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Abstract

A genome-wide association study (GWAS) was used to identify associated loci with early vigor under simulated water deficit and grain yield 
under field drought in a diverse collection of Iranian bread wheat landraces. In addition, a meta-quantitative trait loci (MQTL) analysis was 
used to further expand our approach by retrieving already published quantitative trait loci (QTL) from recombinant inbred lines, double hap-
loids, back-crosses, and F2 mapping populations. In the current study, around 16%, 14%, and 16% of SNPs were in significant linkage dis-
equilibrium (LD) in the A, B, and D genomes, respectively, and varied between 5.44% (4A) and 21.85% (6A). Three main subgroups were 
identified among the landraces with different degrees of admixture, and population structure was further explored through principal com-
ponent analysis. Our GWAS identified 54 marker-trait associations (MTAs) that were located across the wheat genome but with the highest 
number found in the B sub-genome. The gene ontology (GO) analysis of MTAs revealed that around 75% were located within or closed to 
protein-coding genes. In the MQTL analysis, 23 MQTLs, from a total of 215 QTLs, were identified and successfully projected onto the ref-
erence map. MQT-YLD4, MQT-YLD9, MQT-YLD13, MQT-YLD17, MQT-YLD18, MQT-YLD19, and MQTL-RL1 contributed to the highest 
number of projected QTLs and were therefore regarded as the most reliable and stable QTLs under water deficit conditions. These 
MQTLs greatly facilitate the identification of putative candidate genes underlying at each MQTL interval due to the reduced confidence 
of intervals associated with MQTLs. These findings provide important information on the genetic basis of early vigor traits and grain yield 
under water deficit conditions and set the foundation for future investigations into adaptation to water deficit in bread wheat.
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Introduction
Bread wheat (Triticum aestivum L.) is one of the most important sta-
ple crops in the world and plays an important role for human con-
sumption (Curtis and Halford, 2014; Appels et al., 2018). Food 
security has been severely impacted by global climate change 
through increasing average temperatures and accompanying 
droughts (Curtis and Halford, 2014). Great efforts have therefore 
been made in most major crops, and particularly in wheat, to ad-
dress concerns stemming from climate change (Raza et al., 2019). 
Climate change is expected to increase water deficit conditions in 
many parts of the world and wheat breeding programs have hence 
put a lot of emphasis on developing new varieties that are better 
adapted to water limiting conditions without any significant 
losses in grain yield and biomass (Richards et al., 2014; Raza 
et al., 2019). Furthermore, water deficits can impose serious nega-
tive consequences on wheat at several different developmental 

stages, ranging from germination to grain filling (Richards et al., 
2014; Raza et al., 2019).

In many parts of the world, particularly in Mediterranean cli-
mate regions, wheat production is limited by inadequate precipi-

tation at lateral growth stages (anthesis to grain filling), usually 

referred to as terminal drought (Richards, 1991; Rebetzke et al., 
2007; Savin et al., 2015; Zhao et al., 2019a). However, higher rain-

falls are recorded during autumn and winter which overlap with 
the early growth of winter wheat in these areas (Rebetzke et al., 
2007). Previous research has shown that greater early vigor (faster 

early leaf area development) results in faster seedling establish-
ment and a more rapid canopy closure which reduce soil evapor-

ation and increase nutrient uptake in drought-prone regions, and 

this ultimately causes higher biomass and grain production (Liao 
et al., 2004; Bertholdsson, 2005; Ludwig and Asseng, 2010; Ryan 

et al., 2015; Vukasovic et al., 2022). On the other hand, rapid early 
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growth may also lead to a reduction in available water reservoirs 
prior to critical developmental stages such as anthesis, heading, 
and grain filling which has then detrimental effects on grain yield 
(Richards and Townley-Smith, 1987; Zhao et al., 2019a). This hap-
pens specifically when greater vegetative growth results in an in-
creased number of nonfertile tillers and a wider transpiration area 
in leaves (Asseng and Van Herwaarden, 2003). The advantages of 
rapid early vigor still prevail over the possible disadvantages since 
highly vigorous wheat genotypes have a higher potential of ab-
sorbing water from deeper soil layers due to deeper roots, greater 
tolerance to water deficits and a quicker recovery in case of erratic 
water availability (Botwright et al., 2002; Asseng and Van 
Herwaarden, 2003). However, we still lack of information about 
genomic loci underlying early viogurm which limit the implemen-
tation of this trait in breeding programs (Rebetzke et al., 2017).

Genome-wide association studies (GWASs) has emerged as 
promising method to dissect the genetic architecture of quantita-
tive traits (Rahimi et al., 2019; Bilgrami et al., 2020). The GWAS ap-
proach has several benefits compared to standard quantitative 
trait loci (QTL)-based genetic mapping, including an increased 
extent of genetic diversity in the mapping population, more cost- 
effective methods for genotyping and the possibility to transfer re-
sults to other landraces, elite cultivars, and advanced breeding 
lines (Neumann et al., 2011; Chen et al., 2017b; Rahimi et al., 
2019; Bilgrami et al., 2020). GWAS is thus a complementary ap-
proach to QTL mapping for detecting putative candidate genes 
(CGs) and alleles based on existing patterns of linkage disequilib-
rium (LD) in a species (Zhu et al., 2018; Rahimi et al., 2019; Bilgrami 
et al., 2020). In GWAS, the higher mapping resolution stems from 
taking advantage of naturally occurring recombination within a 
germplasm collection (Daware et al., 2017). GWAS studies have 
been performed in wheat on traits such as seedling emergence 
and tillering (Chen et al., 2017b), root attributes (Beyer et al., 
2019), coleoptile length (Sidhu et al., 2020), and other relevant 
agronomic traits (Rahimi et al., 2019), and many QTLs have been 
identified that can be exploited in marker-assisted selection 
(MAS) breeding programs. However, most of the associations iden-
tified to date remain to be functionally validated or even validated 
in other mapping populations and environments.

On the other hand, a meta-analysis of previously identified 
QTLs, MQTL analysis, can be useful for identifying genomic re-
gions that are consistently involved in controlling the traits under 
investigations and for narrowing the confidence intervals (CIs) of 
the QTL locations (Quraishi et al., 2011; Chen et al., 2017a; 
Khahani et al., 2019). Integrating results from MQTL and GWAS 
analyses have also been implemented in a several species, includ-
ing maize (Chen et al., 2017a; Zhu et al., 2018), rice (Daware et al., 
2017; Yang et al., 2020a) and wheat (Bilgrami et al., 2020). 
Combining MTQL and GWAS results have been highly effective 
for identifying CGs and potential genomic regions causally in-
volved in controlling the traits under investigation (Chen et al., 
2017a; Daware et al., 2017; Yang et al., 2020b; Bilgrami et al., 2020).

In this study, a genome-wide analysis was performed using 
FarmCPU method on primary growth-related traits including ger-
mination attributes, and grain yield under water-deficit conditions 
(YLD) among Iranian wheat landraces. These results will lay the 
foundation for future identification of genetic mechanisms allevi-
ating the adverse effects of water deficit on yield and biomass in 
wheat. Furthermore, a MQTL study was conducted to complement 
the GWAS and increase the number of genomic regions that are re-
liably associated with the traits of interest. These approaches help 
unravel hotspot genomic regions that are consistently associated 
with investigated traits under unfavorable conditions.

Material and methods
Plant material and experimental conditions
From a previously studied collection of bread wheat (Rahimi et al., 
2019), 100 landraces were selected based on their drought toler-
ance indices and were evaluated together with four check var-
ieties (Supplementary Table S1) under simulated water deficit 
conditions by the application of polyethylene glycol 6000 (PEG 
6000). First, in a pilot experiment performed to determine the 
proper concentration of PEG 6000, a subsample of 20 accessions 
were studied by germinating 30 seeds from each accession in 
three Petri dishes together with 10 ml of either distilled water 
(control) or various concentrations of PEG 6000. The concentra-
tions of PEG 6000 corresponded to osmotic potentials of −4, −6, 
−8, −10, and −12 bars that were calculated using the following for-
mula (Michel and Kaufmann 1973).

WP = −(1.18e − 2)C − (1.18e − 4)C2 + (2.67e − 4)CT + (8.39e − 7)C2T 

where WP is osmotic potential of a PEG-6000 solutions (bars), C is 
the concentration of PEG-6000 in g/kg H2O, and T is the tempera-
ture in degrees (20°C in the current study).

Seeds were germinated in a germination incubator at 20°C and 
germinated seeds were counted daily for 10 days until no new ger-
mination was recorded in the three replicates of each treatment 
for 3 consecutive days. The germination criterion we used was 
when the radicle had protruded at least to a length of ≥2 mm 
(ISTA, 1999). Primary growth-related traits recorded in seedlings 
including total fresh weight (TFW), total dry weight (TDW), shoot 
length (SL), root length (RL), germination rate/speed (GR), total 
germination percentage (TGP), and normal germination percent-
age (NGP). The results of the pilot study showed that −10 bars re-
sulted in the greatest variation among accessions while at the −12 
bars some of the accessions did not germinate at all 
(Supplementary Table S2). The remaining 80 accessions used in 
the study were therefore only evaluated under −10 bars and con-
trol conditions with the same germination criterion as described 
above. The phenotypic dataset used in the GWAS is supplied as 
Supplementary Table S3.

SNP genotyping, population structure, and 
individual relationship
As previously described by Alipour et al. (2017), a genotyping-by- 
sequencing (GBS) protocol was used to generate sequencing data 
from genomic DNA. Briefly, after DNA extraction and quality con-
trol, GBS libraries were constructed according to the protocol of 
Poland et al. (2012). Two restriction enzymes PstI and MspI were 
used to digest genomic DNA, and T4 ligase was used to ligate 
adaptors. The concentration of libraries was then estimated on 
a Qubit 2.0 fluorometer after the selection of fragments in the 
range of 250–330 bp using an E-gel system. Libraries were se-
quenced in an Ion Proton sequencer. Sequencing reads were 
trimmed to 64 bp and grouped into sequence tags and SNPs 
were called using internal alignment by allowing mismatches of 
up to 3 bp. The SNP calling was carried out through the GBS pipe-
line Universal Network Enabled Analysis Kit, by filtering reads 
with low-quality score (<15) and low minor allele frequency <1% 
to reduce false-positive markers. The relationship between land-
races was determined using the VanRaden Method implemented 
in rMVP or Memory-efficient, Visualization-enhanced, and 
Parallel-accelerated Tool (Yin et al., 2021) in RStudio. Population 
structure was analyzed by calculating principal components 
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(PCs) based on 10,938 SNP markers. To estimate variance compo-
nents, the default method (Brent) was used in rMVP.

GWAS
Fixed and random model with Circulating Probability Unification 
(FarmCPU) was employed to perform GWAS using the rMVP pack-
age in R (Yin et al. 2021). The FarmCPU model provides greater stat-
istical power compared to GLM and MLM and alleviates the 
problem of confounding effects and false positives at the same 
time. This occurs by fitting iteratively detected associated markers 
as cofactors to test the rest markers in a fixed effect model while a 
random effect model is used to select the associated markers based 
on a maximum likelihood method to prevent model overfitting. 
Manhattan plots were used to visualize associations between 
phenotype and genotype from the GWASs. In these plots, SNPs 
are ordered based on their chromosome and base-pair positions 
along the x-axis while the y-axis display the negative logarithm of 
the P-value generated from the GWAS F-test for testing H0, i.e. no 
association between marker genotypes and the phenotype.

Gene descriptions and pathway analysis
Genomic regions surrounding all significantly associated SNPs 
were retrieved and the Gramene database was used to assign 
gene annotations by aligning the genomic regions to the IWGSC 
RefSeq v1.0 annotation (https://wheat-urgi.versailles.inra.fr/Seq- 
Repository/Annotations). The functions of the CGs were assessed 
using the pathway’s descriptions. Overlapping genes with the 
highest identity percentage and blast score were selected for fur-
ther processing. The gene ontology (GO) descriptions were ob-
tained from EnsemblPlants database (http://plants.ensembl.org/ 
index.html). The sequences from homologous genes in rice genes 
were obtained using Ensembl Plants BioMart. The KOBAS software 
(Xie et al., 2011) was then used to determine enriched pathways 
using the Kyoto Encyclopedia of Genes and Genomes (KEGG) 
database.

Phenotypic data analysis
Phenotypic data were analyzed using SAS v.9.4 and adjusted 
means were estimated based on the alpha-lattice design using 
GLM and Mixed procedures and were used for advanced linear 
analysis of YLD and drought tolerance indices (Supplementary 
Table S4).

QTL studies used for projections and MQTL 
analysis
To improve and enrich our results for identifying putative CGs, an 
inclusive literature survey was conducted on wheat QTLs studies 
related to YLD and other traits under water deficit conditions pub-
lished from 2007 to 2021 (Supplementary Table S5). Thus, QTLs for 
YLD, germination attributes, TDW, RL, SL, and TFW under water 
deficit conditions were collated on the different chromosomes of 
wheat from 52 bi-parental wheat populations extracted from 49 
studies. QTL studies without proper genetic map information or 
QTL-related information were discarded from this study. The 
wheat reference map from Liu et al., (2020b) is the most compre-
hensive and saturated genetic map currently available and was 
selected for our analysis. QTLs with sufficient data, including 
QTL position, chromosome groups, CI, the proportion of pheno-
typic variance (R2), and log of odds ratio (LOD) were collected 
from the 52 populations with BioMercator v4.2 and used in the 
MQTL analysis. To estimate 95% CI for QTLs, the formulas re-
ported by Darvasi et al., (1997) and Guo et al. (2006) was used.

After the projection of QTLs from different populations onto 
the reference map, the MQTL analysis was implemented on the 
integrated and re-positioned QTLs using BioMercator V4.2 
(Arcade et al., 2004; Veyriet al., 2007; Sosnowski et al., 2012). The 
most likely model of MQTLs was selected among different models 
in BioMercator based on the Akaike Information Criterion (AIC), 
the corrected AIC (AICc and AIC3), the Bayesian Information 
Criterion, and the Average Weight of Evidence criteria. The pos-
ition of MQTLs and related QTLs and the MQTL and QTL distribu-
tions on the reference map were displayed using SOFIA 
(Diaz-Garcia et al., 2017). In addition to the genetic position of 
MQTLs, the distribution of MQTLs across the wheat genome 
(IWGSC) along chromosomes was investigated and displayed 
using heatmaps with the Pheatmap and RIdeogram packages 
(Kolde, 2013; Hao et al., 2020). Additionally, to expand our genomic 
approaches, gene density and SNP variation across the wheat 
chromosomes were obtained from the EnsemblPlants database 
(http://plants.ensembl.org/index.html). The distribution of all 
these variables discussed above, including the MQTL genomic po-
sitions, gene density, and SNP density, were also visualized using 
Circos (Krzywinski et al., 2009).

To identify genes underlying for the studied traits that located in 
the corresponding regions of the identified MQTLs, the genomic 
position of flanking markers for each MQTL was retrieved from 
T3/Wheat database (https://triticeaetoolbox.org/wheat/). The 
gene annotations from all MQTL genomic regions were carefully ex-
plored in the EnsemblPlants database (http://plants.ensembl.org/ 
index.html). Furthermore, the orthologous genes situated at each 
MQTL interval were surveyed in rice and functional CGs were iden-
tified according to their function in rice. The accessible annotation 
of genes in rice (https://funricegenes.github.io/) was used for iden-
tifying putative CGs based to orthologous genes of wheat in rice 
(Huang et al., 2022). Four studies (Derakhshani et al., 2020; Rahimi 
et al., 2021; Konstantinov et al., 2021; Nouraei et al., 2022) related 
to the transcriptomics of wheat against water deficit conditions 
were used to compare the differential expressed genes with the 
genes retrieved from MQTL and GWAS analyses. The KOBAS soft-
ware (Xie et al., 2011) was used to detect enriched pathways for 
the common genes between these three different databases.

Results
Phenotypic diversity in seedling traits
Descriptive statistics from both field trials and simulated water 
deficit experiments are summarized in Table 1, where mean, 
range, broad-sense heritabilities, and correlation between traits 
are displayed. Based on field trial results, the average grain yield 
across all landraces decreased from 1.90 g per spike under normal 
irrigation (N-YLD) to 0.97 g per spike under drought conditions 
(YLD). The maximum variance was observed for NGP (Std: 
10.14), and the minimum was observed for the TDW (SD 0.01). 
The highest heritability was estimated for GR (80.38), while YLD 
showed the lowest heritability (62.86). Correlation analysis 
showed that there was a significant positive association between 
NGP and TDW and GR (r2 = 0.24**, r2 = 0.29**, respectively). 
However, the highest correlation among early vigor traits was ob-
served between TGP and NGP (r2 = 0.91**), GR and TDW (r2 = 0.60**), 
GR and SL and RL (r2 = 0.53**, r2 = 0.46**). Interestingly, all charac-
terized early vigor traits had positive but non-significant correla-
tions with YLD, while they had positive and significant 
correlations with N-YLD. Furthermore, drought tolerance indices 
were also positively correlated with GR, TFW, TDW, SL and RL 
(Table 1).
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Genetic markers and population structure
Most DNA substitutions were transitions (A↔G and T↔C), and 
the transversion rates were significantly lower (Supplementary 
Table S6). The average Ts/Tv ratio for the A, B, and D genomes 
were 1.88, 1.76, and 1.40, respectively. The density of markers 
(SNP/Mbp) across the different genomes also varied with the B 
genome having the highest average SNP density (0.89), while 
the D genome had the lowest SNP density (0.41). The highest 
number of SNPs in three sub-genomes were observed on chro-
mosomes 7A (732), 2B (835), and 2D (385). The average minor al-
lele frequency (MAF) of SNPs, and gene densities were similar in 
A and B genomes and greater than in the D genome. 
Furthermore, the A and B genomes showed higher heterozygos-
ities than the D genome, with the overall heterozygosity across 
the entire whole genome was 0.052. The average polymorphism 
information content (PIC) was 0.22, 0.23, and 0.21 for A, B, and D 
genomes, respectively and ranged from 0.16 in 4B chromosome 
to 0.25 in 6A chromosome. Moreover, the total number of SNP 
pairs (TNSP) in the whole genome was 493,675, where 47% 
(230,300) of the TNSPs were located in the B genome alone 
(Supplementary Table S7). Among SNPs, 16%, 14%, and 16% 
were in significant LD in the A, B, and D genomes, respectively, 
and varied between 5.44% (4A) and 21.85% (6A). Three main sub-
groups among landraces having different degrees of admixture 
were identified through calculating variance-covariance matrix 
of individuals (Fig. 1a). The principal component analysis (PCA) 
found the two first PCs axes explain approximately 13 and 4.5% 
of the total variation, respectively (Fig. 1b). The PCA confirmed 
the existence of three subgroups, and these are highlighted in 
different colors in Fig. 1b.

Marker-trait associations of early vigor in wheat 
landraces
For the water deficit condition, 54 highly significant marker-trait 
associations (MTAs) were identified across all chromosomes 
with the FarmCPU method at a significance level of –log10 

P-value >4 (Table 2). It is evident that the highest number of 
MTAs were located in the A genome with 24 MTAs followed by 
genomes B and D with 23 and 7 MTAs, respectively (Table 2). 
Moreover, Manhattan and QQ-plots are displayed for all mea-
sured traits to help with the identification of markers significantly 
associated with germination traits and grain yield under simu-
lated water deficit (Figs. 2 and 3). Seven markers, including 
rs46500, rs10021, rs3901, rs5359, rs44371, and rs33214, were de-
tected for TGP, and seven markers, including rs58619, rs52517, 
rs2003, rs39056, rs29630, rs20378, and rs5221, were identified for 
NGP. It is noteworthy to mention that for the normal and TGPs, 
the B genome contributed to the highest number of MTAs com-
pared to the A and D genomes. TDW accounted for the lowest 
number of MTAs with a single marker located in the A genome. 
To evaluate the accuracy of GWAS results under water deficit con-
ditions, QQ-plots were produced to assess that inclusion of popu-
lation structure and kinship relationships adequately controlled 
for spurious associations due to population subdivision. The 
QQ-plots indicated that the observed values largely matched 
with the expected values, suggesting that our GWAS analyses 
have adequately controlled for spurious effects due to population 
structure.

Gene annotation and pathway analysis
The GO analyses of the identified MTAs revealed that around 75% 
were located within or closed to protein-coding genes T
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(Supplementary Table S8). Genes associated with germination 
traits were mainly involved in biological processes such as cation 
transport, transmembrane transport, oxidation-reduction pro-
cess, protein phosphorylation, carbohydrate metabolic process, 
actin filament organization, organic substance metabolic pro-
cess, carbohydrate metabolic process, glycogen metabolic pro-
cess, amylopectin biosynthetic process, starch biosynthetic 
process, positive regulation of seed germination, and histone 
H4-R3 methylation. Genes associated with seedling biomass 
and shoot and RL encode proteins that are involved in intracellu-
lar protein transport, regulation of transcription, 
DNA-templated, snRNA processing, protein phosphorylation, 
and exocytosis. A chromosomal survey indicated that the A 
and B genomes harbored the highest number of MTAs (21 and 
14, respectively), while only 6 MTAs were located within coding 
sequences in the D genome. GO enrichment analysis was also 
performed to identify pathways that were associated with the 
MTAs and identified significant enrichments for starch and su-
crose metabolism and plant hormone signal transduction 
(Supplementary Table S9). For starch and sucrose metabolism, 

isoamylase 2 (K01214) and for plant hormone signal transduc-
tion, auxin-responsive protein SAUR71-like (K14488), responded 
to water deficit conditions.

Characteristics of QTLs in wheat under water 
deficit condition
To expand our approach for identifying genomic regions control-
ling our traits of interest, in addition to the GWAS approach, a 
MQTL analysis was conducted using data on QTLs detected un-
der water deficit (Supplementary Table S7). A total of 215 QTLs 
controlling YLD, RL, GR, TDW, and TFW in wheat under water 
deficit condition were retrieved from 52 mapping populations re-
ported in 49 studies published since 2007. The identified QTLs 
were derived from many different types mapping population 
types, including 34 recombinant inbred lines (RILs), 14 double 
haploids (DH), 3 back-crosses (BC), and 1 F2 mapping population. 
The number and distribution of QTLs for each trait across the 21 
wheat chromosomes are shown in Supplementary Fig. S1. The 
QTLs are unevenly distributed across the genomes with the B 
sub-genome having the highest number of QTLs with 101, fol-
lowed by A and D sub-genomes with 65 and 49 QTLs, respective-
ly. Chromosome 5B had the highest number of QTLs with 26 
QTLs followed by chromosome 2D with 19 and 1B with 18. 
Chromosome 5D accounted for the lowest number of QTLs 
with 2 QTLs. Furthermore, YLD and RL harbored the highest 
number of reported QTLs with 167 and 26 QTLs, respectively. 
GR, TDW, and TFW had the lowest number of QTLs. The QTLs 
for YLD were mainly situated on chromosomes 5B, 7A and 1B 
with 17, 17 and 16 QTLs, respectively. Similarly, in this study, 
the highest number of QTLs for RL were identified on chromo-
some 5B.

Detected MQTLs
Twenty-three MQTLs were identified from the 215 QTLs that could 
successfully project onto the reference map (Table 3; Fig. 4). The 

Table 2. Marker-trait associations for seed germination traits of 
bread wheat identified from the different sub-genomes of wheat.

Genome Early vigor traits in wheat seedlings and stressed-grain 
yield

RL SL TFW TDW TGP NGP GR YLD Total

Genome A 4 1 3 1 1 2 1 11 24
Genome B 3 3 1 nf 4 4 2 6 23
Genome D 1 nf 1 nf 2 1 1 1 7
MTA 8 4 5 1 7 7 4 18 54

RL, root length; SL, shoot length; TFW, total fresh weight; TDW, total dry 
weight; TGP, total germination percentage; NGP, normal germination 
percentage; GR, germination rate; YLD, grain yield under drought condition; nf, 
not found.

Fig. 1. Population structure of Iranian wheat landraces. a) cluster analysis using Kinship matrix, and b) PCA using PC1 and PC2. Cluster I constituted of 
landraces originating mainly from the Northern, central, and western areas in Iran together with three cultivars Kaveh, Naz, and Koohdasht. Cluster II 
represents the biggest group of landraces from different regions across Iran. Cluster III represents the smallest group of landraces originating mainly 
from the central and western areas in Iran.
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MQTL analysis substantially restricted the number of QTLs to 
roughly 10% of identified QTLs, as only MQTLs containing at least 
2 QTLs from different studies were considered to improve the ac-
curacy of our analysis. MQT-YLD4, MQT-YLD9, MQT-YLD13, 
MQT-YLD17, MQT-YLD18, and MQT-YLD19 contributed to the 

highest number of projected QTLs with four QTLs (Table 3). 
Intriguingly, these MQTLs might be robust, stable, and suitable 
candidates for identifying promising QTLs from different loca-
tions and years under water deficit conditions. Only one MQTL 
on chromosome 5B was detected for RL based on our approach. 

Fig. 2. Manhattan and QQ-plots of highly associated SNPs for agronomic traits under water deficit condition. a) TGP, b) NGP, c) germination speed, and d) 
grain yield under drought stress.
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Most of the MQTLs related to the YLD were situated on chromo-
somes 5B and 7B. The distribution pattern of MQTLs across chro-
mosomes is highly uneven with no MQTLs detected on 
chromosomes 1A, 3A, 3D, 5D, 6A, and 7D (Table 3; Fig. 4).

The genomic distribution of MQTLs across the wheat genome was 
thoroughly assessed which provided us with further valuable infor-
mation on the position of MQTLs (Supplementary Tables S8 and S9). 
Gene and SNP densities were obtained from ENsemblPlants and 

Fig. 3. Manhattan and QQ-plots of highly associated SNPs for agronomic traits under water deficit condition. a) seedling fresh biomass, b) seedling dry 
biomass, c) seedling SL, and d) seedling RL.
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were compared with the genomic position of the identified MQTLs 
(Figs. 5 and 6). These results indicate that sub-telomeric regions har-
bor most of the MQTLs which is a pattern similar to what was ob-
served for gene and SNP densities. One of the most valuable 
benefits of an MQTL analysis is that it can greatly confine the CI of 
QTLs, improving the chance to identify putative CGs. In our study, 
the MQTL analysis reduced the average CI of QTLs by 2.63 folds in 
comparison to the mean of CI of projected QTLs. Three MQTLs in-
cluding MQTL-YLD1, MQTL-YLD11, and MQTL-YLD15 experienced 
a great reduction in CIs, with regions spanning less than 1 cM 
(Table 3). All genes underlying each MQTL region were reported in 
Supplementary Table S10 as well as their orthologous gene from 
rice in Supplementary Table S11. Among the annotated genes 
from the MQTLs, several well-known genes based on their functions 
in rice were noticed. This includes the rice orthologous Salt tolerance 

receptor-like cytoplasmic kinase 1(STRK1) (TraesCS2B02G407100), a 
chloroplast-localized DEAD-box RNA helicases, OsRH58 (Traes 
CS3B02G592900), Basic leucine zipper 72 (OsbZIP72)(TraesCS5A02G 
237200), AT-HOOK motif nuclear-localized protein 1 (OsAHL1) 
(TraesCS5B02G129200 and TraesCS5B02G130400), Stress-activated pro-
tein kinase 8 (OsSAPK8) (TraesCS5B02G406400), Dehydration responsive 
element-binding 1G, (OsDREB1G) (TraesCS6B02G268100), OsDREB1D 
(TraesCS6D02G173500), and dense and erect panicle 3(DEP3) 
(TraesCS7A02G464400) which are located in MQTL-YLD4, 
MQTL-YLD7, MQTL-YLD13, MQTL-YLD15, MQTL-YLD16, 
MQTL-YLD17, MQTL-YLD18, and MQTL-YLD19. Further genes and 
putative CGs are reported in Supplementary Tables S8 and S9. 
Subsequently, the genes obtaining from all MQTL intervals were 
compared with the reported differential expressed genes from dif-
ferent transcriptomics studies. A total of 329 genes were detected 

Fig. 4. The distribution of a) of MQTLs on the wheat reference map based on the genetic position, b) marker density, c) position of QTLs and MQTL showing 
through red heatmap across the QTLs, and d) the number of QTLs for each MQTL.
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as a common gene between the RNAseq, MQTLs and GWAS analyses 
(Supplementary Fig. S2). A KEGG analysis indicated that Nitrogen 
metabolism, Monoterpenoid biosynthesis, and Cutin, suberine and 
wax biosynthesis were enriched in our study.

Discussion
Phenotypic diversity of seedling traits
The development of high yield and drought-tolerant wheat var-
ieties is undoubtedly one of the most promising targets for wheat 
breeders across the world due to the significant contributions this 
crop have to the human diet (Appels et al., 2018; Webber et al., 
2018; Raza et al., 2019). In this study, the diversity of Iranian wheat 
landraces selected from different geographic locations was 

surveyed based on early vigor related traits and grain production 
in mature plants. Significant phenotypic diversity was observed 
for all studied traits and for all drought tolerance indices. A posi-
tive and significant correlation was observed between N-YLD 
(grain yield under normal irrigation) and several early vigor traits 
such as TFW (r = 0.41**), RL (r = 0.30**), and GR (r = 0.22*). These 
traits show positive but non-significant correlations with YLD, al-
though the correlation with GR and seedling RL was relatively 
high. Interestingly, early vigor traits (except for GP) were positively 
and significantly correlated with two important drought tolerance 
indices (GMP and STI), highlighting the potential role of good seed-
ling establishment in increasing drought tolerance which is in line 
with previous studies (Ludwig and Asseng, 2010; Ryan et al., 2015; 
Vukasovic et al., 2022).

Fig. 5. The distribution pattern of a) wheat genome, b) gene density of wheat genome, c) variation density of wheat genome, d) significant GWAS signal on 
wheat genome, e) MQTLs position on wheat genome, f) rice genome, g) gene density of rice genome h) variation density of rice genome, and i) region of 
orthologous genes of wheat in rice.
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Fig. 6. Heatmap of MQTLs for grain yield and RL on the wheat genome based on Mb. The gene and SNP densities of each chromosome are indicated on the 
chromosome and on the right side of it.
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GWAS of seedling traits
The phenotypic and SNP datasets were used to explore genetic di-
versity and to identify loci associated with early vigor traits using 
genome-wide association mapping. Analyses of population struc-
ture identified three semi-isolated clusters of individuals among 
landraces in both the PCA and variance-covariance (kinship) ma-
trix of individuals. Including principal components and a kinship 
matrix allows for adequate control of false positives due to popu-
lation structure (QQ-plots in Figs. 2 and 3). In total, 54 MTAs were 
identified across all traits under water deficit conditions. The ma-
jority of the MTAs were located in the A and B sub-genomes, in line 
with results from earlier studies in wheat (Mathew et al., 2019; 
Maulana et al., 2020; Ahmed et al., 2022). The GWAS results then 
were used to identify putative CGs located in the vicinity of the 
MTAs. Around three-quarters of all MTAs could be assigned to 
or near a protein-coding gene. These genes were shown to be in-
volved in a range of biological processes and a GO analysis identi-
fied significant enrichments for starch and sucrose metabolism 
and plant hormone signal transduction.

Distribution of QTLs and MQTLs
A total of 215 projected QTLs were identified in a literature survey 
and were used in our MQTL analysis. The uneven distribution of 
QTLs across chromosomes and sub-genomes of wheat were ap-
parent also in this analysis, where the B sub-genome and in par-
ticular chromosome 5B harbored the largest number of QTLs 
with 101 and 26, respectively. Similarly, and in line with many 
earlier studies (Zhang et al., 2010; Darzi-Ramandi et al., 2017; 
Kumar et al., 2020), the D sub-genome contributed the lowest 
number of QTLs. An MQTL analysis is an approach to identify 
most stable QTLs, regardless of genetic backgrounds, locations 
and years and can help reduce the number of stable QTLs and gen-
omic regions controlling traits of interest (Zhu et al., 2018; Wang 
et al., 2019; Khahani et al., 2019; Khahani et al., 2020). In this study, 
23 MQTLs were detected that were located across all wheat chro-
mosomes for YLD and RL traits. Chromosomes 5B and 7B harbored 
the highest number of MQTLs for YL. In comparison with a previ-
ous study on yield traits under drought conditions, 6 common 
MQTLs including MQTL-YLD6, MQTL-YLD8, MQTL-YLD13, 
MQTL-YLD18, MQTL-YLD19 and MQTL-YLD22 were identified 
(Liu et al., 2020a). Furthermore, 6 common MQTLs were obtained 
with a previous study under unstressed conditions including 
MQTL-YLD6, MQTL-YLD8, MQTL-YLD10, MQTL-YLD16, MQTL- 
YLD19 and MQTL-YLD20 (Yang et al., 2021). MQTL-YLD13, 
MQTL-YLD18 and MQTL-YLD19 had the highest number of QTLs 
in our study. It is noteworthy to mention that previous investiga-
tions have reported that gene density was positively associated 
with QTL density in maize, barley and rice (Martinez et al., 2016; 
Khahani et al., 2019, 2020). Our study reveals that most of 
MQTLs are located in the sub-telomeric regions where the gene 
density and densities of SNP are also highest in wheat. This is in-
consistent with previous results on the genomic position of 
MQTLs and gene density in maize, barley, and rice (Martinez 
et al., 2016; Khahani et al., 2019, 2020, 2021).

Identification of putative CGs
An MQTL analysis is a statistical tool that can help to substantially 
reduce the CI of stable QTLs compared to initial QTLs, allowing us 
to restrict the genomic regions harboring CGs even further 
(Bilgerami et al., 2020; Khahani et al., 2020; Khahani et al., 2021; 
Zheng et al., 2021). The accuracy and precision of predicting CGs 
are therefore higher when QTLs can be mapped with greatly 

reduced CI intervals (Martinez et al., 2016; Khahani et al., 2019). 
The mean CI in our analysis declined by up to 2.63-fold compared 
to the CIs of QTLs in the original publications. The MQTLs predict-
ing the underlying genes were further analyzed as well as their 
orthologous genes from rice were identified. Twenty-two MQTLs 
for YLD trait were detected including three MQTLs on chromo-
somes 5B and 7B, two MQTLs on chromosomes 3B, 4D, and 5A, 
one MQTL on chromosomes 1B, 1D, 2A, 2B, 2D, 4A, 4B, 6B, 6D, 
and 7A. The MQT-YLD4, MQT-YLD9, MQT-YLD13, MQT-YLD17, 
MQT-YLD18, and MQT-YLD19 accounted for the highest number 
of projected QTLs and are therefore considered our most stable 
QTLs. Among CGs within MQTL-YLD4, one of the stable MQTLs 
with large numbers of projected QTLs harbors the wheat gene 
TraesCS2B02G403000 which is homologous to the rice gene 
Vacuolar invertase 2 (OsINV2). OsINV2 has a major effect on grain 
yield by interacting with OsINV3 and functions by changing su-
crose metabolism and grain size (Deng et al., 2020). Moreover, 
the ortholog to the rice gene STRK1 in wheat, TraesCS2B02G 
407100, has previously been shown to simultaneously improve 
salt tolerance mechanisms and grain yield (Zhou et al., 2018).

In MQTL-YLD7 located on chromosome 3B, genes TraesCS3B02G 
592400, homologous to Drought-induced genes in rice such as 
OsDi19-5, TraesCS3B02G592900, homologous to rice OsRH58, and 
TraesCS3B02G594200, homologous to rice MODD (Mediator of 
OsbZIP46 deactivation and degradation), were found which are all 
known to regulate salt and drought tolerance in rice (Tang et al., 
2016; Nawaz and Kang, 2019; Jing et al., 2021). These genes are 
thus excellent candidates for further analysis on how they might 
contribute to salt and drought tolerance in wheat. A potential CG 
in wheat, TraesCS4B02G208600, which is located in MQTL-YLD9 
interval on chromosome 4B was detected. This gene is orthologous 
to rice Salt-and drought-induced ring finger 1 (OsSDIR1) which has been 
shown to enhance drought tolerance compared to wild-type rice 
when overexpressed (Gao et al., 2011). Two other important genes 
in wheat, TraesCS4B02G235000, and TraesCS4B02G235100, are 
orthologous with the rice genes Similar to rcd one 1c (OsSRO1c) and 
drought- and salt-sensitive mutant 3 (DSM3), respectively. These two 
genes are key factors in regulating abiotic stresses and in particular 
salt and drought stresses in rice (Du et al., 2011; You et al., 2013). 
Similarly, the wheat genes TraesCS4D02G013300 and TraesCS4D 
02G013400, located in MQTL-YLD10 on chromosome 4D, are ortho-
logous to rice CATION/CA2 + EXCHANGER2 (OsCCX2), which has 
been reported to play a role under drought and salt conditions 
(Yadav et al., 2015).

MQTL-YLD13 is located on chromosome 5A and contains a 
wheat gene, TraesCS5A02G237200, that is orthologous to 
OsbZIP72, which is previously shown to have a significant effect 
on drought tolerance mediated through the abscisic acid pathway 
(Lu et al., 2009). MQTL-YLD15 on chromosome 5B contains two 
wheat genes, TraesCS5B02G129200 and TraesCS5B02G130400, which 
are homologous to OsAHL1 appear to be involved in drought resist-
ance (Zhou et al., 2016). A heat gene orthologous to the rice gene 
gibberellin-stimulated transcript-related gene 1 (OsGASR1) is located at 
MQTL-YLD16 on chromosome 5B. The rice ortholog has been re-
ported to regulate cellular mechanisms against salt stress (Lee 
et al., 2017). Another CG in the same MQTL, TraesCS5B02G406400, 
is orthologous SAPK8 which regulates drought tolerance positively 
in rice (Zhong et al., 2020). Among the CGs identified in 
MQTL-YLD17 on chromosome 6B, several potentially important 
genes were found. For example, TraesCS6B02G265000, is homolo-
gous to rice Salt Intolerance 1 (SIT1) and plays a regulatory role under 
salt stress which might improve the defense mechanism (Zhao 
et al., 2019b). Similarly, the rice ortholog of TraesCS6B02G286500, 
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DROUGHT HYPERSENSITIVE (DHS), contributes to drought stress 
(Wang et al., 2017).

MQTL-YLD18 on chromosome 6D contains the largest number 
of CGs, including TraesCS6D02G066700, TraesCS6D02G083500, 
TraesCS6D02G109800, TraesCS6D02G167500, TraesCS6D02G171100 
and TraesCS6D02G173500 which are orthologous to LATERAL 
ROOTLESS2 (LRT2), STRESS tolerance and GRAIN_LENGTH (OsSGL), 
Protein phosphatase18 (OsPP18), stress repressive zinc finger protein 
1 (SRZ1), gamma-ray induced Leucine-rich repeat receptor-like kinase 
(OsGIRL1) and OsDREB1D in rice. These genes are good candidates 
to further evaluation in wheat as they have important functions 
under abiotic stresses in rice (Lee et al., 2013; Park et al., 2014; 
You et al., 2014; Kumari et al., 2015; Wang et al., 2016). Finally, 
the wheat genes TraesCS7A02G464400 and TraesCS7A02G464800 
are located at MQTL-YLD19 on chromosome 7A and are ortholo-
gous with rice DEP3 andOryza sativa Yellow37 (ONAC011, OsY37). 
In rice, these genes play a substantial role in improving grain yield 
and drought tolerance (Qiao et al., 2011; Fang et al., 2014). 
Furthermore, a comparison of common genes between RNAseq 
studies with genes retrieved from MQTLs revealed that Nitrogen 
metabolism, Monoterpenoid biosynthesis, and Cutin, suberine 
and wax biosynthesis were enriched based on the KEGG enrich-
ment analysis. Water deficit stress affects the metabolism of ni-
trogen in plants by decreasing the total N content (Tang et al., 
2020). Cutin and suberine biosynthesis play a regulatory role in 
providing mechanisms against water deprivation in plants (Xue 
et al., 2017; Ayaz et al., 2021).

Conclusion
We implemented a GWAS approach to identify loci associated 
with early vigor in wheat under simulated water deficit and grain 
yield under drought condition in the field. Fifty-four MTAs were 
identified that are located across the wheat genome but with the 
highest number found in the B sub-genome. Further analyses 
are required to confirm many of the genomic regions that have 
been identified in this study. An MQTL analysis was then per-
formed to further expand our approach to identify genomic re-
gions associated with early vigor traits and grain yield and to 
validate identified MTAs in the current study. Most of the 
MQTLs detected are in sub-telomeric regions and coincides with 
regions of high gene and SNP densities. MQTL regions 
MQT-YLD4, MQT-YLD9, MQT-YLD13, MQT-YLD17, MQT-YLD18, 
MQT-YLD19, and MQTL-RL1 contained the highest number of 
projected QTLs and were therefore regarded as the most reliable 
and stable QTLs under different environmental conditions. 
These MQTLs facilitate the identification of CGs underlying at 
each MQTL interval due to the reduced CI associated with 
MQTLs. Moreover, comparing results from the GWAS, MQTL and 
RNA-seq studies identified a common gene, TraesCS4A02G48 
5800, which is homologous to the rice gene OsVIN3, member of 
vacuolar invertases. This gene plays a major role in sugar metab-
olism and in mediating wheat grain size. Additionally, this gene 
has been reported to act as a regulator under water stressed con-
ditions in previous using RNAseq studies (Deng et al., 2020). These 
findings provide important information on the genetic basis of 
seedling vigor traits under simulated water deficit and grain yield 
under drought stress and set the foundation for future investiga-
tions into adaptation to drought conditions in wheat varieties.
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Neumann K, Kobiljski B, Denčić S, Varshney RK, Börner A. 
Genome-wide association mapping: a case study in bread wheat 
(Triticum aestivum L.). Mol Breed. 2011;27(1):37–58. doi:10.1007/ 
s11032-010-9411-7.

Nouraei S, Mia MS, Liu H, Turner NC, Yan G. Transcriptome analyses 
of near isogenic lines reveal putative drought tolerance control-
ling genes in wheat. Front Plant Sci. 2022;13:857829. doi:10. 
3389/fpls.2022.857829.

Park S, Moon JC, Park YC, Kim JH, Kim DS, Jang CS. Molecular dissec-
tion of the response of a rice leucine-rich repeat receptor-like ki-
nase (LRR-RLK) gene to abiotic stresses. J Plant Physiol. 2014; 
171(17):1645–1653. doi:10.1016/j.jplph.2014.08.002.

Poland JA, Brown PJ, Sorrells ME, Jannink JL. Development of high- 
density genetic maps for barley and wheat using a novel 
two-enzyme genotyping-by-sequencing approach. PLoS One. 
2012;7(2):e32253. doi:10.1371/journal.pone.0032253.

Qiao Y, Piao R, Shi J, Lee SI, Jiang W, Kim BK, Koh HJ. Fine mapping and 

candidate gene analysis of dense and erect panicle 3, DEP3, which 
confers high grain yield in rice (Oryza sativa L.). Theor Appl Genet. 
2011;122(7):1439–1449. doi:10.1007/s00122-011-1543-6.

Quraishi UM, Abrouk M, Murat F, Pont C, Foucrier S, Desmaizieres G, 
Salse J, Confolent C, Rivière N, Charmet G, et al. Cross-genome 
map based dissection of a nitrogen use efficiency 
ortho-metaQTL in bread wheat unravels concerted cereal gen-
ome evolution. Plant J. 2011;65(5):745–756. doi:10.1111/j.1365- 
313X.2010.04461.x.

Rahimi Y, Bihamta MR, Taleei A, Alipour H, Ingvarsson PK. 
Genome-wide association study of agronomic traits in bread 
wheat reveals novel putative alleles for future breeding pro-
grams. BMC Plant Biol. 2019;19(1):1–19. doi:10.1186/s12870-019- 
2165-4.

Rahimi Y, Ingvarsson PK, Bihamta MR, Alipour H, Taleei A, 
Khoshnoodi Jabar Abadi S. Characterization of dynamic regula-
tory gene and protein networks in wheat roots upon perceiving 
water deficit through comparative transcriptomics survey. 
Front Plant Sci. 2021;12:710867. doi:10.3389/fpls.2021.710867.

Raza A, Razzaq A, Mehmood SS, Zou X, Zhang X, Lv Y, Xu J. Impact of 
climate change on crops adaptation and strategies to tackle its 
outcome: a review. Plants. 2019;8(2):34. doi:10.3390/ 
plants8020034.

Rebetzke GJ, Richards RA, Fettell NA, Long M, Condon AG, Forrester 
RI, Botwright TL. Genotypic increases in coleoptile length im-
proves stand establishment, vigour and grain yield of deep-sown 
wheat. Field Crops Res. 2007;100(1):10–23. doi:10.1016/j.fcr.2006. 
05.001.

Rebetzke GJ, Richards RA, Holland JB. Population extremes for asses-
sing trait value and correlated response of genetically complex 
traits. Field Crops Res. 2017;201:122–132. doi:10.1016/j.fcr.2016. 
10.019.

Richards RA. Crop improvement for temperate Australia: future op-
portunities. Field Crops Res. 1991;26(2):141–169. doi:10.1016/ 

0378-4290(91)90033-R.
Richards RA, Hunt JR, Kirkegaard JA, Passioura JB. Yield improve-

ment and adaptation of wheat to water-limited environments 
in Australia—a case study. Crop Pasture Sci. 2014;65(7):676–689. 
doi:10.1071/CP13426.

Richards RA, Townley-Smith TF. Variation in leaf area development 
and its effect on water use, yield and harvest index of droughted 
wheat. Aust J Agric Res. 1987;38(6):983–992. doi:10.1071/ 
AR9870983.

Ryan PR, Liao M, Delhaize E, Rebetzke GJ, Weligama C, Spielmeyer W, 
James RA. Early vigour improves phosphate uptake in wheat. J 
Exp Bot. 2015;66(22):7089–7100. doi:10.1093/jxb/erv403.

Savin R, Slafer GA, Cossani CM, Abeledo LG, Sadras VO. Cereal yield 
in mediterranean-type environments: challenging the paradigms 
on terminal drought, the adaptability of barley vs wheat and the 
role of nitrogen fertilization. In: Crop physiology. Cambridge, MA: 
Academic Press; 2015. p. 141–158.

Sidhu JS, Singh D, Gill HS, Brar NK, Qiu Y, Halder J, Sehgal SK. 
Genome-wide association study uncovers novel genomic regions 
associated with coleoptile length in hard winter wheat. Front 
Genet. 2020;10:1345. doi:10.3389/fgene.2019.01345.

Sosnowski O, Charcosset A, Joets J. Biomercator V3: an upgrade of 
genetic map compilation and quantitative trait loci 
meta-analysis algorithms. Bioinformatics. 2012;28(15): 
2082–2083. doi:10.1093/bioinformatics/bts313.

Tang M, Li Z, Luo L, Cheng B, Zhang Y, Zeng W, Peng Y. Nitric oxide 
signal, nitrogen metabolism, and water balance affected by 
γ-aminobutyric acid (GABA) in relation to enhanced tolerance 

Y. Rahimi et al. | 15
D

ow
nloaded from

 https://academ
ic.oup.com

/g3journal/article/13/2/jkac320/6865157 by Sw
edish U

niversity of Agricultural Sciences user on 18 August 2023

https://doi.org/10.1007/s10142-014-0429-5
https://doi.org/10.1016/j.jplph.2017.04.010
https://doi.org/10.1016/j.jplph.2017.04.010
https://doi.org/10.1007/s12374-012-0377-3
https://doi.org/10.1071/FP03060
https://doi.org/10.1007/s00425-020-03466-3
https://doi.org/10.1007/s00425-020-03466-3
https://doi.org/10.1007/s00122-020-03604-1
https://doi.org/10.1007/s00425-008-0857-3
https://doi.org/10.1016/j.agsy.2009.11.001
https://doi.org/10.1016/j.plantsci.2015.09.022
https://doi.org/10.1016/j.plantsci.2015.09.022
https://doi.org/10.1371/journal.pone.0225383
https://doi.org/10.3389/fpls.2020.573786
https://doi.org/10.1104/pp.51.5.914
https://doi.org/10.1104/pp.51.5.914
https://doi.org/10.1186/s12870-018-1623-8
https://doi.org/10.1007/s11032-010-9411-7
https://doi.org/10.1007/s11032-010-9411-7
https://doi.org/10.3389/fpls.2022.857829
https://doi.org/10.3389/fpls.2022.857829
https://doi.org/10.1016/j.jplph.2014.08.002
https://doi.org/10.1371/journal.pone.0032253
https://doi.org/10.1007/s00122-011-1543-6
https://doi.org/10.1111/j.1365-313X.2010.04461.x
https://doi.org/10.1111/j.1365-313X.2010.04461.x
https://doi.org/10.1186/s12870-019-2165-4
https://doi.org/10.1186/s12870-019-2165-4
https://doi.org/10.3389/fpls.2021.710867
https://doi.org/10.3390/plants8020034
https://doi.org/10.3390/plants8020034
https://doi.org/10.1016/j.fcr.2006.05.001
https://doi.org/10.1016/j.fcr.2006.05.001
https://doi.org/10.1016/j.fcr.2016.10.019
https://doi.org/10.1016/j.fcr.2016.10.019
https://doi.org/10.1016/0378-4290(91)90033-R
https://doi.org/10.1016/0378-4290(91)90033-R
https://doi.org/10.1071/CP13426
https://doi.org/10.1071/AR9870983
https://doi.org/10.1071/AR9870983
https://doi.org/10.1093/jxb/erv403
https://doi.org/10.3389/fgene.2019.01345
https://doi.org/10.1093/bioinformatics/bts313


to water stress in creeping bentgrass. Int J Mol Sci. 2020;21(20): 

7460. doi:10.3390/ijms21207460.
Tang N, Ma S, Zong W, Yang N, Lv Y, Yan C, Xiong L. MODD Mediates 

deactivation and degradation of OsbZIP46 to negatively regulate 
ABA signaling and drought resistance in rice. Plant Cell. 2016; 
28(9):2161–2177. doi:10.1105/tpc.16.00171.

Veyrieras JB, Goffinet B, Charcosset A. MetaQTL: a package of new 
computational methods for the meta-analysis of QTL mapping 
experiments. BMC Bioinformatics. 2007;8(1):1–16. doi:10.1186/ 
1471-2105-8-49.

Vukasovic S, Alahmad S, Christopher J, Snowdon RJ, Stahl A, Hickey 
L. Dissecting the genetics of early vigour to design drought- 
adapted wheat. Front Plant Sci. 2022;12:754439. doi:10.3389/ 
fpls.2021.754439.

Wang M, Lu X, Xu G, Yin X, Cui Y, Huang L, Xia X. OsSGL, a novel 
pleiotropic stress-related gene enhances grain length and yield 
in rice. Sci Rep. 2016;6(1):1–12. doi.org/10.1038/srep38157

Wang Z, Tian X, Zhao Q, Liu Z, Li X, Ren Y, Bu Q. The E3 ligase 
DROUGHT HYPERSENSITIVE negatively regulates cuticular wax 
biosynthesis by promoting the degradation of transcription fac-
tor ROC4 in rice. Plant Cell. 2018;30(1):228–244. doi:10.1105/tpc. 
17.00823.

Wang S, Wong D, Forrest K, Allen A, Chao S, Huang BE, Akhunov E. 
Characterization of polyploid wheat genomic diversity using a 
high-density 90 000 single nucleotide polymorphism array. 
Plant Biotechnol J. 2014;12(6):787–796. doi:10.1111/pbi.12183.

Webber H, Ewert F, Olesen JE, Müller C, Fronzek S, Ruane AC, 
Wallach D. Diverging importance of drought stress for maize 
and winter wheat in Europe. Nat Commun. 2018;9(1):1–10. doi:
10.1038/s41467-018-06525-2.

Xie C, Mao X, Huang J, Ding Y, Wu J, Dong S, Kong L, Gao G, Li CY, 
Wei L. KOBAS 2.0: a web server for annotation and identification 
of enriched pathways and diseases. Nucleic acids research 2011; 
39(suppl_2):W316–22. doi:10.1093/nar/gkr483.

Xue D, Zhang X, Lu X, Chen G, Chen ZH. Molecular and evolutionary 

mechanisms of cuticular wax for plant drought tolerance. Front 
Plant Sci. 2017;8:621. doi:10.3389/fpls.2017.00621.

Yadav AK, Shankar A, Jha SK, Kanwar P, Pandey A, Pandey GK. A rice 
tonoplastic calcium exchanger, OsCCX2 mediates ca 2+/cation 
transport in yeast. Sci Rep. 2015;5(1):1–15. doi:10.1038/srep17117.

Yang Y, Amo A, Wei D, Chai Y, Zheng J, Qiao P, Hu YG. Large-scale 
integration of meta-QTL and genome-wide association study dis-
covers the genomic regions and candidate genes for yield and 
yield-related traits in bread wheat. Theor Appl Genet. 2021; 
134(9):1–27. doi.org/10.1007/s00122-021-03881-4

Yang Y, Dhakal S, Chu C, Wang S, Xue Q, Rudd JC, Liu S. Genome wide 
identification of QTL associated with yield and yield components 
in two popular wheat cultivars TAM 111 and TAM 112. PLoS One. 
2020a;15(12):e0237293. doi:10.1371/journal.pone.0237293.

Yang L, Lei L, Liu H, Wang J, Zheng H, Zou D. Whole-genome mining 
of abiotic stress gene loci in rice. Planta. 2020b;252(5):1–20. doi:10. 
1007/s00425-020-03488-x.

Yin L, Zhang H, Tang Z, Xu J, Yin D, Zhang Z, Liu X. rMVP: a 

memory-efficient, visualization-enhanced, and parallel-acceler-
ated tool for genome-wide association study. Genomics 
Proteomics Bioinformatics. 2021;19(4):619–628. doi.org/10.1016/ 
j.gpb.2020.10.007

You J, Zong W, Hu H, Li X, Xiao J, Xiong L. A STRESS-RESPONSIVE 
NAC1-regulated protein phosphatase gene rice protein phosphat-
ase18 modulates drought and oxidative stress tolerance through ab-
scisic acid-independent reactive oxygen species scavenging in rice. 
Plant Physiol. 2014;166(4):2100–2114. doi:10.1104/pp.114.251116.

You J, Zong W, Li X, Ning J, Hu H, Li X, Xiong L. The SNAC1-targeted 
gene OsSRO1c modulates stomatal closure and oxidative stress 
tolerance by regulating hydrogen peroxide in rice. J Exp Bot. 
2013;64(2):569–583. doi:10.1093/jxb/ers349.

Zhang LY, Liu DC, Guo XL, Yang WL, Sun JZ, Wang DW, Zhang A. 
Genomic distribution of quantitative trait loci for yield and 
yield-related traits in common wheat. J Integr Plant Biol. 2010;52-
(11):996–1007. doi:10.1111/j.1744-7909.2010.00967.x.

Zhao Z, Rebetzke GJ, Zheng B, Chapman SC, Wang E. Modelling im-
pact of early vigour on wheat yield in dryland regions. J Exp Bot. 
2019a;70(9):2535–2548. doi:10.1093/jxb/erz069.

Zhao JL, Zhang LQ, Liu N, Xu SL, Yue ZL, Zhang LL, Zhang SW. Mutual 
regulation of receptor-like kinase SIT1 and b’κ-PP2A shapes the 
early response of rice to salt stress. Plant Cell. 2019b;31(9): 
2131–2151. doi:10.1105/tpc.18.00706.

Zheng T, Hua C, Li L, Sun Z, Yuan M, Bai G, Li T. Integration of 
meta-QTL discovery with omics: towards a molecular breeding 
platform for improving wheat resistance to fusarium head blight. 
Crop J. 2021;9(4):739–749. doi:10.1016/j.cj.2020.10.006.

Zhong R, Wang Y, Gai R, Xi D, Mao C, Ming F. Rice SnRK protein 
kinase OsSAPK8 acts as a positive regulator in abiotic stress re-
sponses. Plant Sci. 2020;292:110373. doi:10.1016/j.plantsci.2019. 
110373.

Zhou L, Liu Z, Liu Y, Kong D, Li T, Yu S, Mei H, Xu X, Liu H, Chen L, 
Luo L. A novel gene OsAHL1 improves both drought avoidance 

and drought tolerance in rice. Scientific Reports 2016;6(1):1–5. 
doi:10.1038/srep30264.

Zhou YB, Liu C, Tang DY, Yan L, Wang D, Yang YZ, Liu XM. The 
receptor-like cytoplasmic kinase STRK1 phosphorylates and acti-
vates CatC, thereby regulating H2O2 homeostasis and improving 
salt tolerance in rice. Plant Cell. 2018;30(5):1100–1118. doi:10. 
1105/tpc.17.01000.

Zhu XM, Shao XY, Pei YH, Guo XM, Li J, Song XY, Zhao MA. Genetic 
diversity and genome-wide association study of major ear quan-
titative traits using high-density SNPs in maize. Front Plant Sci. 
2018;9:966. doi:10.3389/fpls.2018.00966.

Communicating Editor: E. Akhunov

16 | G3, 2023, Vol. 13, No. 2

D
ow

nloaded from
 https://academ

ic.oup.com
/g3journal/article/13/2/jkac320/6865157 by Sw

edish U
niversity of Agricultural Sciences user on 18 August 2023

https://doi.org/10.3390/ijms21207460
https://doi.org/10.1105/tpc.16.00171
https://doi.org/10.1186/1471-2105-8-49
https://doi.org/10.1186/1471-2105-8-49
https://doi.org/10.3389/fpls.2021.754439
https://doi.org/10.3389/fpls.2021.754439
https://doi.org/org/10.1038/srep38157
https://doi.org/10.1105/tpc.17.00823
https://doi.org/10.1105/tpc.17.00823
https://doi.org/10.1111/pbi.12183
https://doi.org/10.1038/s41467-018-06525-2
https://doi.org/10.1093/nar/gkr483
https://doi.org/10.3389/fpls.2017.00621
https://doi.org/10.1038/srep17117
https://doi.org/org/10.1007/s00122-021-03881-4
https://doi.org/10.1371/journal.pone.0237293
https://doi.org/10.1007/s00425-020-03488-x
https://doi.org/10.1007/s00425-020-03488-x
https://doi.org/org/10.1016/j.gpb.2020.10.007
https://doi.org/org/10.1016/j.gpb.2020.10.007
https://doi.org/10.1104/pp.114.251116
https://doi.org/10.1093/jxb/ers349
https://doi.org/10.1111/j.1744-7909.2010.00967.x
https://doi.org/10.1093/jxb/erz069
https://doi.org/10.1105/tpc.18.00706
https://doi.org/10.1016/j.cj.2020.10.006
https://doi.org/10.1016/j.plantsci.2019.110373
https://doi.org/10.1016/j.plantsci.2019.110373
https://doi.org/10.1038/srep30264
https://doi.org/10.1105/tpc.17.01000
https://doi.org/10.1105/tpc.17.01000
https://doi.org/10.3389/fpls.2018.00966

	Genome-wide association study to identify genomic loci associated with early vigor in bread wheat under simulated water deficit complemented with quantitative trait loci meta-analysis
	Introduction
	Material and methods
	Plant material and experimental conditions
	SNP genotyping, population structure, and individual relationship
	GWAS
	Gene descriptions and pathway analysis
	Phenotypic data analysis
	QTL studies used for projections and MQTL analysis

	Results
	Phenotypic diversity in seedling traits
	Genetic markers and population structure
	Marker-trait associations of early vigor in wheat landraces
	Gene annotation and pathway analysis
	Characteristics of QTLs in wheat under water deficit condition
	Detected MQTLs

	Discussion
	Phenotypic diversity of seedling traits
	GWAS of seedling traits
	Distribution of QTLs and MQTLs
	Identification of putative CGs
	Conclusion

	Data availability
	Acknowledgments
	Funding
	Conflicts of interest
	Author contributions
	Literature cited
	secjkac320-jkac340-s17


