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Abstract
This paper will argue that one of the biggest challenges for livestock genomics is to make
whole-genome sequencing and functional genomics applicable to breeding practice. It
discusses potential explanations for why it is so difficult to consistently improve the
accuracy of genomic prediction by means of whole-genome sequence data, and three
potential attacks on the problem.
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Introduction 

This paper will argue that one of the biggest challenges for livestock genomics is to make whole-
genome sequencing and functional genomics applicable to breeding practice. It discusses potential 
explanations for why it is so difficult to consistently improve the accuracy of genomic prediction by means 
of whole-genome sequence data, and three potential attacks on the problem. Because whole-genome 
sequence data is much more expensive than the SNP chip genotypes currently used, it needs to deliver a 
large and consistent improvement to be worthwhile. 

The major achievement of livestock genomics in the past few decades was the implementation of 
genomic selection. After mixed results with marker-assisted selection — indisputable successes with 
damaging alleles of large effect (Schütz et al., 2008; Knol et al., 2016), the detection of and selection against 
which have now become fairly routine (Georges et al., 2019), and questionable usefulness for complex 
traits (Dekkers, 2004; Lowe & Bruce, 2019) — the combination of SNP genotyping chips that cover the 
whole genome in markers, and estimation methods that surmounted the 𝑝 ≫ 𝑛 problem of simultaneously 
dealing with many markers, made genomic selection possible. Nowadays, large breeding programs are 
likely to have more genotyped animals than markers, but treating marker effects as random still makes 
conceptual sense. 

Genomic selection has deep roots, going back at least to discussions about selection on single loci 
(Smith, 1967; Soller, 1978; Fernando & Grossman, 1989), but at some point in the late 1990s, the field 
shifted its focus from identifying key loci to use in marker-assisted selection to treating the whole genome 
statistically (Lande & Thompson, 1990; Nejati-Javaremi et al., 1997; Haley & Visscher, 1998; Meuwissen et 
al., 2001). Implementation happened first in dairy cattle breeding (Wiggans et al., 2017), later in pigs (Knol 
et al., 2016), poultry (Wolc et al., 2016), and many other animal and plant breeding programs (Hickey et 
al., 2017). 

Thanks to its role in enabling genomic selection, the SNP chip, i.e., a family of high-throughput array-
based methods for SNP genotyping (reviewed by Ragoussis 2009), is in the running for the title of most 
impactful genomic technology. The SNP chip has attractive properties: enough markers for genome-wide 
genotyping, cheap and accurate, and gives rise to well-behaved tabular data – as opposed to sequence 
data, which requires more computation, and raises questions about how to represent the genetic 
information. Many routine analyses are built around SNP chip data. With some linear algebra, SNP chip 
genotypes can be turned into a similarity matrix (i.e., genomic relationship matrix) that can be plugged in 
as a variance—covariance matrix in a linear mixed model (VanRaden, 2008). That is the essence of genomic 
selection. There is a whole technical literature on how these models can be fitted efficiently, evaluated and 
incorporate as much data as possible (reviewed by Misztal et al., 2020). 

The current state of genomic prediction with whole-genome sequencing 

Replacing SNP chip genotyping with whole-genome sequencing seemed like an attractive next step for 
genomic prediction. While sequencing is much more expensive, it has several purported benefits for 
genomic selection. Meuwissen & Goddard (2010) simulated genomic prediction with sequence data and 
concluded that it would improve accuracy, and could “revolutionize genomic selection in livestock”. The 
most natural improvement to imagine is better accuracy of selection, but one might also hope for better 
persistence of accuracy over subsequent generations, and generalizability between populations (Hickey, 
2013): 

“GS2.0 is a label that could be given to the type of GS that will emerge in the next 5 years. … potentially, 
millions of animals will have data obtained by sequencing. If this is the case, GS2.0 will accumulate the 
information required for utilizing both linkage disequilibrium and causative nucleotides when making 
predictions about breeding value. … This will increase the accuracy and persistency of predictions, could 
rescue the promise of across breed prediction and make the explicit use of the millions of de-novo mutations 
that arise naturally in our breeding populations possible.” 

Compared to a SNP chip that can only type the genetic variants it was designed to type, sequencing 
finds more variants, therefore has less ascertainment bias, and has the potential to genotype more 
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causative variants. The typical SNP chip for farm animal might contain some 50,000 variants, whereas short 
read whole-genome sequencing routinely lets you detect millions. The typical SNP chip will type common 
variants ascertained in particular populations, whereas whole-genome sequencing will detect variants in a 
less biased fashion (Geibel et al., 2021), albeit not completely without reference genome bias (Ros-
Freixedes et al., 2018). Therefore, you would have to be very lucky for a typical SNP chip to directly 
genotype causative variants (except known large-effect variants when it has been designed to do so, e.g., 
Mullen et al., (2013)); sequence data, however, may have a chance to genotype the causative variant 
directly. Finally, sequence data may be able to detect other types of variants than single nucleotide 
variants, at least some of the time.  

Despite this appeal, both simulations and empirical results suggest that genomic selection with 
sequence data does not yet work particularly well. Using millions of variants from whole-genome 
sequencing, in combination with imputation, is often no more accurate or even less accurate than a SNP 
chip. Several studies (van Binsbergen et al., 2015; VanRaden et al., 2017; van den Berg et al., 2017; 
Raymond, Bouwman, Schrooten, et al., 2018; Moghaddar et al., 2019) found little to no benefit to using 
full whole-genome sequence data for genomic prediction — that is, not pre-selecting any subset of 
variants, but using the millions of variants directly. Raymond et al. (2018a), who found several cases where 
sequence data decreased the accuracy compared to SNP chip data, called it a “dilution effect”, where the 
many non-causal variants hampered estimation. This is consistent with previous results that show little 
improvement from increasing SNP chip marker density (Erbe et al., 2012; Ilska, 2015). 

The better method appears to be to use sequence data to pre-select a subset of variants enriched for 
associations with traits and use them for prediction, either as a bespoke “in silico SNP chip” or as a 
supplement to an established SNP chip. However, even with this method, benefits are relatively small and 
inconsistent between traits, populations and methods.  For example, Brøndum et al., (2015) found that 
adding some 1600 markers selected from genome-wide association with imputed sequence data to the 
54k SNP chip improved accuracy for by a few percentage points. Similarly, VanRaden et al. (2017) used 
imputed whole-genome sequence data to select single nucleotide variants and add them to the 60k set of 
SNPs used routinely; this led to improvement for most traits, by 2.7 percentage points of reliability (i.e., 
the square accuracy) on average. Moghaddar et al., (2019) used imputed-whole genome sequence data 
from sheep to select SNPs and add them to a 50k SNP chip; this led to increases in accuracy for most traits, 
on average 8-10 percentage points for different populations and methods. On the other hand, Veerkamp 
et al. (Veerkamp et al., 2016) found no benefit from pre-selected variants, and neither did Calus et al. (Calus 
et al., 2016) when analysing the same data with a more sophisticated method. In pigs, (Ros-Freixedes, 
Johnsson, et al., 2022) found inconsistent benefits between lines and traits, but an average increase of 2.5 
percentage points of accuracy. 

The situation is similar in multi-breed prediction scenarios. Despite the idea that whole-genome 
sequence data might overcome the difference in linkage disequilibrium between populations and improve 
across-breed prediction, the accuracy gains from sequencing are small and inconsistent. Several attempts 
have found small improvement to prediction between breeds or genetic lines with pre-selected markers 
from whole-genome sequence data (van den Berg et al., 2017; Raymond, Bouwman, Schrooten, et al., 
2018; Raymond, Bouwman, Wientjes, et al., 2018; Meuwissen et al., 2021; Ros-Freixedes, Johnsson, et al., 
2022). For example, Raymond et al. (2018b) and Meuwissen et al. (2021) both found minor increases from 
whole-genome sequence in multi-breed scenarios where a small breed was supplemented with data from 
bigger breeds. They both used methods that put higher weight on strongly associated markers, using pre-
selection and a separate relationship matrix or a Bayesian variable selection method, respectively. Ros-
Freixedes et al., (2022a) found that with whole-genome sequence, multi-line prediction was systematically 
worse than single-line prediction, but compared to multi-line prediction with the SNP chip, the relative 
improvement was greater. Thus, there is some truth to the idea that multi-breed prediction benefits more 
from sequence data than within-breed prediction, but the benefits are small and inconsistent. 

Genomic prediction with sequence variants does not even perform that well in simulations. The early 
simulations optimistically promised substantially higher accuracy from whole genome sequence than SNP 
chips, an increase in accuracy with marker density, and an additional increase from being able to genotype 
the causative variants (Meuwissen & Goddard, 2010). However, Meuwissen and Goddard already noted 
that a more realistic population structure with more extensive linkage disequilibrium would make 
improvement from sequence data less dramatic than the one they simulated. Subsequently, MacLeod et 
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al. (2014) found very little benefit from sequence data over SNP chip data when the population history was 
simulated to be similar to the history of cattle, with an effectively small population and a historical 
population decline due to domestication and breed formation. These results suggest that there is little 
benefit to be gained from sequence data even when the causative variants are included. Clark et al. (2011) 
found only a relatively small difference between sequence data and a mid-density SNP chip, especially 
when there were many causative variants. 

Fragomeni et al. (2017) simulated the contemporary strategy of pre-selecting causative variants to add 
to SNP chips. Even when all the true causative variants were included, that only led to a modest increase 
in accuracy. For the strategy to bring big benefits, they needed not only the identity, but also the true effect 
size of each variant, in order to be able to weight the causative variants appropriately. They were 
unsuccessful in estimating these effects accurately from genome-wide association studies, presumably due 
to linkage disequilibrium. Jang et al. (Jang et al., 2023) simulated the process of pre-selection by genome-
wide association studies, exploring under which conditions large effects can be identified to supplement 
the SNP chip. They concluded that: 

“Even when variants are accurately identified, their inclusion in prediction models has limited benefits.” 
Perez-Encisco et al. (2015) also found little improvement from whole-genome sequence data and little 

improvement from pre-selection of variants based on genome-wide association. However, their model 
assumed that the simulated causative variants were located in a particular subset of causative genes, and 
if those causative genes could be identified accurately enough, they can be used as prior information to 
give higher weight to variants. That means that their results support a strategy of weighting variants based 
on biological priors (such as based on functional genomics data), if that prior information can accurately 
enrich for causative variants (in this model: by detecting causative genes). We will return to this strategy 
below. 

In summary, the hope that genomic selection with whole-genome sequencing will allow accurate 
tracking of causative variants to give rise to highly accurate and persistent genomic prediction, that works 
across time and populations, is yet to be achieved. Whereas sequence data may sometimes improve 
genomic selection accuracy, it is by no means a game-changer similar to the introduction of genomic 
selection with SNP chips. For the most part, this paper will take the position that this lack of improvement 
form whole-genome sequence data is disappointing, and a problem to be solved or at least explained. 
However, a positive outlook is also possible. In some ways, it is good news that genomic prediction with 
SNP chips is doing so well compared to the more expensive and cumbersome sequence data. 

There is a developing theoretical literature that attempts to explain this limited success of genomic 
prediction with sequence data. The idea is that effectively small populations, such as farm animal 
populations, contain little enough genomic variation, that the bulk of this variation can be captured with a 
typical SNP chip. We can think of the genome of a population as a collection of genomic segments, that is, 
pieces of DNA carrying unique combinations of variants. To track the genomic variation, we only need 
enough markers that we track most of the segments. This means that genomic selection with SNP chips 
uniformly spaced along the genome will work well, and that it is hard to improve upon by adding markers. 
To a first approximation, putting two markers on the same segment adds nothing but estimation problems. 
Even if we do genotype the causative variant, the causative variant will be confounded with everything else 
on the same segment. 

Mental models of genomic selection 

In this section, I will survey such models of genomic selection with an eye toward understanding the 
lack of success with sequence data. I will concentrate on verbal models that guide intuition, but in each 
case the authors also present formal models in the form of equations, simulations or both. 

The image sketched above of the population as a collection of segments carrying a causative variant, 
or not, and a marker, or not, comes with a model of genomic prediction accuracy presented by Goddard 
(2009). To capture the fact that linkage puts a limit on how many markers are needed to cover the genome, 
there is perfect linkage disequilibrium within segment, and none between segments. Based on models 
from Sved (1971) and Stam (1980), he derived formulas for the expected number of segments in an ideal 
population, and the probability that two variants fall on the same segment. The reciprocal of that 
probability is the effective number of segments (loci) Me. It is as if the genome consisted of Me little 
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chromosomes, each without recombination on them. Alternatively, this number can be thought of from 
the perspective of realised genomic relationship between individuals in a population (Goddard, 2009; 
Goddard et al., 2011). Real populations can be numerically matched to ideal populations based on their 
variance of relationship, like how we assign effective population sizes to real populations based on rate of 
inbreeding or variance of allele frequency. 

While these formulas do not work great for predicting genomic selection accuracy in practice (Brard & 
Ricard, 2015), the model is a starting point for thinking about how genomic selection works. In particular, 
it leads to two conclusions about genomes in populations: First, there is a limit to the number of markers 
needed to track segments. Second, there is a limit to the granularity of causative variants. Even if there are 
more than one causative variant on a segment, from a statistical perspective, that only modifies the net 
effect of the segment, but until they are separated by recombination, they effectively work as one 
causative variant. However, other research suggests that tight linkage disequilibrium on short segments is 
not necessarily the most important mechanism of genomic selection. 

Habier et al. (2013, 2007) designed simulation scenarios — manipulating relatedness between training 
and testing set and placing causative variants on the same or on different chromosomes — in order to 
separate different potential sources of genomic selection accuracy. The first study (Habier et al., 2007) 
demonstrated genomic prediction even in the absence of tight linkage disequilibrium between causative 
variants and markers on segments. That is, when causative variants were placed on different chromosomes 
than markers, genomic selection could still work on the relatedness between individuals. In the second 
study (Habier et al., 2013), they created scenarios to quantify the contribution of linkage disequilibrium in 
founders, cosegregation within families, and relationship between families. They found that most of the 
genomic prediction accuracy derived from linkage disequilibrium in the founder population, which in this 
simulation was one generation back, as the pedigree was a set of half-sib families. Taking a different 
simulation strategy, Wientjes et al. (Wientjes et al., 2013) generated synthetic selection candidates — 
either based on allele frequencies, linkage disequilibrium, haplotype segments, or whole chromosomes —  
compared to real genotypes drawn from the reference population. They evaluated the expected accuracy 
by predicting it from equations in the case of synthetic genotypes, and by cross-validation in the case of 
real individuals. The accuracy with real individuals was much higher than with any of the synthetic 
scenarios, and since the one feature the real individuals have that the synthetic genotypes lack is close 
relationship to the reference population, they concluded that close relationship is the most important 
driver of genomic prediction accuracy. These studies come to quantitatively different conclusions about 
the drivers of accuracy, but they both illustrate the limitations of thinking of a population under genomic 
selection as a collection of independent segments. 

Pocrnic et al. (Pocrnic et al., 2019) presented a competing verbal model, describing genomic selection 
as based on clusters of segments (referred to in the paper as “clusters of independent chromosome 
segments”, “clusters of haplotypes”, and “clusters of Me”),  rather than independent segments. In a 
population, variants are quantitatively associated, and there are some major axes of variation that can be 
found among the genotypes. The accuracy of genomic selection, they propose, is driven by tracking the 
most important collections of segments that are currently inherited together. 

The formal model that goes with this idea is an eigendecomposition of the genomic relationship matrix 
(Pocrnic, Lourenco, Masuda, Legarra, et al., 2016; Pocrnic, Lourenco, Masuda, & Misztal, 2016; Pocrnic et 
al., 2019). They created reduced matrices that only included information from the top eigenvectors of the 
full genomic relationship matrix, and tested their performance for prediction. When enough eigenvalues 
were included, a reduced matrix was able to produce effectively the same prediction accuracy of the full 
one. It turns out that the dimensionality of the genotype matrix of a typical farm animal population is quite 
limited. The clusters with the largest eigenvalues contribute the most to accuracy, so that prediction works 
relatively well even with a small amount of genetic information, and then increases only slightly when 
smaller clusters are added (Pocrnic et al., 2019). Misztal et al. (2022) repeated this interpretation as an 
explanation for why multi-breed genomic prediction is difficult, and not much improved by whole-genome 
sequence data either. 

There are several questions to ask about these clusters: How do they relate to other descriptions of 
genetic structure, such as haplotype blocks and linkage disequilibrium heatmaps? To what extent do they 
reflect local haplotypes on a chromosome, or span different chromosomes? How do they relate to within 
and between chromosome genetic covariances, and how do they relate to Habier et al.’s and Wientjes et 
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al.’s sources of linkage disequilibrium? How do they change with selection? How does that relate to decay 
of genomic prediction accuracy over generations? 

At any rate, both in the independent segment model and the cluster model there is a limit to the genetic 
information contained in your sample — due to the number of animals and marker density, but also an 
intrinsic limit to the granularity of genetic information, that in some ways come down to the structure of 
the genome and the effective size of the population. Because farm animal populations are small, at some 
point, it does not matter much how many genetic variants we genotype, because they contain more of the 
same information, for a given set of animals. Sampling more individuals at the same time as increasing 
marker density would reveal more information, albeit at diminishing returns. It seems to me that this limit 
was reached earlier than geneticists expected – or, alternatively, problems with estimation and 
representation prevent our models from making use of the additional information from many more genetic 
variants. 

This also means that the marker effects estimated in genomic selection, even when sequence data 
allows (near) complete genotyping of all variants, are ephemeral because they reflect the net effect of 
genomic segments, or clusters of genomic segments, rather than the isolated effect of individual causative 
variants. There are two parts to this problem. On the one hand, it is hard to accurately estimate the effect 
of sequence variants because they are allelically associated. On the other hand, when genomic breeding 
values are formed, the genotypes and estimated variant effects are multiplied and summed together again. 
Even if the effects are estimated in a way that more accurately resolves causative variants, we could arrive 
at an equally accurate breeding value by assigning the effects to noncausal but associated variants, because 
predictions of breeding values are linear combinations of those effects. Accordingly, whole-genome 
sequence may be more valuable for fine-mapping of variants than it is for prediction. 

Another limitation to our knowledge of genetic effects comes about because our estimates represent 
not only the net effect of all causative variants in linkage disequilibrium, but the net additive effect when 
averaging over any genetic interactions they participate in. That is, marker effects are linear coefficients of 
trait values on variant dosages. In the presence of non-additive effects, those linear coefficients might still 
provide a decent estimate, but they are liable to change as the allele frequencies at the variant itself and 
its interaction partners change (like traditional average effects of alleles (Falconer & Mackay, 1996, pp. 
112–119)). Legarra et al. (2021) derived equations for the change in additive effects between populations 
and generations, by taking derivatives of the statistical effects with respect to allele frequency, then using 
Taylor expansion to create an approximation of the change around the allele frequency in a focal 
population. The model illustrates that there are dual reasons why genomic prediction accuracy decreases 
with genetic distance: not only because the associations between variants change, but also because allele 
frequency differences at interacting causative variants change the net effect of the variants on traits. 

Sequence data: how to make them pay 

Therefore, the biggest future challenge for livestock genomics, as I see it, is to get value for the money 
and work that goes into sequence data, in the form of improvements to breeding practice. To do this, we 
need to overcome the low dimensionality of the genetic information — or the small number of effective 
segments — with some clever strategy. I speculate that there are three main attacks on this problem.  

Better modelling of genomic segments 
 

First, perhaps we could improve the way we detect and represent genomic segments from sequence 
data. There are two parts to this: one is about improving inference of the genotypes with imputation, 
sequencing strategies, etc, and the other is about improving the representation of the genomes, and 
making explicit use of the information from segmental structure of the data. 

One weakness of previous research is that it, universally, used imputed sequence data. This limitation 
is unavoidable, unless a technological breakthrough makes whole-genome sequencing as cheap as SNP 
chip genotyping. Imputation from sequence data is still not as straightforward as imputation of SNP chip 
data, but there are now several strategies based on Hidden Markov models (Browning et al., 2018, 2021; 
Delaneau et al., 2019) or multilocus segregation analysis (Whalen et al., 2018; Ros-Freixedes et al., 2020). 
Any imputation to sequence-level will rely on some less dense set of markers to impute from, derived from 
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extremely low-coverage sequencing, reduced representation sequencing, or SNP chip genotyping. While 
modern imputation methods perform well, and can be checked on held-out data, imputed data always has 
some limitations, like the ability to recover rare variants and resolve the location of new recombination 
events. 

More sequence data might be needed, especially to capture more of the rare variants. Recent results 
(Ros-Freixedes, Johnsson, et al., 2022) suggest that larger sample sizes might help, as whole-genome 
sequence data tended to do better in populations where the training sets were larger. More sequenced 
individuals mean more individuals with high density genotypes and more ability to detect rare variants. 
There are many rare and population-specific variants that may contribute to traits (Ros-Freixedes, Valente, 
et al., 2022), and simulations that vary the allele frequency spectrum show that rare causative variants 
make genomic prediction more difficult (MacLeod et al., 2014; Wientjes et al., 2015). Part of the solution 
may be to sequence more, which adds to the cost. If very low coverage sequencing could become an 
alternative to SNP chip genotyping, as some have suggested (Snelling et al., 2020), that might help 
contribute sequence information. However, we should keep in mind that simulations that have perfect 
data still struggle with genomic prediction with whole-genome sequence, suggesting that even if 
imputation accuracy were perfect, there would be additional issues. 

It might also be possible to find new representations of population-scale whole-genome sequence data 
that facilitate genomic prediction. Currently, the options are either to put all variants into a large, 
potentially millions-by-millions, matrix and letting a model sort them out — a modelling strategy that is 
not at all successful — or to use a pre-selection method to find a smaller set of more relevant markers, 
either by literal pre-selection that subsets the variants that the model is seeing or by some model that does 
variable selection based on data. A third option might be to find a representation of genome segments that 
capture the relevant structure, with the ambition to fit a model that does not struggle so much when given 
millions of variants.  

At least parts of the long-standing line of research on haplotype models fall in this category. The 
intuition is that because haplotype models account for the associations of variants close together in the 
genome, they are more realistic than models that treat markers independently. Haplotype models have 
been tried many times, usually on SNP chip data, with variable benefits. Haplotype models come with 
practical problems of defining haplotypes. In recombining regions of a genome, segments may start at any 
point in a given individual, creating fuzzy borders between haplotypes. We need some methods to create 
windows or blocks, that are often arbitrary. Proposals to better deal with this includes defining windows 
based on recombination hotspots (Oppong et al., 2022), haplotype block methods that create overlapping 
segments (Pook et al., 2019), and haplotype clustering methods (Browning & Browning, 2007). 

Furthermore, because of the many combinations of alleles within a window, there are likely to be many 
haplotypes, especially if applied to sequence data. This often means that the problem of fitting many 
variants with two alleles turns into the problem of fitting a smaller number of windows with more alleles. 
To solve this problem, one must find representations of relationships between haplotypes. Several 
attempts have been made using similarities between haplotypes (Hickey et al., 2013), grouping consecutive 
markers based on linkage disequilibrium (Cuyabano et al., 2014, 2015), local convolutional neural networks 
that represent regions of the genome as part of neural network structure (Pook et al., 2020), and by 
phylogenetic analysis of haplotypes (Edriss et al., 2013; Selle et al., 2021). Selle et al. (2021), who developed 
a model for prediction based on phylogenetic relationships between non-recombining haplotypes, propose 
that recently developed methods for inferring genealogy along the genome in the presence of 
recombination and representing it as so-called tree sequences (Kelleher et al., 2019) may be useful. 

Non-SNP variants present further complications for our representations of the genome. Genomic 
prediction models can easily represent genotypes at biallelic non-overlapping variants. Each variant 
corresponds to one column of the genotype matrix. Any variant set involving non-SNPs, however, may 
contain overlaps. Take the simple example of a SNP that overlaps an indel. Representing a biallelic indel is 
just as easy as a biallelic SNP, but if they overlap there may be chromosomes that have a null allele of the 
SNP because they carry the allele that deletes the region around the SNP. In the Variant Call Format used 
for short-read sequence results, this is represented by the asterisk ‘*’ allele. This situation is similar to the 
haplotype models, where we end up with multi-allelic variants, and judgement calls about what variants 
to group and not. The full sequence variation is messier than a grid of SNPs, and harder to represent neatly. 
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Inclusion of undetected genetic variation 
 

Proposals for whole-genome sequence data for genomic prediction usually emphasise that sequence 
data can directly genotype the causative variants (Meuwissen & Goddard, 2010; Hickey, 2013). However, 
many types of variants are likely to be absent from the imputed whole-genome sequence data that has 
been used so far, which is based on short-read sequencing and reference-guided analysis. Therefore, more 
complete detection of variants is another avenue for improvement. 

Most imputed sequence datasets are limited to single nucleotide variants and short 
insertions/deletions. Whole-genome sequencing is good at detecting single nucleotide variants, routinely 
finding millions of them in small population samples. However, in repetitive regions of the genome, even 
single nucleotide variants and short insertions/deletions are hard to detect. Variants from short read 
sequencing are routinely filtered by different sets of (heuristic, ad hoc) filters, including proximity filtering, 
excluding multiallelic sites or exclusion of repetitive sequence (Van der Auwera et al., 2013; Daetwyler et 
al., 2014). These filters are evaluated (if at all) by comparing the results to previous datasets or by expected 
population genetic properties of the variants detected (e.g., transversion/transition ratio). This certainly 
improves the quality of the variants that are detected, but also means that no dataset can realistically claim 
to be a complete compendium even of the common single nucleotide variants and short 
insertions/deletions in a population. 

Larger-scale structural variants are even harder to detect without long-read sequencing or even 
genome assembly (Nguyen et al., 2023). Currently, these methods are prohibitively expensive for 
population-scale analyses. However, there are methods for genotyping structural variants from short read 
sequence once they are known (Hickey et al., 2020; Ebler et al., 2022), suggesting that it might be possible 
to sequence a smaller number of animals and impute the structural variants. The fluorescence intensity 
signal from SNP chips used for genotyping also contain some information about copy number, which might 
also contribute. 

Because accurate structural variant detection requires population-level long read sequencing, and 
research has concentrated on between-breed comparisons, it is not clear how much structural variability 
there is in livestock populations, but likely a lot. We can get an idea from studies with short read sequencing 
and copy number analysis of SNP chips. Butty et al. (2020) combined short read sequencing and SNP chip 
copy number detection to identify a high-confidence set of structural variants that covered a total of 7.5 
Mbp (0.3% of reference genome length) in Holstein cattle. Chen et al. (2021) detected structural variants 
from short read sequencing and imputed them to SNP chip genotyped cattle. They detected 20 Mbp of 
structurally variable sequence within Holstein cattle (0.7% of reference genome length), and 3.5 Mbp of 
structurally variable sequence within Jersey cattle (0.1% of reference genome length). Imputed structural 
variants explained up to 8% of the genetic variance in milk traits, fertility and conformation, and did not 
appreciably increase genomic prediction accuracy. These numbers are likely to be underestimates because 
long read assembly-based analysis in humans discovered more than three times as much structural 
variation as short read sequencing (Ebert et al., 2021). Two large single nucleotide variant datasets of cattle 
(Hayes & Daetwyler, 2019) and pigs (Ros-Freixedes, Valente, et al., 2022) contain 43 million and 39 million 
SNPs, respectively, corresponding to 1.6% of cattle genome length and 1.5% of pig reference genome 
length. Therefore, it seems likely that farm animals (like humans) have more basepairs affected by 
structural variation than by single nucleotide variants. 

Unfortunately, a discouragingly high number of damaging variants and causative variants for 
monogenic traits and pigmentation that are known (or strongly suspected) have turned out to be caused 
by structural variants (Wright et al., 2009; Dorshorst et al., 2011; Gunnarsson et al., 2011; Imsland et al., 
2012; Rubin et al., 2012; Durkin et al., 2012; Wang et al., 2013; Kadri et al., 2014; Wiedemar et al., 2014; 
Mishra et al., 2017). Also, genetic mapping of gene expression (eQTL mapping) studies in humans that 
include structural variants have found an enrichment of structural variants among the most strongly 
associated variants (Sudmant et al., 2015; Chiang et al., 2017; Ebert et al., 2021), and found larger effects 
associated with structural variants than single nucleotide variants. This is tentative evidence that structural 
variants are particularly likely to be causative, and bad news if we hoped that variants called from short-
read sequencing would include causative variants.  
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Some of this structural variation is going to be tagged by linkage disequilibrium with surrounding single 
nucleotide variants, but not all. Yan et al. (2021) found that, in humans, about half of their structural 
variants were in what they term strong to moderate (r2 > 0.5) association with at least one surrounding 
variant. In the chicken, Geibel et al. (2022) found that deletions were well tagged by single nucleotide 
variants, with linkage disequilibrium comparable to the values between pairs of single nucleotide variants, 
but that other structural variants types (duplications, inversions, and translocations) were poorly tagged. 
In this case, however, the structural variants were called with short read sequencing and relatively low 
coverage, that likely has low accuracy for duplications, inversions and translocations. Similarly, Xu et al. 
(2014) detected copy number variants from fluorescence intensity on SNP chips, and found a subset of 
copy number variants that were well tagged by surrounding single nucleotide variants, and another subset 
that was not. 

Apart from the representation issues (see previous section), structural variants are likely to have 
different mutation rate distributions than SNPs and can affect local recombination rate. For example, 
structural variation often happens in already repetitive regions, with biases towards similar sequences. 
Gene conversion may also play a role, in particular in highly repetitive regions. These population genetic 
differences from SNPs are likely to affect the association patterns with surrounding variants (reviewed by 
(Conrad & Hurles, 2007)). The most important undetected variants to include would be the ones that are 
poorly tagged by variants already typed. They are therefore also more likely to be hard to impute correctly, 
and less likely to be pre-selected based on genome-wide association – since both imputation and genome-
wide association rely on allelic association.  

Part of the problem is that structural variants tend to occur in repetitive regions of the genome that 
are hard to sequence and genotype, and another part is that structural variants can interfere with the 
genotyping of neighbouring variants, by changing flanking sequence, changing the order of the genetic 
map, causing null alleles or artificial heterozygotes by duplication and so on. Thus, the low linkage 
disequilibrium around many structural variants may be partially due to biology and partially due to 
technical difficulties (Yan et al., 2021; Geibel et al., 2022). 

In summary, there are good reasons to expect that structural variants will be common and that many 
causative variants will be structural. Whether structural variant detection can be used in genomic 
prediction will depend on the ability to genotype them at scale. However, again, the simulation studies 
above used perfect data with inclusion of the causative variants (together with all other sequence variants 
in MacLeod et al. (2014); together with non-causal SNP chip markers in Fragomeni et al. (2017)). While 
they did not explicitly model structural variants (but rather abstract biallelic causative variants), the result 
that genomic prediction with sequence data does not work well even when all simulated causative variants 
are genotyped suggests that detection of causative variants is not the main obstacle. 

Another cause of undetected variation might be missing regions from reference assemblies, either 
because of hard-to-assemble regions or because genetic differences between the reference assemblies 
and the animals of interest. Several projects try to remedy these omissions by creating new genome 
assemblies from divergent breeds and aggregating them into pan-genomes that aim to represent the whole 
gene pool of a species. This amounts to assuming that there are enough undetected sequences in the 
genome that are important to traits but uncorrelated with typed segments. A recent pan-genome effort 
including four cattle breeds (three European Bos taurus taurus breeds and Nellore, which is Bos taurus 
indicus) as well as another species (gaur, Bos gaurus) added 82.5 Mbp sequence not in the reference 
genome (Leonard et al., 2022), about 3% of the reference genome length, whereas a pangenome of three 
European cattle breeds and two African cattle breeds (the taurus N’Dama and taurus x indicus cross Sanga 
Ankole) added 116 Mbp, about 4% of the reference genome length (Talenti et al., 2022) — or 20.5 Mbp, 
filtered down to what they term high-quality non-repetitive sequence, that is 0.7% of the reference 
genome length. Similarly, a pig pangenome based on five European and six Chinese breeds added 72.5 
Mbp, about 3% of the pig reference genome length (Tian et al., 2019). This suggests that a pig or cattle 
breed may contain up to a few percent of sequence not included in the reference genome. Whether better 
tracking that sequence through a breed-specific assembly will improve genomic prediction will depend on 
whether those breed-specific sequences are enriched for genetic variance in important traits, and to what 
extent they are already tagged by marker panels used for genomic prediction through linkage 
disequilibrium. 
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Use of functional genomic information 
 

The first two avenues for improvement in genomic prediction with sequence data were about detecting 
and describing the genetic variation within populations, whereas the third is about adding functional rather 
than purely genetic information. A large amount of chromatin and gene expression data has started to 
accumulate from projects within the FAANG collaboration, and similar efforts (Giuffra et al., 2019; Halstead 
et al., 2020; Zhao et al., 2021; Kern et al., 2021; Salavati et al., 2022). 

There is some evidence that functional genomic data may help enrich for variance in quantitative traits. 
For example, Wang et al. (2017) found that putative enhancers identified by chromatin 
immunoprecipitation sequencing of histone marks were enriched for genetic variation in milk production 
traits in cattle. In a series of studies, Xiang et al. (2021, 2019) created a score for prioritising variants for 
pre-selection, that included functional genomic data in combination with evolutionary conservation scores 
and quantitative genetic analyses, which was used to create a custom SNP chip with improved prediction 
accuracy. The FarmGTEx collaboration has created mega-analyses of the genetic basis of gene expression 
by pooling RNA-sequencing data from many studies and imputing genotypes from the reads (Liu et al., 
2022; The FarmGTEx-PigGTEx Consortium et al., 2022). Combining this type of data with genomic 
prediction, Xiang et al. (2022b) found that variants associated with gene expression are enriched for 
genetic variation in selected traits, to the point where 70% of the variance can be accounted for by a set 
of 850,000 variants, which is more than a size-matched random selection. It remains to be seen what it 
translates to in terms of genomic prediction accuracy when such methods are tested at the scale of a 
breeding program. 

The idea is to use functional genomic data to prioritise for pre-selection or put extra weight on such 
variants that have supporting molecular evidence. There are ambitious proposals on how to layer other 
kinds of data on top of each other — from the open chromatin and gene expression that are available today 
to functional assays that can be performed at scale such as CRISPR inhibition/activation screens or 
massively parallel reporter assays. They all potentially give genome-wide information about variant 
function that is, in some sense, independent of trait variation and the constraints of linkage disequilibrium 
and limited dimensionality. 

The FAANG to fork paper (Clark et al. 2020) expresses this vision clearly: 
“Most of these causal variants, with small effects, are likely to be located in regulatory sequences and 

impact complex traits through changes in gene expression ... Thus, it is expected that improvements in 
prediction accuracy can be achieved by filtering the genetic marker information based upon whether the 
genetic variants reside in functional sequences and developing robust prediction models that can 
accommodate the biological priors. ... As many more suitable datasets will become available in the next 5 
years, improving and adapting these methods to enhance genomic prediction accuracy, whilst conserving 
genetic diversity, across farmed animal species will be a priority for FAANG.” 

Expressed in terms of our mental models of genomic selection, proposals to combine functional 
genomic data with genomic selection hypothesise that functional genomic data, when summarised over 
many different assays and tissues will yield information about causative variants is accurate enough for a 
genomic prediction model to accurately estimate effects for variants that are located on the same genomic 
segment. The identification does not need to be definite, but accurate enough to improve estimates of the 
variants’ effects. The functional information needs, as it were, to break ties between variants that are 
genetically confounded. 

For example, one might identify a relevant tissue where gene expression traits, collectively, explain a 
substantial proportion of genetic variance (such as the udder for lactation traits in cattle (Liu et al., 2022; 
Prowse-Wilkins et al., 2022)). One might then use a massively parallel reporter assay in a cell model of the 
udder to test all the variants in active chromatin in the udder (as proposed by Littlejohn et al. (2022)), and 
perform genomic prediction based on the variants that show allelic differences in the reporter assay. If 
recent results from humans are anything to go by, this would likely be thousands of variants (Abell et al., 
2022). Because the information about gene-regulatory causality in the reporter assay is independent of 
genetic analysis and not confounded by linkage disequilibrium between variants, it might, if it is specific 
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and accurate enough, allow the right variant among a set of correlated variants to receive a higher 
estimated effect. 

This entails a couple of assumptions about functional genomic data. First, that they contain distinct 
enough information to tell apart functional and non-functional variants that are located close together in 
the genome. Functional genomic methods often produce correlated features, and struggle, for example, 
to tell apart variants located in the same chromatin element (Liu et al., 2019). However, this correlation is 
likely to range over a shorter scale than the extent of linkage disequilibrium in farm animals, so it is likely 
to be an improvement. In this respect, engineering-based methods like massively parallel reporter assays 
might have an edge over observational methods like open chromatin analyses. Methods that give high 
resolution about protein binding, such as DNAse I hypersensitivity profiling might also help. Second, we 
have to assume that functional genomics data contain specific enough information that we can distinguish 
the causative variants that are relevant to our trait of interest, when there are multiple genuine causative 
variants for different traits. There are likely to be multiple linked causative variants (Abell et al., 2022; 
Xiang, Fang, Liu, Liu, et al., 2022) for many traits, and consequently a very large number of variants that 
are genuinely causal for different traits will occur close to each other. Here, methods that identify tissues 
and conditions that are enriched for variance in particular traits (Liu et al., 2022) may be helpful to find 
relevant tissue-specific variant annotations. 

The simulations by Fragomeni et al. (2017) suggest that to derive the full benefit from sequence 
variants, we would need not only to identify them, but to estimate their effects in order to weight them 
properly in the genomic prediction model. When weights were estimated by genome-wide association, 
both in their simulation and later work by Jang et al. (2022), however, there was little benefit to weighting. 
If estimation of effect sizes is needed, that would be an additional problem, because functional genomics 
analyses are usually concerned with finding the identity of the variants and there is little attention to 
estimating their effect on downstream traits. Because the effect of genetic variants depends on complex, 
non-linear, and largely unknown gene regulatory and physiological systems, it is not clear how to translate 
functional genomic effects (such as the fold change in chromatin immunoprecipitation signal or transcript 
abundance) into effect sizes at the trait level. 

In a sense, functional genomic data in genomic prediction may be about excluding irrelevant variants 
as much as it is about finding the causative ones. If 70% of the genetic variation in several quantitative 
traits can be captured by variants associated with gene expression (Xiang, Fang, Liu, Macleod, et al., 2022), 
that suggests that a decent fraction of the genome does not need to be accounted for in genomic 
prediction. Similarly, Yengo et al. (2022) found that for the extremely polygenic trait of human height, 
associated regions covering about 20% of the genome explained about half of the genetic variance. The 
fraction of the genome that is associated would likely be greater in livestock due to more extensive linkage 
disequilibrium, but the observation suggests that, in principle, there is scope to cut down the search space. 
However, the subset of the genome that matters might still be larger than an ordinary SNP chip, and 
different for different traits.  

Pay for what? 

What kinds of information would be needed to know when sequencing is worthwhile? The economy 
of using sequence data for genomic prediction depends on what data already exists, what needs to be 
generated, and the benefit to accuracy — which unfortunately seems to be specific to populations, traits, 
and methods. 

The case looks favourable for using publicly available or already generated sequence data in 
combination with a modified SNP chip. VanRaden et al. (2017) compared the potential economic value of 
the increased selection accuracy that they achieved with the cost of sequencing the bulls contributed by 
the US to the 1000 Bull Genomes Project, and argued that the return on investment was high. They did not 
factor in the cost of genotyping an additional 17,000 SNPs per animal, but presumably a somewhat higher 
density SNP chip is not prohibitively expensive for a large organisation, and maybe one can make space in 
a custom SNP panel by taking out markers that are monomorphic or rare on the target population. If the 
sequence data is available, for example from a research project, this seems like a reasonable exercise that 
someone running a breeding program could do to potentially improve their genomic selection accuracy. 
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However, if sequence data is not available, the value of starting sequencing is less clear. In the long run, 
the additional accuracy for certain traits conferred by whole-genome sequence data might be enough to 
justify this investment — especially if it comes out of a research budget. After the large initial cost for 
sequencing the reference animals for imputing sequence data to a population, it appears to be possible 
(Ros-Freixedes et al. 2020, figure 4) to keep imputation accuracy up for additional generations without 
sequencing effort. The sustained accuracy makes sense, because barring new mutation, the population is 
just re-shuffling the same genomic segments. With clever computational methods, imputation might even 
become relatively computationally affordable, as Browning et al. (2018) suggested with their “one-penny 
imputed genome” for humans. The case for long-read sequencing is less compelling because the 
sequencing is much more expensive, and it is not as clear how structural variants are to be imputed or 
genotyped after detection.  

New genome assemblies for different breeds and pangenomes are being generated because of their 
scientific interest. Presumably what is needed to make use of novel breed-specific sequence detected is to 
identify markers located in them, and add them to updated SNP chips. Breeding organisations that own 
particular populations and lines that have not been sequenced in public projects might generate the 
assemblies themselves, e.g. (Derks et al., 2022). This is a one-time investment that could also help other 
kinds of genetic analysis. 

Similarly, functional genomic data is expensive and technically difficult to generate, but does not need 
to be generated at production-scale. Open chromatin assays are usually run only on a handful of samples 
per tissue or cell type and condition. Genetic mapping of molecular traits (like gene expression in eQTL 
mapping) needs a genotyped population sample, but it is usually on the order of hundreds of samples 
rather than thousands per tissue. However, recent mega-analyses of cattle (Liu et al., 2022) and pig (The 
FarmGTEx-PigGTEx Consortium et al., 2022) expression datasets suggest that the number of detected 
associations increase with sample size, suggesting that current sample sizes have low power. 

Finally, there are additional computing costs associated with sequence data analysis that are not 
negligible, if sequence data is to be used routinely. Just storage of sequence data takes up orders of 
magnitude more space than SNP chip data, and sequence imputation will need to be repeated regularly, 
as will likely the genome-wide association studies used for pre-selection of variants. On the one hand, these 
are areas of active research where improvements can be expected, but on the other hand, sequence data 
analysis is a far cry from the relative convenience and routine of handling SNP chip data. 

In summary, if the benefits of genomic prediction with sequence data for particular traits and 
populations are consistent over time, and if genotyping is not so expensive — for example by updating a 
SNP chip that already needs updating anyways, or by persistently accurate imputation from sequence data 
that already exists — they would be worthwhile. If, on the other hand, the inconsistent accuracy between 
populations and traits translates into inconsistent performance over time, or larger investments in 
sequencing are needed, then the benefits would be questionable. 

Other ways to make use of sequence data 

One might also argue that there are other uses of sequencing and functional genomic data, such as 
microbiome sequencing, that I have neglected. With these “other omics”, the idea is to use population-
scale functional genomics or microbiome sequencing for prediction. The same logic applies. If these data 
are supposed to bring predictive benefits to animal breeding, they will have to pay for themselves; and 
currently, they are viciously expensive. Other omics serve as high-dimensional phenotypes as well as 
genomic information — as opposed to SNP chip genotypes that are just genotypes, a microbiome sample 
or an epigenomic sample may also contain useful information about the environment that may be useful 
for management or environmental monitoring. Further, high-dimensional omic phenotypes might be 
useful for predicting traits of animals that are difficult to measure, such as feed efficiency. Whether such 
omic prediction is more affordable than measuring the trait itself will obviously depend on the trade-off 
between prediction accuracy and costs. Still, it is difficult to see how the economy of on-farm use of other 
omics will work out within the foreseeable future. If it is hard to convince a farmer pressed for money to 
genotype their cows, it appears impossible to justify metagenome sequencing. 
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One might argue that I have excluded the most important task of livestock genomics: to identify 
causative variants that are directly useful for genome editing or marker-assisted selection. For monogenic 
traits, causative identification is a feasible (as discussed by (Georges et al., 2019) and evidenced by the 
programme at any animal genetics conference) and useful for veterinary medicine and management of 
defects in breeding programs. These applications also have a more favourable costs and benefits because, 
potentially, one needs to sequence only a few cases and controls, rather than target the whole population, 
and generate functional data from a candidate gene in some relevant tissue — a study more akin to 
traditional experimental biology. 

Conclusions 

Nothing is new under the sun. That identification of causative variants is hard follows from classical 
quantitative genetic theory, and early calculations on marker-assisted selection already suggested that the 
benefits of selection on known genetic variants is limited to large effects (Soller, 1978). However, one might 
hope that the confluence of new data, new data analysis methods and new models might help us make 
better use of large-scale genomic data in the future. 
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