accordingly, the footprint area fraction of forests decreased with 
increasing footprint area (Fig. 5, bottom panels). During winter months, 
there was no correlation between incoming radiation (day- or night-
time) and stability regime, and with that the diel dynamic in the foot-
print variability disappeared. So, the reduction or improvement of the 
footprint variability by the two-level combination was dependent on 
seasons. However, in general the orientation and dimension of the flux 
footprint was highly variable throughout the study period. 

To summarize, by selecting the lower measurement level during 
nighttime, the corresponding footprint area of nighttime flux observa-
tions decreased compared to the 85 m-level footprint area, and the 
footprint area fraction of forest increased and that of clearcuts and 
peatlands decreased. With this two-level combination the averaged 
footprint during nighttime was smaller than during daytime, but the 
footprint variability within the diel course was decreased by up to 89% 
(Table 1; ratio between differences in footprint area of the two- and 85 
m-level). This good agreement of day- and nighttime flux footprints 
depended on dynamics in the atmospheric stability regime at a monthly 
or seasonal scale. 

Table 1 
Aggregated footprint areas in km2 (80% flux footprint contribution) for both 
eddy covariance systems, for day- and nighttime individually, and for each 
season and the entire study period. The ratio of nighttime over daytime footprint 
areas (italic) shows how much larger the footprint area was during nighttime 
than during daytime for each measurement level, and for the two-level data set 
(last column; daytime 85 m- and nighttime 60 m-level).   

——– 85 m-level ——– ——– 60 m-level ——– Two- 
level 

Day 
(km2) 

Night 
(km2) 

Ratio 
(-) 

Day 
(km2) 

Night 
(km2) 

Ratio 
(-) 

Ratio 
(-) 

Winter 25.0 38.2 1.53 3.7 8.0 2.17 0.32 
Transition 

months 
10.6 34.1 3.21 2.3 6.2 2.67 0.59 

Summer 10.0 51.8 5.19 2.3 6.6 2.86 0.66 
Entire 

period 
12.4 38.0 3.07 2.6 7.3 2.86 0.59  

Table 2 
Relative changes (in %) in estimated footprint areas (80% flux footprint contribution) due to changes in the boundary layer height (hbl) by ±5% and ±10% for both 
eddy covariance systems, for day- and nighttime individually, and for each season.    

——— 85 m-level ——— ——— 60 m-level ——— 
Change in hbl by -10% -5% +5% +10% -10% -5% +5% +10% 

Winter Day 4.4 1.6 -1.5 -0.8 2.1 0.8 -1.4 -1.6  
Night 2.8 -1.4 -2.0 0.2 0.7 0.6 0.6 -1.5 

Transition Day 1.7 0.8 -1.7 -1.1 0.5 0.8 -0.7 -1.5  
Night 4.2 3.7 -0.5 -1.0 0.6 1.5 -0.1 -0.2 

Summer Day 1.9 1.2 -1.4 -2.6 1.4 0.7 -0.6 -1.2  
Night 2.0 4.4 -0.1 -3.9 3.0 2.8 0.6 0.2  

A. Klosterhalfen et al.                                                                                                                                                                                                                          



Agricultural and Forest Meteorology 339 (2023) 109523

8

3.3. Comparison of single- and two-level flux data 

In the following comparison between the single- and two-level data 
sets, we excluded the winter months November 2018 until February 
2019, as the footprint analysis had shown that the variability of the day- 
and nighttime footprints was similar or increased with the combination 
of the two measurement levels for these months. This indicates that the 
flux estimates for the two-level data set were (even more) biased due to 
changes in the footprint in the diel course. For the remaining months, 
September-October 2018 and March-July 2019, the bias should be 
reduced due to better matching day- and nighttime footprints and, thus, 
flux estimates have been improved. Based on these judgments, we define 
the two-level data set in the following analysis as reference (fluxref). 
With the comparison between this reference and the single-level data set 
of the 85 m-level EC system (flux85) or the 60 m-level (flux60, see sup-
plementary material Fig. S7-S10), we could now estimate the bias in flux 
data obtained by only one measurement height. 

Even though incoming radiation, air temperature, vapor pressure 
deficit, and day lengths were similar during transition months (Fig. S1 in 
supplementary material), flux magnitudes were very small during spring 
(March-April 2019) in comparison to fall (September-October 2018), 
mainly due to the snow cover (Figs. S3, S5, S6 in supplementary mate-
rial). Thus, in the following we only show relative differences (Δfluxi,t in 
%) between the single-level (flux85) and two-level reference (fluxref) 

data in relation to the absolute mean flux in different time steps, which 
are independent of the flux magnitude (Eq. (1)). For Fig. 6, Δfluxi,t was 
calculated by choosing the absolute mean daily flux for each season (i =
daily; t = spring, summer, or fall months) as a denominator, and for 
Fig. 7 by choosing the absolute mean flux of the entire study period for 
different time steps (i = half-hourly, hourly, daily, weekly, monthly, per 
season, entire study period; t = entire study period). 

The relative daily differences between single- and two-level data for 
NEE (ΔNEE) was mostly negative during fall (Fig. 6). During spring and 
summer ΔNEE was almost compensated in the course of the season. 
ΔReco was mostly negative during all seasons and ΔGPP was mirrored to 
ΔReco. Therefore, the magnitudes of CO2 release and uptake were both 
underestimated at the single-level. However, these underestimations of 
the opposing fluxes affected the NEE differently between seasons: 
smaller/more negative net exchange during fall, high variable net ex-
change during spring, and only a small difference during summer. ΔLE 
was mostly negative, so the magnitude of LE was mostly underestimated 
at the single-level. The magnitude of H was mostly overestimated in 
spring, and was mostly underestimated in fall and summer. Note, that 
these relative biases are related to each seasonal average flux magni-
tude. The cumulated curves in Fig. 6 represent the effect of using only 
one level compared to two levels on the cumulated sums per season. 
Following the cumulated curves, the relative bias in all carbon and en-
ergy flux estimates was highest during fall. 

Fig. 5. Median diel course (local time) of atmospheric stability depicted as (z-d)/L (top panels), footprint area (middle panels), and area fraction for each land cover 
type (bottom panels) for both single-level measurements, individually depicted for (a) winter (Nov-Feb), (b) transition months (Sep-Oct, Mar-Apr), and (c) summer 
(May-mid Jul). The footprint areas and area fractions are shown for the 80% flux contribution. Error bars indicate the 95% confidence intervals of the mean values. 
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Considering the cumulated sums for the entire study period 
(excluding the winter months), the absolute differences between the 85 
m- and two-level sums were smaller than the absolute differences be-
tween the 60 m- and two-level sums, except for Reco (Table 3). Cumu-
lated Reco was almost identical between the 60 m- and two-level data, 
because the nighttime flux-based source partitioning approach after 
Reichstein et al. (2005) was used. Comparing the 85 m- and two-level 
data, the sums changed by 109%, -28%, -52%, -5%, and -3% for NEE, 
GPP, Reco, LE, and H by measuring only on one level. 

The relative differences (Δfluxi,t) between single- and two-level data 
for different time steps in relation to the absolute mean flux of the entire 
study period are shown in Fig. 7. For the carbon and energy fluxes, the 
range and standard deviations of Δfluxi,t decreased significantly from 
half-hourly to seasonal time steps. However, mean Δfluxi,t differed not 
much between the different time steps. For the energy fluxes mean 

Δfluxi,t was always relatively small, because under- and overestimation 
of fluxes could cancel each other out. But if a smaller time window of 
half-hourly, hourly or daily data would be chosen, then the chance of 
flux under- or overestimation increases. The reason for large Δfluxi,t in 
(half-)hourly data was certainly mostly the difference between footprint 
extensions of the two different measurement heights, because in this 
time step no data was really combined and aggregated, yet. Still, by 
choosing data from the lower level during night, the extent of footprints 
should be more similar to the extent of footprints during daytime (data 
from upper level), even though the direction and wind speed could still 
differ within the diel course, but usually not between measurement 
levels (Fig. S2 in supplementary material). The variance of Δfluxi,t was 
usually larger during transition months than during summer (not 
shown). Obviously, relative differences between the single- and two- 
level data were the largest during nighttime, because here the data 

Fig. 6. Relative differences (Δfluxi,t in %, cf. Eq. (1)) between 85 m- and two-level data in relation to the absolute daily mean flux of each corresponding season in the 
daily (a) net ecosystem exchange (NEE), (b) gross primary production (GPP), (c) ecosystem respiration (Reco), (d) latent heat (LE), and (e) sensible heat (H) flux 
estimates (subscripts i = daily, t = each season). Δfluxi,t is shown for each variable per day (left y-axis, gray bars) and cumulated over each season (right y-axis, 
black line). 
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were exchanged with the lower level measurements in the reference. 
Nevertheless, differences during daytime also occurred between data 
sets due to differences in gap-filled flux estimates. 

Generally, the fluxes of NEE, Reco, LE, and H were underestimated 

and that of GPP overestimated (Fig. 7). So, for GPP the absolute flux 
magnitude/CO2 uptake was underestimated, and for NEE the fluxes 
measured at the single-level were always smaller and/or more negative 
than for the two-level approach (CO2 release was underestimated and/or 
CO2 uptake was overestimated). The relative difference in Reco was 
almost constant throughout the day (Fig. S6 in supplementary material), 
because in the source partitioning approach the relationship between air 
temperature and Reco was derived based on nighttime data and extrap-
olated to daytime. In half-hourly time steps the bias in Reco was a 
magnitude smaller than in NEE or in GPP (not shown), but because the 
differences in Reco between both data sets persisted throughout each day 
and not only appeared for a few half-hours, they summed up to a similar 
magnitude as ΔNEE or ΔGPP for one day or for the entire study period 
(Figs. 6, 7). 

When using half-hourly data sets of a single-level on a tall tower, 
PBias (Eq. (2)) was largest in flux estimates, especially for GPP and LE 
(Fig. 8). PBias in half-hourly data was 66%, 325%, 57%, 160%, and 35% 

Fig. 7. Relative differences (Δfluxi,t in %, cf. Eq. (1)) between 85 m- and two-level (a), (c) carbon flux and (b), (d) energy flux data in relation to the absolute mean 
flux of the entire study period for different time steps (subscripts i = varying, t = study period). Δfluxi,t for only directly measured data (without gap-filling) are 
shown in panels (c) and (d). gray circles show all values of Δfluxi,t, colored dots with error bars indicate mean Δfluxi,t with standard deviation, and red bars show 
medians (NEE: net ecosystem exchange, GPP: gross primary production, Reco: ecosystem respiration, LE: latent heat flux, H: sensible heat flux). Numbers in each 
upper panel show the sample size for each time step. 

Table 3 
Cumulated sums of net ecosystem exchange (NEE), gross primary production 
(GPP), ecosystem respiration (Reco), latent heat (LE), and sensible heat (H) flux 
estimates for the individual measurement levels and the two-level data for the 
study time period from September 2018 until July 2019, excluding the winter 
months November 2018-February 2019.   

85 m-level Two-level 60 m-level 

NEE (g C m-2) -134 -64 -205 
GPP (g C m-2) -309 -431 -573 
Reco (g C m-2) 175 367 368 
LE (MJ m-2) 324 341 416 
H (MJ m-2) 426 438 514  
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for NEE, GPP, Reco, LE, and H, respectively. The bias is smaller if 
aggregated data are used, where the aggregation to hourly time steps 
reduced PBias the most for GPP and LE. However, for NEE the PBias was 
relatively large. PBias in Reco was the least dependent on selected time 
step due to the selected gap-filling method. 

By excluding gap-filled data and only considering directly measured 
fluxes for half-hours with data points for both the single- and two-level 
approach, the mean Δfluxi,t was similar to Δfluxi,t for gap-filled data and 
the variance in Δfluxi,t was still large (Figs. 7b, 7d, 8b). PBias was 
increased for NEE and LE. This shows that the here estimated relative 
bias and PBias were mostly introduced by flux footprint differences, 
because the magnitudes were similar between gap-filled and non-gap- 
filled data. Most studies using EC data consider gap-filled data sets for 
a long-term perspective, and our estimated biases provide a worst-case 
scenario for such studies (Figs. 7a, 7c, 8a). Here, two-level combina-
tion of the measurements impacted slightly the gap-filled data as can be 
seen in the diurnal courses of the fluxes in Figure S6 in the supple-
mentary material. If the gap-filled data would be unaffected, the diurnal 
course of the two-level data would be congruent with the 85 m-level 
data during daytime and with the 60 m-level during nighttime, which is 
not the case here. 

4. Discussion 

4.1. Footprint variability 

With the data combination of two EC measurement levels, we were 
able to quantify the bias in single-level measurements of carbon and 
energy fluxes over a heterogeneous landscape. However, the two-level 
approach did not improve the flux estimates during winter months. 
This was due to the fact that the stable atmospheric regimes prevailed 
throughout the entire day during winter conditions, and the diel varia-
tion of the averaged footprint area was therefore small at a single level 
(Figs. 3, 4, 5, Table 1). For the remaining study period, the footprint 
dimensions and area fractions of the different land cover types matched 
much better between day- and nighttime for the two-level data. During 
nighttime, the area fraction of forest increased with the two-level 
approach, resulting in a lower representation of clearcuts and peat-
lands, more similar to the daytime fraction, i.e. the diel variability was 
decreased (Figs. 3, 5). 

Even though the two measurement heights at 85 m and 60 m were 
chosen deliberately to decrease the variability in footprints, the day- and 
nighttime footprints did not match perfectly. Other approaches of data 
set combination could be applied to decrease footprint variability. For 
instance, the atmospheric stability could be chosen as criterion, where 
during stable conditions data of the lower measurement height should 

be chosen. Another option would be to choose an optimal size of the 
footprint area (for instance here about 9 km2), and then select for each 
half hour data of the level whose half-hourly footprint area is closest to 
this optimal size. However, frequent switching back and forth between 
measurement heights during the course of one day cannot be prevented 
with these two approaches. In this study, we focus on using day- and 
nighttime as the criterion for the data combination because these time 
periods can be derived easily and objectively without any gaps from 
standard radiation measurements and thus are independent of EC 
measurements. 

Independent of the approach, the variation of the averaged footprint 
area and of the area fractions of the different land cover types can still be 
very large for shorter time scales (half-hourly, hourly, daily) due to 
frequent changes in wind direction and atmospheric stability. Hence, at 
shorter time scales, the fluxes are representative for differing surfaces 
and can still be biased. While we were unable to account for this bias 
source in this current study, our two-level approach is still applicable for 
shorter time scales since the footprint extensions will be aligned be-
tween day- and nighttime when there is no wind shear between both 
systems. By aggregating the data to longer time periods, the averaged 
footprint area becomes larger and representative for a wider range of 
surface elements and of the entire target area, and biases decrease. 

Due to uncertain estimates of the roughness length (z0) and boundary 
layer height (hbl), bias may have been introduced to the footprint sim-
ulations. Kljun et al. (2015) conducted a sensitivity analysis for their FFP 
model towards the input parameters z0 and hbl for various stability 
conditions (see Section 6.1 in Kljun et al., 2015). They found only minor 
shifts and size alterations of the footprint by up to 3.7%, even for 
changes by ±20% for z0 and hbl. For stable conditions uncertain pa-
rameters have a higher impact than for non-stable conditions. The here 
conducted sensitivity analysis yielded also only small relative changes in 
the estimated seasonal footprint climatologies (Table 2). The footprint 
areas changed by up to 4.4% due to a change in hbl by 10%, where a 
dependency on season or day- and nighttime could not be observed. 

Considering shorter time steps, flux measurements can originate 
from different sinks and sources within the landscape, that not only 
differ in their general land cover type (forest, clearcut, or peatland), but 
also in canopy and soil characteristics, stand age, activity of heterotro-
phic organisms, albedo, net radiation, and other factors varying at a 
smaller spatial scale. For instance, Griebel et al. (2016) found directional 
differences in surface characteristics and weather patterns within their 
footprint, all of which affected measured fluxes and also influenced 
annual budgets. Even though we decreased the variabilities in the flux 
footprints and contributions from the various sinks and sources with the 
two-level combination, the heterogeneity within the landscape and so 
within the footprint areas was of course still given. This especially has an 

Fig. 8. (a) Mean absolute bias in relation to absolute reference mean (PBias, cf. Eq. (2)) for each flux for different time steps. The bias was calculated based on the 
difference between the single-level 85 m and the reference (two-level) data set. (b) PBias calculated with only directly measured data (without gap-filling) for the 
half-hourly time step and based on the sums of available data points (NEE: net ecosystem exchange, GPP: gross primary production, Reco: ecosystem respiration, LE: 
latent heat flux, H: sensible heat flux). 
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impact on data analysis often applied to (half-)hourly data, such as 
gap-filling and source partitioning approaches, where relationships be-
tween physical drivers and obtained fluxes are derived for certain time 
periods and then applied to other time periods. The differences in 
footprint areas between the two time periods should be as small as 
possible. 

4.2. Comparison of single- and two-level approach 

The differences in measured nighttime fluxes at both levels (Fig. 2) 
already indicated that with the combination of daytime 85 m-level and 
nighttime 60 m-level data the flux amplitudes in the diel course would 
be changed. Due to the smaller nighttime fluxes in NEE and LE, also the 
sums of NEE and LE were smaller for the single-level than for the two- 
level data set (Table 3). Accordingly, the absolute sums were smaller 
for Reco and GPP, because they were derived based on nighttime fluxes. 
Due to less negative/larger nighttime fluxes of H, it was assumed that its 
sum would be increased. However, the sum differed between the single- 
and two-level approach by less than 3%, because we excluded data from 
the winter months in our comparison of data sets and in the cumulated 
sums. Thus, the differing negative H fluxes were primarily excluded 
from the comparison. 

By obtaining flux measurements on a single level, the footprint area 
increased during night compared to daytime. At our study site, this 
resulted in a decreased area fraction of forest while the area fractions of 
peatlands and clearcuts increased. Thus, the contribution to nighttime 
CO2 release and evaporation by other land cover types than forest was 
increased, which resulted here in lower nighttime LE and NEE/Reco than 
for the two-level approach. Deriving daytime Reco based on this under-
estimated nighttime NEE, also yielded an underestimation of CO2 uptake 
(less negative GPP) during the day. Hence, the bias in empirical and 
model analysis (e.g., gap-filling and source partitioning models) due to 
footprint variability should also be considered for the analysis of 
cumulated sums, budgets, and the ratios between CO2 release and 
uptake. 

On average for the various data time steps, the fluxes of NEE, Reco, 
LE, and H were underestimated and those of GPP overestimated (less 
negative) with the single-level approach (Fig. 7). We found relative 
potential biases due to footprint variability ranging between 35% and 
325% in our half-hourly data and up to 107% in cumulated sums (over 6 
months; Fig. 8). However, for half-hourly, hourly, and daily data, sea-
sonal differences could be observed (Fig. 6), where the footprint vari-
ability affected the measured carbon and energy fluxes the most during 
fall. Furthermore, bias estimates were very large for these shorter time 
intervals. Here, the distribution of our relative differences between the 
single- and two-level measurements (Fig. 7) showed that the carbon and 
energy fluxes could be both over- and underestimated by > ±100%, 
especially in the half-hourly or hourly time steps, when using only one 
measurement level. This was also the case, when only measurements 
(excluding gap-filled data points) were compared for the half-hourly 
time steps with data available for the single- and two-level approach 
(Fig. 7c, 7d). These large over- and underestimations could have large 
implications for model-data fusion studies, where measurements that 
are not spatially representative are used to develop, calibrate and 
evaluate models, for site comparison studies, for up- or downscaling 
procedures, or for studies that only consider short time periods or in-
tervals to investigate relations between environmental factors and 
fluxes. 

Previous studies have estimated the magnitude of random errors in 
EC measurements. Hollinger et al. (2004) used concurrent measure-
ments of two towers without overlapping footprint areas within a 
spruce-dominated forest to quantify the total random uncertainty, which 
includes also the instrument and turbulence sampling error next to the 
bias introduced by footprint variability. A comparison of half-hourly 
NEE, LE, and H suggested differences of 10-15% in their measure-
ments of the two towers. The annual average net carbon uptake differed 

by < 6% (≈ 25 g C m-2 year-1) between the two towers, which was also 
smaller than the interannual differences. Dragoni et al. (2007) obtained 
a random uncertainty of < 4% (< 12 g C m-2 year-1) in their annual NEE 
estimate for a mixed deciduous forest. By conducting EC measurements 
on one tower in two heights (34 and 46 m) over a deciduous forest, 
Schmid et al. (2003) found a difference up to 80 g C m-2 in annual NEE 
(cf. Fig. 8 in Schmidt et al. 2003) between both systems. Additionally, 
they investigated the relative offset for hourly H between both systems, 
which was much smaller than for hourly NEE. Thus, Schmid et al. (2003) 
argue that differences in flux footprint variations are not likely an 
important factor, because the offset between both systems differed be-
tween NEE and H, and the patterns observed in the bias between both 
systems could not be explained with changes in wind direction. They 
assume that this offset was caused more likely by instrument and tur-
bulence sampling errors. However, in our data set, we observed that 
changes in atmospheric stability and therefore footprint dimensions 
could explain differences in flux observations for two measurement 
heights, where wind shear between EC systems was negligible. The 
above cited studies quantified the total random uncertainty. To quantify 
the implications of surface heterogeneity (e.g., in leaf area index) on flux 
measurements separately (next to instrument error and uncertainty due 
to gap-filling), Oren et al. (2006) used flux data measured at six EC 
towers on ecosystem-level (with overlapping footprints) within a rela-
tively homogeneous pine plantation. They found that even in such a 
homogeneous forest about 50% of uncertainty in half-hourly flux data 
and 6-49% in annual NEE can be linked to spatial variability in 
ecosystem activity (leaf area index, phenology, activity of heterotrophic 
organisms). This highlights the possible advantage of two-level mea-
surements even in conventional EC studies to avoid bias due to footprint 
variations within the diel course. 

To derive their optimized estimate for NEE of a heterogeneous mixed 
forest landscape, Davis et al. (2003) combined EC flux data of three 
different measurement heights (30, 122, and 396 m) on the WLEF 
television tower. Depending on atmospheric stability, boundary layer 
depth, and data availability, they chose measurements from a certain 
level for their final data set to decrease the change in the footprint area, 
to increase data coverage, and to minimize the influence of a clearing 
with a 200 m radius around their tower base. Daily NEE estimates only 
using one measurement level lay within a 20% range of the optimized 
NEE estimate (Davis et al., 2003). In this bias estimate only hours with 
data available for all three levels and during summer months were 
included. We chose day- and nighttime as the criterion for the data 
combination (and not atmospheric stability and data availability as 
Davis et al., 2003) because these time periods can be derived easily 
without any gaps and independent of EC measurements. In our 
approach, the distance between our measurement levels was chosen 
deliberately to obtain matching day- and nighttime footprints, and was 
much smaller than in the set-up of Davis et al. (2003). It is also note-
worthy that our approach further benefitted from gathering a-prior 
footprint area estimates based on wind data to ensure a good match 
between the two levels. 

Uncertainties introduced by the different instrumental set-up be-
tween both measurement heights affected the comparison of the single- 
and two-level approach. The here applied correction of the CO2 and H2O 
raw data in reference to the vertical profile system (Section 2.3.1) 
yielded lower PBias for this data analysis than when this correction was 
not applied prior to flux processing (not shown). This confirms that some 
difference due to the instrumental difference was corrected. Mean 
relative differences between the 85 m- and 60 m-level data were about 
61%, 48%, and 12% for NEE, LE, and H, respectively, for half-hourly 
data obtained during optimal meteorological conditions (cf. 
Appendix B). The estimated PBias between both levels and the 85 m- 
level taken as reference were 59%, 37%, and 15% for NEE, LE, and H, 
respectively, which are for the energy fluxes much lower than the PBias 
of the single- and two-level comparisons for half-hourly data shown in 
Fig. 8. For NEE, PBias between both levels was only slightly smaller in 
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half-hourly fluxes than for the single- and two-level comparison. How-
ever, considering aggregated fluxes (hourly to seasonal) PBias increased 
for the latter comparison (Fig. 8). Further, the here applied correction of 
the CO2 and H2O raw data in reference to the vertical profile system 
(Section 2.3.1) and thus, an alignment of the gas analyzers of both 
measurement levels yielded lower PBias for this data analysis than when 
this correction was not applied prior to flux processing. Thus, the here 
estimated absolute relative bias introduced by obtaining flux measure-
ments on a single level were mostly caused by the higher flux footprint 
variability, and to a much lesser extent by instrumental differences, but 
unfortunately, they could not be excluded entirely. 

Additionally, uncertainties in flux data can be induced by the applied 
quality check, gap-filling and source partitioning approaches (e.g., Oren 
et al., 2006, Schmid et al., 2003), where large data gaps even increase 
these uncertainties, especially when they occur during time periods of 
difficult measurement conditions (e.g., low temperature and icing of 
instruments) and with fluxes of low magnitude and low variation (less 
active ecosystem). Further, periods of lower EC data quality due to low 
turbulence, stable atmospheric regimes, and liquid water in tubes usu-
ally prevail during night and/or winter. Here, we assumed that these 
uncertainties are given for all used EC data sets and are of similar 
magnitude at both levels, because the same approaches were always 
used, making the data sets comparable. Further, data obtained during 
winter months was excluded from the comparison of the single- and 
two-level approach, thus, mostly excluding periods with low turbulence 
and harsh conditions. Moreover, we minimized the bias in the flux es-
timates introduced by possible advection processes by filtering out pe-
riods with prevailing vertical or horizontal advection fluxes after 
Wharton et al. (2009) and by applying storage term corrections. How-
ever, uncertainties in the flux estimates of both EC systems due to the 
chosen flux processing scheme, quality checks, gap-filling strategies, 
source partitioning methods, and instrumental set-ups could not be 
eradicated completely. 

Next to possible large implications for model-data fusion studies, site 
comparison studies, up- or downscaling procedures, or for studies using 
only short time periods and/or scales, the footprint variability affects 
also the extrapolation of nighttime NEE—temperature relationships to 
daytime, as done in various source partitioning, gap-filling or model 
approaches. 

5. Conclusions 

By combining data from two EC measurement levels, we quantified 
the bias in single-level measurements of carbon and energy flux esti-
mates for various time scales over a heterogeneous landscape. Our study 
showed that by choosing measurements of the higher level during 
daytime and of the lower level during nighttime, the diel variation in the 
averaged footprint area was decreased significantly. However, during 
winter months diel footprint variability remained small at a given 
measurement level, because stable atmospheric regimes prevailed 
throughout the entire day. Thus, the footprint variability could not be 
decreased with this two-level approach during winter. 

Our study revealed potential biases due to footprint variability over 

heterogeneous terrain up to 160% in the half-hourly NEE, LE, and H 
fluxes from this study site and up to 5% in cumulated sums (over 6 
months) of energy fluxes and even 107% in cumulated sums in NEE. 
Furthermore, the distribution of our relative differences between the 
single- and two-level measurements showed that the carbon and energy 
fluxes could be over- or underestimated by > 100%, especially in the 
half-hourly or hourly time steps, by using only one measurement level. 
This could have large implications for model-data fusion studies, site 
comparison studies, up- or downscaling procedures, analysis of relations 
between environmental factors and fluxes, or for studies that only 
consider short time periods or intervals. Furthermore, the sink and 
source strengths of certain ecosystems could be misinterpreted. 

Especially for high EC measurement heights, the variation of the 
averaged footprint area within the diel course and hence the bias can 
become very large. Moreover, the bias depends on the degree of het-
erogeneity of the target area and the distribution of scalar sinks and 
sources, and thus, could become very important for EC systems on 
stand/ecosystem-level and/or for study sites with a high diel variability 
in atmospheric stability. Besides decreasing the bias in flux observations 
due to variable flux footprints, the two-level approach could also pro-
vide a good data basis for gap-filling fluxes between the two EC systems. 
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Appendix B 

Eddy covariance instrument comparison 

To make sure that the observed differences between the two eddy covariance (EC) systems at 85 m and 60 m measurement height were caused by 
the differing source areas and not by instrumental differences, an instrument comparison of the gas analyzers and sonic anemometers was conducted. 
Unfortunately, it was not logistically possible to install both EC systems next to each other at the same height for a short time period, which would have 
been optimal. Thus, we compared measurements of both EC systems which were obtained under similar and optimal conditions and of (presumably) 
similar flux footprints (Fig. B1). Following the parameterization of the flux footprint prediction model after Kljun et al. (2015), the footprint depends 
on measurement height, roughness length, wind direction, wind velocity, friction velocity, Obukhov length (atmospheric stability), standard deviation 
of the lateral wind component, and planetary boundary layer height. For the instrument comparison, we chose data from May until mid-July 2019 of 
both EC systems, where the difference between measured wind directions of both EC systems was < 10◦, the difference in mean wind velocities < 1 m 
s-1, in friction velocities < 0.1 m s-1, in Obukhov lengths < 50 m, and in standard deviations of the lateral wind velocity < 0.2 m s-1. The roughness 
length and boundary layer height were identical for both EC systems. Also, time periods with precipitation were discarded. However, the extent of the 
corresponding footprints still differed between both EC systems because of the large difference in measurement heights. The relative area fractions of 
forest, clearcuts, or peatlands within the footprint (80% footprint flux contribution) differed only up to 3.4% between the 85 m- and 60 m-level EC 
system. 

Furthermore, we aligned the concentration measurements of both gas analyzers in reference to the measurements of the vertical profile. The CO2 
measurements of the vertical profile system were beforehand validated based on the ICOS atmospheric system, because the latter was calibrated 
frequently and extensively. First, the half-hourly CO2 and H2O measurements were compared between the profile system (reference) and each EC 
system. The absolute offset between the reference and the EC system time series was estimated by taking the difference of the rolling means of the 
concentration with a window of seven days. Secondly, time steps of similar and optimal conditions (see above) between both EC systems were chosen 
during the entire study period—to ensure relative similar source areas. Thirdly, regressions were derived between the reference and each EC system 
for CO2 and H2O with the reduced major axis regression method. Fourthly, based on these estimated offsets and regressions the CO2 and H2O raw data 
(10 Hz data) were corrected and then fluxes were reprocessed with EddyPro®. 

Fig. B1 shows the comparison between both levels for the variance of the vertical wind component (σw
2 ), sensible heat flux (H), sonic temperature 

(Ts), and its variance (σTs
2), all measured by the sonic anemometers, and for the deviations of the mixing ratios from the mean concentrations (ΔχCO2, 

ΔχH2O), CO2 flux (FCO2), and latent heat flux (LE), all measured by the gas analyzers, from May until mid-July 2019. The correlations of most variables 
improved when similar meteorological conditions (large plots) were considered in comparison to the complete data sets (inner, smaller plots). 
However, discrepancies were still visible, especially in Ts and gas concentration measurements. In general, we can expect a difference in all variances 
and absolute magnitudes of Ts due to the difference in measurement heights. The variances of w and Ts should decrease with height due to the 
increasing eddy sizes. After Prueger and Kustas (2005), the roughness sublayer is about 1.5-3.5 times as high as the vegetation or obstacles, and above 
the surface sublayer extends up to 100 m. With an average canopy height of 23 m within the annual footprint and a maximum tree height of about 30 
m, the two EC systems in 85 m and 60 m would lay somewhere between the roughness and surface sublayer during daytime. The surface sublayer is 
fully turbulent, directly influenced by mechanical and buoyancy forcings from the surface, and wind speed profiles are generally logarithmic under 
neutral conditions. Furthermore, fluxes can be assumed to be nearly constant with height, so that flux differences between two measurement heights 

Table A1 
Absolute limits applied to each variable for quality-check (NEE: net ecosystem exchange, LE: latent heat flux, H: 
sensible heat flux).  

Variable  Absolute min Absolute max 

CO2 mixing ratio ppm 350 450 
H2O mixing ratio ppt 0 30 
NEE μmol m-2 s-1 -30 30 
LE W m-2 -150 500 
H W m-2 -300 750 
CO2 storage term μmol m-2 s-1 -25 25 
LE storage term W m-2 -200 200 
H storage term W m-2 -200 200  

Table A2 
Relative fraction of gaps (%) in entire data set (15,264 30 min-time periods) of processed half-hourly fluxes and added due to various quality-checks for each flux 
variable and eddy covariance system (NEE: net ecosystem exchange, LE: latent heat flux, H: sensible heat flux).   

—— 85 m-level —— —— 60 m-level ——  
NEE H LE NEE H LE 

In processed half-hourly fluxes 10.1 10.1 10.1 16.0 15.9 16.4 
Due to filtering quality flag=2 22.3 10.9 8.8 10.4 7.9 12.2 
Due to filtering absolute limits 1.7 2.5 2.1 1.7 2.5 1.7 
Due to too low boundary layer height 4.0 4.3 5.1 3.3 3.6 3.5 
Due to wind distortion, maintenance, malfunction 2.5 2.8 2.7 2.4 2.3 2.4 
Due to filtering for advection/low turbulence 11.7 13.6 14.5 10.5 11.0 9.9 
Due to despiking 3.3 1.5 4.2 4.4 1.2 4.5 
Due to complete quality check 45.4 35.6 37.4 32.8 28.5 34.2 
Total fraction of gaps 55.5 45.7 47.5 48.7 44.4 50.6  
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Fig. B1. Data comparison of both eddy covariance systems at 85 m and 60 m height obtained during similar and optimal conditions (see description in text) from May until mid-July 2019. Comparisons are shown for (a) 
the variance of the vertical wind component (σw

2 ), (b) variance of the sonic temperature (σTs
2), (c) sensible heat flux (H), (d) sonic temperature (Ts), (e, f) the deviations of the mixing ratios from the rolling mean 

concentrations with a seven day window (ΔχCO2
, ΔχH2

O), (g) CO2 flux (FCO2
), and (h) latent heat flux (LE). For this comparison, H, LE, and FCO2 

were not storage corrected. Also, equations of the reduced major axis 
regression, correlation coefficient (R), sample size (n), mean absolute error (MAE), root mean square error (RMSE), and relative potential bias (PBias) between both data sets are shown for each comparison. The inner 
smaller plots show the correlation of both unfiltered data sets for all meteorological conditions from May until mid-July 2019. 
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result from different footprints or upwind source areas. Following this, the flux measurements of NEE, LE, and H obtained under the above defined 
meteorological conditions should be almost identical. Because of occasional influence of the roughness sublayer (when the lower sensor is within), the 
scatter in the comparison of both measurement levels can be increased. A comparison of fluxes between both measurement levels depending on 
prevailing wind direction and roughness sublayer height (given by surface roughness and tree height) showed only non-significant differences (not 
shown). Here, the mean absolute errors and root mean square errors were relatively small for NEE, LE, and H. However, the linear regressions show 
discrepancies between measurement heights. The larger differences in NEE and LE indicated by the regression line’s slope could be caused by the 
longer tube length for the 85 m-level EC system than for the 60 m-level EC system. Mean relative differences between the 85 m- and 60 m-level data 
were about 61%, 48%, and 12% for NEE, LE, and H, respectively. Overall, the variance of vertical wind speed and the CO2 and H2O mixing ratios are of 
main interest for EC measurements and they show a satisfactory comparison (Fig. B1a, B1e, B1f). Still, due to the long tube the 85 m-level EC system 
underestimates especially NEE and LE, where the applied time lag optimization and spectral corrections can only partly reduce the measurement 
errors. 

For this instrument comparison, we also estimated the relative potential bias (PBias) as described in Eq. (2) for the half-hourly time steps. As can be 
seen in Fig. B1, PBias was smaller in this instrument comparison than for the final gap-filled data as stated in the Results Section 3.3. Thus, we conclude 
that the larger relative differences we see in our final results between the single- and two-level data set were indeed caused by the higher flux footprint 
variability in the single-level measurements, and to a lesser extent by instrumental differences. 

Appendix C 

Comparison of data obtained with heated and non-heated sonic anemometers 

During winter, the sonic anemometers were heated at our study site to prevent ice or snow on the instruments, when air temperature and humidity 
fell below a certain threshold. In this study, data points obtained during activated heating were not discarded before flux calculation to avoid large 
data gaps, because up to about 13% of the half-hourly flux data during our study period would have been additionally filtered out, especially nighttime 
data. Goodrich et al. (2016) and Kittler et al. (2017) analyzed flux data obtained with heated and non-heated anemometers in cold climate conditions 
and concluded that temperature measurements and sensible heat flux (H) were overestimated by the heated system, and the variance of the vertical 
wind component (σw

2 ) was influenced less, but the effect on scalar fluxes and annual carbon balances was small. Here, we like to analyze the influence 
of anemometer heating of the two tall tower eddy covariance (EC) systems and to estimate the relating uncertainty by comparing the turbulence data 
to the ICOS EC system at 34.5 m measurement height. The anemometer (Gill HS-50, Gill Instruments Ltd, Lymington, UK) of this ICOS EC system was 
heated only periodically (about every four hours for less than one hour during winter) and thus, has a much higher data coverage and a presumably 
smaller bias in wind components (Goodrich et al., 2016) than the tall tower EC systems. For the ICOS EC system, flux raw data were processed with the 
EddyPro® Software (v7.0.6) following closely the ICOS protocol (Sabbatini et al., 2018), while data obtained with activated sonic anemometer 
heating was always discarded. A few adjustments compared to Sabbatini et al. (2018) have been made: For the raw data quality check, the absolute 
limits of sonic temperature (Ts) were adjusted to the local plausible range and to the operating temperature range of the gas analyzers (-30 ◦C to 
+40 ◦C). The double rotation method was used for the anemometer tilt correction, for the high-frequency spectral correction, the approach after 
Ibrom et al. (2007) was applied (Rebmann et al., 2012). The post-processing data quality-check was performed as described in Section 2.3.3. 

In Fig. C1, the correlations of σw
2 , friction velocity (u*), H, Ts, and its variance (σTs

2) between the high-quality data of the ICOS EC system and the tall 
tower EC systems are shown. We compared data clouds obtained with non-heated (gray dots) and heated anemometers (black dots) of the tall tower EC 
systems measured during the winter period (October 2018-April 2019) (data obtained with a heated anemometer of the ICOS EC system was always 
discarded). If the regression lines of these two data clouds in each diagram are similar, then the influence of the anemometer heating was low. 

The sample sizes of the heated data were always smaller than of the non-heated data independent of the variable, which has an influence on the 
correlation coefficients. The slopes of the regression lines differed from 1.00 due to the difference in measurement height between the EC systems. The 
variables of the turbulent wind field, σw

2 and u*, compared well between heated and non-heated anemometer data, where the regression line slopes 
were very similar and offsets were always close to zero (Fig. C1a, b). But the slightly decreased slopes due to activated heating indicate an under-
estimation of the wind field components, which contradicts the observations of Goodrich et al. (2016) and Kittler et al. (2017). 

The temperature measurements did not compare as well between data sets (Fig. C1c, d, e). In Ts (Fig. C1c) an instrument artifact of the Gill sonic 
anemometer of the ICOS EC system is visible, where the relationship between very low air temperatures changes abruptly (light-gray dots; cf. Mauder 
et al., 2007). This change in the slope is not visible in the correlation between the two tall tower EC systems (CSAT3 3-D versus METEK uSonic-3 Omni 
sonic anemometer; not shown). Thus, in the following comparison of Ts, H, and σTs

2, we only considered data points when Ts of the ICOS EC system was 
> 3 ◦C (Fig. C1c, d, e), which improved the comparisons significantly. While the tall tower anemometers were heated, mostly a negative H and small Ts 
were measured, while during deactivated heating also relatively large positive H and high Ts were observed (Fig. C1d). The regression lines for H 
compared relatively well considering the differing magnitudes of H between activated and deactivated heating. The skewness of and the scatter in σTs

2 

were generally very large for heated and non-heated data, so that we ln-transformed the data for a better comparison (Fig. C1e). 
The sonic anemometer heating introduced an additional uncertainty in our measurements (next to uncertainties due to instrumental differences 

and applied methods for gap-filling and source partitioning), but in our opinion it is very small. Furthermore, our analysis focused on data obtained 
mostly during months, where sonic anemometer heating was not necessary. For instance, by excluding the winter months, only 423 and 24 half-hourly 
NEE measurements were obtained during activated sonic anemometer heating by the 60 m- and 85 m-level EC systems, respectively. 
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Fig. C1. Comparison of data obtained from the ecosystem-level ICOS eddy covariance (EC) system and both tall tower EC systems (85 m and 60 m) for half-hours without (gray dots, red regression line) and with (black 
dots, blue regression line) activated sonic anemometer heating between October 2018 and April 2019. All data are quality-checked and data of the ICOS EC system always excludes half-hours with activated anemometer 
heating. The columns show from left to right (a) variance of the vertical wind velocity (σw

2 ), (b) friction velocity (u*), (c) sonic temperature (Ts), (d) sensible heat flux (H; not storage term corrected), and (e) ln- 
transformed variance of Ts (σTs

2). Equations of each reduced major axis regression (nh: non-heated, h: heated), correlation coefficient, and sample size are listed in this order. In (c), the original Ts data are shown 
(light-gray dots) showing an instrumental artifact of the sonic anemometer at 34.5 m (cf. Mauder et al., 2007). Data of H, Ts, and σTs

2 were discarded for half-hours when Ts of the ICOS EC system was < 3 ◦C for a 
better comparison. 
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Appendix D 

Estimation of d and z0 based on two wind profile equations 

The zero-plane displacement height (d) and roughness length (z0) are needed as input parameters (amongst others) for the flux footprint prediction 
model after Kljun et al. (2015). Under near-neutral conditions (stability correction factor drops out under neutral conditions) the following loga-
rithmic wind profile equation can be assumed to be valid: 

↔ u(z) =
u∗

κ
⋅ln

(
z − d

z0

)

(D1)  

where u(z) (m s-1) is the mean horizontal wind velocity at measurement height z (m), u* (m s-1) is the friction velocity, and κ (-) is the von Karman 
constant (κ = 0.4). Eq. (D1) can be rearranged to: 

z0 =
z − d

exp
(

u(z) ⋅ κ
u∗

)

and 

d = z − z0 ⋅ exp
(

u(z) ⋅
κ
u∗

)

.

Because of the heterogeneity of the boreal landscape, d and z0 were estimated for each 30◦-sector of wind direction (Chi et al., 2019) with the 
turbulence measurements of the 60 m-level EC system and the ICOS EC system at 34.5 m. Here, the logarithmic wind profile equations relating to the 
two measurement heights z1 and z2 were equated for d or z0, respectively (Eq. (D2), D4), then solved for the other parameter (Eq. (D3), D5), and finally 
the resulting median within a reasonable range was selected for d and z0, respectively. 

↔
z1 − d

exp
(

u1(z1) ⋅ κ
u∗1

) =
z2 − d

exp
(

u2(z2) ⋅ κ
u∗2

) (D2)  

↔ d =
z1⋅ exp

(
u2(z2)⋅ κ

u∗2

)
− z2⋅ exp

(
u1(z1)⋅ κ

u∗1

)

exp
(

u2(z2) ⋅ κ
u∗2

)
− exp

(
u1(z1) ⋅ κ

u∗1

) (D3)  

↔ z1 − z0 ⋅ exp
(

u1(z1) ⋅
κ

u∗1

)

= z2 − z0 ⋅ exp
(

u2(z2) ⋅
κ

u∗2

)

(D4)  

↔ z0 =
z1 − z2

exp
(

u1(z1) ⋅ κ
u∗1

)
− exp

(
u2(z2) ⋅ κ

u∗2

) (D5) 

Only data obtained under near-neutral atmospheric stability with -0.1 < (z-d)/L < 0.07 (with d = 2/3 • canopy height), with wind velocities of the 
lowest (above canopy) measurement height > 4 m s-1 (after Sogachev and Dellwik 2017), and with wind velocities of the higher measurement height 
larger than of the lower one were used. With this approach, we found values for d between 17.2 m and 28.4 m and z0 between 0.8 m and 2.8 m for the 
various 30◦-sector of wind direction. The resulted wind profiles are shown in Fig. S11 in supplementary material. 
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