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Abstract. Despite their small spatial extent, fluvial ecosystems play a significant role in processing and trans-
porting carbon in aquatic networks, which results in substantial emission of methane (CH4) into the atmosphere.
For this reason, considerable effort has been put into identifying patterns and drivers of CH4 concentrations in
streams and rivers and estimating fluxes to the atmosphere across broad spatial scales. However, progress toward
these ends has been slow because of pronounced spatial and temporal variability of lotic CH4 concentrations
and fluxes and by limited data availability across diverse habitats and physicochemical conditions. To address
these challenges, we present a comprehensive database of CH4 concentrations and fluxes for fluvial ecosystems
along with broadly relevant and concurrent physical and chemical data. The Global River Methane Database
(GriMeDB; https://doi.org/10.6073/pasta/f48cdb77282598052349e969920356ef, Stanley et al., 2023) includes
24 024 records of CH4 concentration and 8205 flux measurements from 5029 unique sites derived from publica-
tions, reports, data repositories, unpublished data sets, and other outlets that became available between 1973 and
2021. Flux observations are reported as diffusive, ebullitive, and total CH4 fluxes, and GriMeDB also includes
17 655 and 8409 concurrent measurements of concentrations and 4444 and 1521 fluxes for carbon dioxide (CO2)
and nitrous oxide (N2O), respectively. Most observations are date-specific (i.e., not site averages), and many are
supported by data for 1 or more of 12 physicochemical variables and 6 site variables. Site variables include codes
to characterize marginal channel types (e.g., springs, ditches) and/or the presence of human disturbance (e.g.,
point source inputs, upstream dams). Overall, observations in GRiMeDB encompass the broad range of the cli-
matic, biological, and physical conditions that occur among world river basins, although some geographic gaps
remain (arid regions, tropical regions, high-latitude and high-altitude systems). The global median CH4 con-
centration (0.20 µmolL−1) and diffusive flux (0.44 mmolm−2 d−1) in GRiMeDB are lower than estimates from
prior site-averaged compilations, although ranges (0 to 456 µmolL−1 and −136 to 4057 mmolm−2 d−1) and
standard deviations (10.69 and 86.4) are greater for this larger and more temporally resolved database. Avail-
able flux data are dominated by diffusive measurements despite the recognized importance of ebullitive and
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plant-mediated CH4 fluxes. Nonetheless, GriMeDB provides a comprehensive and cohesive resource for exam-
ining relationships between CH4 and environmental drivers, estimating the contribution of fluvial ecosystems to
CH4 emissions, and contextualizing site-based investigations.

1 Introduction

Despite their small areal extent, running-water (fluvial)
ecosystems play a significant role in processing and trans-
porting carbon (C) in and through aquatic networks, in-
cluding the production, consumption, transport, and eva-
sion of carbon dioxide (CO2) and methane (CH4). The
profound planetary warming effects of CH4 in the atmo-
sphere, its erratic but accelerating rate of increase over re-
cent years (NOAA, 2022), the significant contributions of
natural sources to the growing atmospheric pool (Turner et
al., 2019), and improvements in gas measurement technolo-
gies have all contributed to a rapid increase in studies of
CH4 dynamics in aquatic environments in general and fluvial
ecosystems in particular. These studies reveal widespread su-
persaturation of CH4 in running waters that underlies their
larger-than-expected contribution to the atmospheric pool
(Stanley et al., 2016).

Efforts to quantify fluvial CH4 dynamics at regional, conti-
nental, and global scales have been fraught with uncertainty,
reflecting the inherent variability of this gas in surface wa-
ters combined with a notable limitation in data availability.
Sources and sinks of CH4 are often unevenly distributed over
space and time within drainage systems and, as a result, con-
centrations can vary over 1–3 orders of magnitude over short
time periods (subdaily to subweekly; e.g., Natchimuthu et
al., 2017; Smith and Böhlke, 2019) or relatively small spatial
extents (< 10 to < 100 m for small streams and large rivers;
e.g., Anthony et al., 2012; Crawford et al., 2017; Bretz et
al., 2021; Robison et al., 2021). Similarly, several drivers or
predictors of CH4 have been identified in the literature, and
these properties also have variable spatial and temporal dis-
tributions. Thus, efforts to estimate the total emissions from
world rivers have relied on relatively small data sets com-
posed of site-specific values that have been averaged over
time and have then used upscaling strategies based on Monte
Carlo techniques or extrapolations using predictor variables
that have little or no significant statistical relationships with
large-scale patterns of gas concentrations or fluxes (Hutchins
et al., 2020). Consequently, current global-scale estimates of
riverine emissions are poorly constrained and highly uncer-
tain (Saunois et al., 2020; Rosentreter et al., 2021).

The combination of rapidly increasing atmospheric con-
centrations of CH4, the significant role of fluvial systems in
emitting this gas, and, critically, current difficulties in ex-
plaining or predicting concentrations and fluxes with rea-
sonable certainty inspired the central goal of this paper: to
assemble a comprehensive database of CH4 concentrations

and fluxes for fluvial ecosystems that includes broadly rel-
evant concurrent physical and chemical data. This effort ex-
pands upon a prior compilation of CH4 and CO2 data (named
MethDB; Stanley et al., 2015) that was constructed to em-
phasize among-site differences and included 1496 concen-
tration records and 532 flux records from 1080 sites. In
this more comprehensive Global River Methane Database
(GRiMeDB), most data are date-specific (i.e., not averaged
over time), the breadth of site types is expanded to include
marginal fluvial habitats as well as disturbed and artificial
waterways, and CH4 data are supported by a broad suite
of site-specific physical and chemical attributes along with
concurrent measurements of CO2 and N2O where available.
Given the more finely resolved scale of the data and the
growth of the field in the past decade, GRiMeDB represents a
significant expansion beyond MethDB. Building GRiMeDB
with greater detail and breadth of data was done with the in-
tent of increasing opportunities to identify and predict spatial
and temporal variation in CH4, to test hypotheses related to
greenhouse gas dynamics, and to reduce uncertainty in future
upscaled estimates of gas emissions. In this paper, we (1) pro-
vide a detailed description of the components of the database
and its construction, (2) summarize some basic patterns of
gas concentrations and fluxes from GRiMeDB, and (3) high-
light critical data gaps and possible future research opportu-
nities for improving current understanding of CH4 dynamics
in streams and rivers.

2 Database components and assembly

GRiMeDB is composed of four tables that contain informa-
tion related to (1) data sources, (2) sites, (3) gas concen-
trations and supporting physicochemical data, and (4) gas
fluxes. All tables are linked by unique data source identi-
fiers, and all concentration and flux observations are also
linked to unique site numbers (Fig. 1). Data included in
GRiMeDB were gathered from scientific journals, govern-
ment reports, public data repositories, theses, dissertations,
and unpublished data sets provided by individual investiga-
tors. Sources were discovered via searches of bibliographic
databases and data repositories (Web of Science, Google
Scholar, ProQuest Dissertations and Theses Global, China
National Knowledge Infrastructure, Environmental Data Ini-
tiative, USGS ScienceBase, Natural Environment Research
Council (NERC) Environmental Information Data Centre,
Arctic Data Center, PANGAEA, Zenodo) using the key-
words methane and stream∗ or river∗ or ditch∗ or canal∗,
and searches were repeated numerous times prior to Decem-
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ber 2021 for completeness. We also used informal “word-of-
mouth” approaches to discover additional, often unpublished
data sets.

All potential data sources were first screened to determine
their appropriateness for inclusion in GRiMeDB. Several cri-
teria were established a priori to ensure the usability of the
data and that they were derived from inland running wa-
ter systems. Coastal sites with > 1 ppt salinity were consid-
ered estuarine and thus were excluded. Similarly, sites that
were situated in reservoirs or immediately upstream of small
dams, dam spillways, beaver ponds, or lake outlets or that
were subject to experimental manipulation were omitted. We
did not enter fluxes derived from chambers attached to col-
lars or inserted into sediments because we could not be cer-
tain that such measurements were capturing air–water fluxes.
Sources that reported minimum and maximum gas concen-
trations or fluxes only were not included. Finally, rates ex-
pressed on an annual basis were also excluded to avoid in-
troducing uncertainty associated with different upscaling as-
sumptions and methods.

2.1 Source table

The source table contains the list of all sources used to build
GRiMeDB, a unique identification number (Source_ID) for
each CH4 data source, and basic bibliographic informa-
tion for the data source (Title, Author, Source, publication
year Pub_year, and digital object identifiers Paper_DOI or
Data_DOI_primary or another persistent identifier; all col-
umn titles for this table are defined in Table A1). In several
cases, data sources were supplemented with additional sup-
porting information (e.g., associated physicochemical data)
from separate sources (described further in Sect. 2.3) or ad-
ditional or corrected information from authors (Fig. 2). In the
latter case, we contacted authors when questions arose re-
garding their data (e.g., clarification regarding units) and/or
to request supporting information or site- or date-specific
concentrations or fluxes if published values were aggregated.
Inclusion of additional unpublished data from authors is
noted in the source table along with a description of the ad-
dition or correction. If supporting data from separate pub-
lished sources were used, the DOI or another persistent iden-
tifier for the secondary source was listed in a separate column
(Data_DOI_supporting).

2.2 Site table

The site table reports basic information on attributes for all
sites where CH4 was sampled. Each site has a unique iden-
tification code (Site_ID) and name (usually taken directly
from the data source) and is linked to the source table via
the Source_ID (see Table A2 for detailed descriptions of all
columns in the site table). What comprises a “site” (i.e., the
spatial extent of data collection) varied among data sources
and includes (1) discrete sampling points, (2) geomorphi-

cally distinct study reaches, and/or (3) larger channel sec-
tions, drainage networks, or other geographic units. The sec-
ond case typically corresponded to reaches such as riffles or
pools in small streams. In the third case, multiple points were
often sampled within the “site” and data were then presented
as averages. The distance between sampling points that had
been averaged varied widely but were typically > 1 km and
in some cases exceeded 100 km. Because land use, channel
order, and slope can vary substantially across such distances,
we included fields to indicate whether a site was an aggre-
gation of widespread points (“aggregated”) and, if so, the
number of locations in the aggregation (if available). We also
limited the resolution of latitude and longitude for these sites
to less than three decimal places. At the opposite extreme,
gas sampling at points very close to one another (a “high-
density site” sensu Fig. 3) has the potential to create ambi-
guities for site delineation and data analysis. To avoid these
pitfalls, we combined points with slightly different latitude–
longitude values to represent a single site for three specific
cases. First, multiple samples collected at different points
and/or depths within a channel cross section were averaged
to form a single site. Second, some drainages or regions were
surveyed repeatedly (particularly the Congo River basin and
streams in Pennsylvania, USA), and it was not always clear
whether closely situated (ca. 10–50 m) points from different
surveys were intended to be a repeated sampling of the same
location or sampling of discrete sites. Some judgment was in-
volved in choosing between these two possibilities, and in a
subset of cases, points in close proximity to one another that
were sampled on separate dates were treated as a single site.
What constituted “close proximity” varied between small
streams and large rivers but was always < 100 m and typi-
cally < 50 m. Finally, three data sources had extremely high
sampling densities within discrete reaches (50 to > 20 000
samples per reach; Crawford et al., 2016; Call et al., 2018;
Loken et al., 2018). Because closely adjacent gas samples
can be spatially autocorrelated (Crawford et al., 2017) and
including all individual values from these studies would have
resulted in their overrepresentation in the database, individ-
ual point measurements were treated as within-reach repli-
cates.

For a site used in multiple studies, the Site_ID was as-
signed to the earliest paper and a comment was added to the
site entry noting its use in other data sources (Fig. 3). Lati-
tude and longitude coordinates were available for most sites;
however, in several cases, location information was acquired
from authors or estimated from study site figures using
Google Earth (© Google Earth, 2020, https://earth.google.
com/, last access: 10 April 2023). All sites were plotted on
Google Earth and inspected (Fig. 3) to identify and correct
data errors. If a site’s coordinates were immediately adjacent
to but not on a channel, the coordinates were adjusted to fall
on the channel, and this modification was noted in the Com-
ments field. If available, additional variables drawn from the
data sources were entered to characterize the site, including
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Figure 1. General structure of GRiMeDB and connections between its four tables. Information flow began with entering information about
each data source into the source table and assigning a unique Source_ID. Site information for each site within a data source was then entered
into the site table. The site was given a unique Site_ID and linked to its data source by the Source_ID. Source_IDs and Site_IDs were carried
over to all concentration and flux observations in their respective tables. Methane (CH4) observations include site–date combinations with
only concentration data (orange), only flux data (green), or both concentration and flux data (brown). Concentrations and available supporting
data (described in Sect. 2.3) were entered into the concentration table, and each observation was given a unique observation (obs) name. For
site–date combinations that had both concentration and flux observations, the Source_ID, Site_ID, observation name, and date information
were copied to the flux table for data entry. Site–date combinations with flux data only were entered into the flux table and given a unique
observation name. If a flux observation had associated supporting data, the Source_ID, Site_ID, observation name, and date information were
copied to the concentration table for supporting data entry. However, if there were no supporting data, matching rows were not added to the
concentration table.

Figure 2. Workflow for entering data into the source table of
GRiMeDB.

stream name, basin or region name, elevation, channel slope,
Strahler order, basin area, and codes denoting distinct chan-
nel or site types (described below). To supplement the avail-
able elevation data, we also estimated elevation for all sites
except aggregated sites or sites with poorly resolved coordi-
nates (fewer than three decimal places for both latitude and
longitude) after snapping coordinates to the nearest stream.
To determine the adjusted within-channel coordinates, we
first downloaded a digital elevation model (DEM) for each

site using the function get_elev_raster() from the package
“elevatr” (version 0.4.2; Hollister et al., 2021) for R statisti-
cal software (version 4.2, R Core Team 2021) at a resolution
of 6–9 m depending on the location on the globe. Second,
the DEM was processed for hydrological correctness using
the package “whitebox” (version 1.2.0, Wu, 2020) by filling
single-cell pits (fill_single_cell_pits() function) and breach-
ing depressions (breach_depressions() function) to obtain
a flow-direction model (d8_pointer() function). Finally, we
calculated a flow-accumulation model (d8_flow accumula-
tion() function). If the coordinates reported in the data source
had a flow accumulation of < 10 cells (indicating that they
were not located in a preferential flow path), new coordi-
nates were assigned to the cell with the highest flow accu-
mulation within a 50 m radius. If the initial site had a high
flow-accumulation value (> 10 cells), we assumed that the
site was in a stream channel. Typically, the snapping proce-
dure resulted in very minor changes to a site’s location (me-
dian < 3 m).

Many studies of CH4 dynamics have been undertaken to
determine whether and how specific phenomena such as the
presence of upstream reservoirs, point source discharges,
thermokarst features, or oil and gas extraction potentially af-
fect fluvial CH4 (and other constituents), usually with an ex-
pectation of a net enhancement of concentrations and fluxes.
Similarly, other studies have examined sites that may be
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Table 1. Codes denoting distinct site or channel attributes or the presence of conditions that potentially affect methane (CH4) concentrations
or fluxes. Assignment of codes to a site is based on information provided in the data source and/or physical appearance of a site, and a site
may have more than one code. Codes are reported in the Channel_type field of the site table.

Code Definition

CAN Canal or other artificial channel with hardened channel boundaries

CH Channelized; a channel that has long straight-line sections of uniform width and changes in channel direction that are typically
distinct angular features rather than curves

DC Channel in a river delta

DD Downstream (within 7 km) of a dam. Samples from spillways were excluded.

DIT Ditch, typically for agricultural drainage, without channel hardening

FP Site in a floodplain water body connected to the main channel that appears lentic or is described as a floodplain lake or
backwater. This category does not include side channels within floodplains or tributary channels transecting a floodplain.

GT Site below the toe or terminus of a glacier

IMP Presence of multiple and typically small impoundments in a site’s vicinity (e.g., various European rivers, Mississippi River)

PI Permafrost influenced; this refers specifically to sites at or immediately below thermokarst outflows and not to sites in
areas underlain with permafrost.

PS Immediately (< 1 km) downstream of a point source discharge

SP Spring channel; this does not include sites characterized as seeps (features with low flow volume adjacent to channels).

TH Site receiving inputs of thermogenic CH4, either naturally or as a result of mining, fracking, oil extraction,
and other related activities.

WS Wetland stream; site is in a wetland or immediately downstream from the outlet of a wetland

NORM Non-targeted site

expected to be enriched in CH4 but whose fluvial identity
might be considered marginal or ambiguous (e.g., springs,
floodplain backwaters, ditches, canals). Inclusion of such
“methane hunting” studies has the potential to bias the data
set toward higher values (Stanley et al., 2016). Nonetheless,
we included these studies in GRiMeDB because they pro-
vide an opportunity to investigate the consequences of hu-
man activity and gain a more comprehensive understanding
of fluvial CH4 dynamics. However, to accommodate future
analyses in which use of such data might be unsuitable, or
alternatively, when these sites might be the sole focus of a
study, we generated a set of channel codes to identify tar-
geted site types (Table 1). Information about four of the codes
was not consistently available among data sources, and thus
their assignment often involved judgment calls. The first case
involved determining whether the presence of an upstream
dam (code DD) was relevant for sites of varying distances
downstream. We used a distance of 7 km as a cutoff for this
category, although the zone of influence may be far shorter
or extend far beyond this distance depending on dam size
and operation (Kemenes et al., 2007), respectively. To pro-
vide some context for this code, a site’s distance from a dam
was acquired from the data source or estimated in Google
Earth using the Path tool and reported in the Comments field

whenever possible. The second case involved straight, sym-
metrical channels that are common in many agricultural and
urban areas. Frequently, it was not known whether this un-
natural geometry was due to channelization (straightening)
of a stream (code CH) or creation of a new channel (ditches
and canals; codes DIT and CAN). In the absence of specific
information, straight channels were classified as CH. Third,
channels draining or passing through wetlands (WS) were
often difficult to identify, particularly given seasonal varia-
tion in wetland appearance. Finally, floodplain channels pre-
sented a distinct challenge because of the complex nature
of these environments and their potential to be classified as
either riverine or wetland systems. We used the floodplain
(FP) code to indicate habitats that were described as or ap-
peared to be lentic (i.e., backwaters or connected floodplain
lakes) but that were persistently connected to the main river
channel and thus were part of the fluvial system. Given these
ambiguities, we recommend that these four codes be viewed
and used with care.

2.3 Concentration table and flux table

The concentration table and the flux table contain the pri-
mary gas data central to GRiMeDB, and the concentra-
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Figure 3. Workflow for entering and checking data for the
GRiMeDB site table. “Lat–long” is an abbreviation for latitude and
longitude.

tion table also hosts physical and chemical variables as-
sociated with concentration and/or flux observations (see
Tables A3 and A4 for the full list of columns and their
descriptions). The vast majority of concentration and flux
data were extracted from tables within data sources or data
repositories or were provided by authors. However, in some
cases, values were acquired from figures using graphical
digitizing software (WebPlotDigitizer, https://automeris.io/
WebPlotDigitizer/, last access: 10 April 2023, GetData, http:
//getdata-graph-digitizer.com/, last access: 10 April 2023, or
DigitizeIt, https://www.digitizeit.xyz/, last access: 10 April
2023). Plots with log scales or that were difficult to in-
terpret were not digitized. The accuracy and consistency
of this method were evaluated by comparing data gener-
ated by different individuals digitizing a set of common fig-
ures and by comparing digitized results to known results.
Agreement between both comparisons was strong (average
slope= 0.994, average R2

= 0.9996 for five comparisons be-
tween individuals digitizing the same data set and average
slope= 0.998, averageR2

= 0.997 for digitized versus actual
data for seven data sets; see Table S1 in the Supplement for

further details), demonstrating the reliability of this method
of data gathering.

Whenever possible, concentrations and fluxes were en-
tered as values for individual sites on individual days (i.e.,
not averaged across sites or days) (Fig. 4). Because 1 d repre-
sented the lowest level of temporal resolution in GRiMeDB,
repeated measurements made on a subdaily scale were aver-
aged and expressed as a daily value and were not considered
to be aggregated over time. If multiple replicates were col-
lected at different times on the same day (e.g., a study of
diurnal gas dynamics), this was noted in the Comments field,
and measurements prior to and after 12:00 local time (LT)
were entered as separate, consecutive days. Observations re-
solved to the daily scale can be identified using either a “No”
in the Aggregated_Time field or by having the same reported
starting (Date_start) and ending (Date_end) dates. If the spe-
cific start and end dates were not specified in the data source,
we entered the day as the 15th of the month and noted this
approximation in the Comments field. If available, we also
reported minimum and maximum values and standard de-
viations (SDs) for entries that were aggregated over space
and/or time. SDs but not minima and maxima were reported
for replicates from non-aggregated sampling when available,
except for reach-averaged entries with multiple within-reach
measurements and diel studies with multiple within-day val-
ues. In these cases, minima and maxima were also included.

Dealing with concentration data reported as a negative
value, zero, or below a detection limit (BDL) is problematic
because of inconsistencies in detection limits and reporting
practices, and any decision about handling these records in-
troduces some bias (Stow et al., 2018). For example, using
a non-numerical format such as BDL or < 0.01 is likely to
lead to the elimination of these entries during data analysis
and thus would introduce a bias against low-value observa-
tions. Alternatively, converting any such value to zero would
introduce a bias in the opposite direction. As a compromise
solution, concentrations recorded as zero in the original data
source were entered as zero in GRiMeDB, and other below-
detection values were entered as−999 999. In this latter case,
the original data entry format was noted in the Comments
column. For fluxes, negative and zero values were entered
without modification or comment.

The flux table reports diffusive, ebullitive, and total
CH4 fluxes along with CO2 and N2O diffusive fluxes.
Given the diverse strategies for measuring each of the three
CH4 flux pathways and potential biases associated with dif-
ferent approaches (Lorke et al., 2015; Chen et al., 2021),
values are accompanied by brief categorical descriptions of
methods used for each flux type as well as for CO2 fluxes and
the gas exchange coefficient k. For a small number of entries,
CH4 fluxes were not directly reported in the data source, but
information was available (dissolved gas concentration, tem-
perature, and a corresponding k value) that allowed us to cal-
culate these fluxes. We also entered BDL values for flux for
one data source in which fluxes had been calculated from
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Figure 4. Workflow for entering and checking data for the
GRiMeDB concentration table and flux table.

concentration, but fluxes associated with BDL concentrations
had been omitted from the results. Finally, a small number
of observations listed diffusive and ebullitive but not total
fluxes, so diffusion and ebullition were summed and entered
as total flux. In all cases, the added calculations are noted in
the Comments field.

The GRiMeDB concentration table includes physico-
chemical measurements in support of concentration and flux
observations (Figs. 1 and 4, Table A3). Availability of this
supplemental information varied widely among data sources
and was limited to data collected concurrently with gas sam-
ples. For data sources with gas fluxes and physicochemical
data but not gas concentrations, we created rows in the con-
centration table to capture the supporting data. These records
are identified by a “Yes” in the FluxYesNo column, Sample-
Count= 0, and NA in the CH4mean column. Finally, water
temperature was estimated for entries if it was needed to con-
vert gas units and entered in the WaterTemp_degC_estimated
column. Estimates were typically based on values from ad-
jacent sites or the same site at a similar time (e.g., averages
of temperature from the prior and subsequent dates or from

the same month in an adjacent year). Error introduced from
these estimates should be small, e.g., ca.< 10 % of the actual
value if the estimated temperature is off by 3 ◦C.

Following completion of all data entry, gas and physico-
chemical variables were converted to “new” standard units
(Tables A3 and A4). The identities of the new and original
units are included in both the concentration table and flux
table for clarity. Elevation was used to estimate atmospheric
pressure if needed for unit conversions. We used Henry’s law,
water temperature, and atmospheric pressure to convert re-
ported dissolved gas values (ppm, ppb, µatm, and percent-
age saturation; ∼ 13 % of observations). For observations
that reported gas values as percentage saturation (< 1 % of
all observations), we also used the global average CH4, CO2,
and the N2O atmospheric concentrations from the NOAA
Global Monitoring Laboratory (https://gml.noaa.gov/ccgg/,
last access: 12 June 2023) for the year 2013, which corre-
sponds to the median observation year in the database.

2.4 Assessment of representativeness

We assessed the representativeness of sites in GRiMeDB rel-
ative to the global distribution of biological, physical, and
climatic properties following van den Hoogen et al. (2021).
Briefly, we first assigned each site to a corresponding river
reach in HydroSHEDS (Linke et al., 2019), which is a global
hydrological network database that contains spatial data for
a wide array of hydrological, physiographical, climatic, land
cover, geological, edaphic, and anthropogenic variables for
each river reach. HydroSHEDS thus provides a multidimen-
sional characterization of global rivers that is well suited for
assessing how representative GRiMeDB sites are in terms
of key biophysical and anthropogenic features. After exclud-
ing non-numerical variables (e.g., biome) and variables with
monthly values (e.g., monthly precipitation), we performed
a principal component analysis (PCA) on all HydroSHEDS
subcatchments using all possible combinations of the 54 re-
maining HydroSHEDS variables. From this, we selected all
principal components (PCs) needed to explain 90 % of the
variance in the PCA, which corresponded to 28 PCs and
378 possible bivariate combinations of these PCs. For each
unique PC pair, we computed the convex hull of all sampled
sites to determine the distribution of these sites relative to
all global river subcatchments for the specified PCs (Fig. 5).
Each HydroSHEDS subcatchment was then assigned a value
of 1 or 0 if it fell within or outside the convex hull, respec-
tively. This process was repeated for each of the 378 possi-
ble PC combinations. To collapse this information, we cal-
culated the fraction of cases where a given subcatchment fell
within the convex hull for all PC combinations to obtain a
dimensionless summary value ranging from 0 to 1. A sub-
catchment with a value of 1 for this index of “representative-
ness” means that it fell within the convex hull for 100 % of
the PC combinations, indicating that its overall characteris-
tics are well captured in the database. It is important to note
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Figure 5. Example of a representative principal component analysis
(PCA) hexagon plot based on variability in HydroSHEDS river sub-
catchment attributes. Hexagon color indicates the number of sub-
catchments per hexagon. Subcatchments hosting GRiMeDB sites
are plotted in red and contained within the convex hull delineated by
red lines. Subcatchments that fall within this polygon are assigned
a value of 1, and those outside the perimeter are given a value of 0
to indicate the representativeness of sampled reaches for this pair of
PC axes. See Sect. 2.4 for further explanation.

that this analysis only captures average catchment properties
of relatively large river reaches (average subcatchment area:
130 km2). Given the strong local controls on CH4 concentra-
tions and fluxes, interpretations from this analysis should be
made with some caution.

2.5 Data checking and data analysis

Several approaches were taken to check the accuracy of data
in GRiMeDB. This included evaluation of the reliability of
digitized data (Sect. 2.3) along with several additional in-
spection steps. Entries were error checked by a coauthor
other than the individual who entered the data, including
confirmation of site location information, validation of units
for all variables, and spot or complete checking of entered
gas data (independent units and data check in Fig. 4), de-
pending on dataset length and whether data were manually
entered or imported directly from a file. Once values had
been converted to standard units, all variables were plotted
to identify outliers (outlier check; Fig. 4), and extreme val-
ues were checked against the original data source. In cases in
which errors were present in the original data, if possible, au-
thors were contacted for clarification. In the few rare cases in
which issues could not be resolved, the data were excluded.
These and all other calculations and analyses were performed
in R (version 4.2, R Core Team 2021) using the “dplyr” (ver-
sion 1.0.7, Wickham et al., 2021) and “data.table” (Dowle
and Srinivasan, 2021) packages for data analysis, the “sf”
package (version, 1.0, Pebesma, 2018) for spatial data pro-

cessing, and the “ggplot2” (version 3.3.5, Wickham, 2016)
and “patchwork” (Pedersen, 2022) packages for visualiza-
tion.

3 Results

3.1 Overview of GRiMeDB data

GRiMeDB includes 24 024 records of CH4 concentration
and 8205 CH4 flux values from 5037 unique sites along with
17 655 and 8409 concurrent measurements of concentration
and 4444 and 1521 of flux for CO2 and N2O, respectively
(Table S2). Although the first concentration and flux val-
ues in GRiMeDB were published in 1973 (Lamontagne et
al., 1973) and 1987 (de Angelis and Lilley, 1987), respec-
tively, over 70 % of all CH4 concentrations and 80 % of flux
observations became available after 2015 (the year of publi-
cation of MethDB; Fig. 6, Fig. S1 in the Supplement). This
growth in data availability has occurred predominantly along
the spatial axis, as almost two-thirds of all the sites were
added in or after 2015 and over half of all the sites in the
database have a single concentration and/or flux observation.
Conversely, long time series are rare, with only 8 % of the
5037 sites having > 10 concentration observations and 4 %
having > 10 diffusive flux records (Figs. 6 and S1). The
longest concentration record includes 590 observations dis-
tributed over 28 years (Toolik Inlet, Site_ID 9025; Kling,
2019a; Kling, 2022), while the longest flux record has 82
observations of diffusive flux over 4 years (Site_ID 3644;
Aho et al., 2021). Further, among the 15 sites with time se-
ries > 5 years, 12 are situated in either the Toolik Lake re-
gion of Alaska, USA (Kling, 2019a, b, 2022), or within the
Krycklan watershed in Sweden (Wallin et al., 2018).

3.2 Spatial and temporal distribution of data

Spatially, 40 % of all sites and 52 % of all CH4 concentra-
tion observations are in North America, followed by Europe
(25 % of all sites and 26 % of all CH4 concentration val-
ues; Table S2). Conversely, there are vast geographic areas
with moderate to high channel densities with few or no ob-
servations, such as central Canada, central America, South
America beyond the Amazon mainstem area, most of Rus-
sia, central and western Asia, New Zealand, and the Malay
Archipelago (Fig. 7a). Geographic limitations in availability
of flux data, particularly of ebullition, are pronounced given
a smaller number of observations and domination of diffu-
sion measurements. Observations of ebullition are absent or
limited to one to two studies for Africa, Oceania, central
America, South America, and Russia (Fig. S2). Despite these
gaps, there is surprisingly good representation in terms of the
range of hydrological, physiographical, climatic, land cover,
geological, edaphic, and anthropogenic conditions that exist
globally (Fig. 7b). Areas that are poorly represented are char-
acterized by very low channel density associated with arid or
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Figure 6. Distribution of the number of methane (CH4) observa-
tions per site. Brown bars indicate sites with both concentration
(conc) and flux observations. Orange and green bars show sites with
only concentration and only flux observations, respectively. Inset:
cumulative observations of CH4 concentration and flux data based
on the year of publication of the data source. The vertical line (2015)
indicates the year of MethDB (Stanley et al., 2015) publication. See
Fig. S1 for data accumulation and length resolved by CH4 flux type.

polar climates as well as high-altitude regions (Greenland,
northern Canada, northern Africa, central Australia, Middle
Eastern nations, western China, Mongolia, Chile, southern
Argentina). Evaluating the distribution or representativeness
of sites in terms of system size is difficult given the limited
availability of relevant information such as Strahler stream
order or basin area, which were reported for only 26 % and
28 %, respectively, of all sites (Table S2). For sites with these
data, counts of observations decline with increasing stream
order (Fig. 8) in a log-linear fashion (R2

= 0.92 for concen-
tration and 0.90 for flux; P < 0.0005 for both regressions
after excluding zero-order counts), consistent with Horton’s
law of stream numbers (Horton, 1945). Thus, other than the
extreme underrepresentation of zero-order channels, this pre-
dictable decline suggests reasonable representation by order.
Nonetheless, this result should be interpreted with caution
given the scarcity of relevant data. The distribution of counts
by basin size follows a similar pattern of underrepresentation
of sites draining very small basins and also indicates a poten-
tial overrepresentation of some large basin sizes (basins of
ca. 10 000 km2; Fig. 8).

The distribution of observations among months illustrates
seasonal sampling regimes dominated by summer sampling
at northern (> 40◦) and southern (<−20◦) latitudes con-
trasted by even or erratic sampling at mid latitudes (Fig. 9).

Consistent with the lower representation of Southern Hemi-
sphere rivers and streams, several months lack concentra-
tion and/or flux measurements south of −10◦ latitude, par-
ticularly during winter months. Beyond these gaps, the only
months missing data in the Northern Hemisphere are fluxes
in January and February at sites north of 60◦ latitude and
several missing months north of 70◦, presumably due to per-
vasive ice and snow cover.

3.3 CH4 flux methodology

Records of CH4 flux are dominated by diffusive flux mea-
surements, which represent 85 % of all flux values in the
database, with ebullition (8 %) and total flux (7 %) account-
ing for the remaining entries (Fig. 10). Not surprisingly, a
variety of methods have been used to quantify each flux
type, although diffusive flux methods are dominated by cal-
culations based on dissolved gas concentration and a gas
exchange coefficient (k) (74 % of all observations), while
chamber-based methods are most common for quantifying
total flux (93 % of all observations). Similarly, k is most
commonly estimated via physical models (n= 3188). Sev-
eral models have been employed for this calculation, as indi-
cated by > 25 different references for k model sources listed
in GRiMeDB.

3.4 Overview of concentration and flux data

Concentrations and fluxes of all three gases are characterized
by log-normal distributions that vary over several orders of
magnitude (Fig. 11) and large coefficients of variation (CVs)
for CH4 and especially N2O (Table 2). The vast majority
(∼ 95 %) of CH4 and CO2 concentrations appear to be su-
persaturated, in contrast to N2O concentrations, with 67 %
of observations above this threshold. Reports of concentra-
tions below detection are scarce for all gases, including N2O
(Table 2).

The fraction of observations with zero, below-detection, or
negative fluxes (5 %, 5 %, and 19 % for diffusive CH4, CO2,
and N2O fluxes, respectively) were similar to the frequency
of subsaturated concentrations. At the other extreme, the
highest CH4 concentrations (> 200 µmolL−1) paradoxically
occur in either anthropogenically influenced large rivers of
the warm tropics (e.g., Amazon basin: Kemenes et al., 2007;
Ganges, Mekong: Begum et al., 2021) or in small boreal
headwater streams (e.g., Campeau et al., 2018; Wallin et al.,
2018).

There were no meaningful univariate relationships be-
tween variables that may be used for upscaling (latitude,
basin area, and stream order) and mean site concentration or
flux (Fig. 12, Table S3). Linear regressions indicated that lat-
itude and flux accounted for a very small percent of the vari-
ation in both concentration (R2

= 0.006 and 0.002, respec-
tively) and flux (R2

= 0.036 and 0.055) among sites. Simi-
larly, concentration and flux among stream orders suggested
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Figure 7. (a) Global distribution of methane (CH4) observations in the database, color coded for sites with concentration data only, flux
data only, or both concentration and flux data. Top and right panels show, respectively, longitudinal and latitudinal patterns of the density
of CH4 observations (grey bars) and the density of river area (blue bars). These bars have been aggregated at a 1 latitudinal or longitudinal
degree and rescaled from 0 to 1 for this visualization. River area was obtained from BasinAtlas (Linke et al., 2019). (b) Representativeness
(dimensionless) of the database was based on a wide array of biological, physical, hydrological, and land cover variables (see Sect. 2.4 for
details). Values close to 1 indicate a high representativeness, with only 4 % of the global river surface below a threshold of 0.9. See Fig. S2
for the data distribution resolved by CH4 flux type.

possible differences for concentration (Kruskal–Wallis χ2
=

47.165, df= 8, P < 0.001) and flux (χ2
= 14.777, df= 8,

P = 0.070). However, results of corrected pairwise compar-
isons (using the method of Benjamini and Hochberg, 1995)
among orders were ambiguous, suggesting no differences
among orders for flux. For concentration, these compar-
isons indicated possible differences in distributions only be-
tween seventh-order channels and all other orders and be-

tween sixth- vs. first-order sites for concentration. Collec-
tively, these results indicate a lack of a consistent change in
CH4 magnitude across channel orders for flux.

As with relationships between CH4 and physical site at-
tributes, relationships between CH4 concentration or flux
and water chemistry parameters are also characterized by
substantial variability. Representative examples indicate in-
creasing, decreasing, and ambiguous relationships between
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Table 2. Summary statistics for methane (CH4), carbon dioxide (CO2), and nitrous oxide (N2O) concentrations and fluxes. The %BDL
(below detection level) column reports the percent of all observations that are below detection limits (including values reported as zero) for
concentration. See Table S2 for counts and Table S3 for statistical summaries for all other variables. Standard deviation (SD) and coefficient
of variation (CV).

Metric Gas (and type) Mean Median Max Min SD CV %BDL

Concentration (µmolL−1)

CH4 1.49 0.20 456 0 10.69 718 3.2
CO2 135 81.7 5479 0 174.8 130 0.05
N2O 0.058 0.017 32.9 0 0.602 1042 0.59

Flux (mmolm−2 d−1)

CH4-diffusive 7.31 0.44 4057 −136 86.4 1182
CH4-ebullitive 5.42 0.28 366 0 24.02 443
CH4-total 8.71 0.63 366 −0.05 31.90 366
CO2 319 128 23 749 −1625 770 242
N2O 0.082 0.008 31.3 −11.3 0.981 1199

Figure 8. Number of sites with concentration (a, b) or diffusive
flux (c, d) observations as a function of stream order (a, c) and basin
size (b, d) for the subset of sites with channel order and/or basin size
information.

CH4 concentrations and fluxes and selected chemical con-
stituents (Fig. 13). One source of the variation in the relation-
ship shown in Fig. 13 may be attributed to differences among
sites, as is illustrated for the case of CH4 concentration versus
discharge. The cluster of points in this plot (Fig. 14a) does
not suggest an obvious linear relationship between concen-
tration and discharge; however, resolving the data to the site
level for sites with multiple observations reveals several sig-
nificant trends (Fig. 14b). Among 57 sites with > 30 obser-

vations, 42 had significant relationships (P < 0.05) between
concentration and discharge, and 30 of these 42 trends were
negative.

Median site concentrations for most categories of targeted
channels (Fig. 15) differed from “normal” (NORM) sites
(Kruskal–Wallis test χ2

= 460.1, df= 12, P < 0.0001 af-
ter dropping channel types with < 10 observations to im-
prove test reliability). Pairwise Wilcoxon comparisons ad-
justed to account for multiple comparisons (Benjamini and
Hochberg, 1995) indicated that springs (SP) and delta chan-
nels (DC) were similar to NORM sites (P > 0.4), and
impoundment-influence (IMP) sites were marginally differ-
ent (P = 0.053). Concentrations in channels at glacial ter-
mini (GT) and FP backwaters were lower (P < 0.0001),
whereas all other site types had higher site-average CH4 con-
centrations than NORM sites. Fluxes also varied among
channel type (Kruskal–Wallis test χ2

= 126.4, df= 8, P <
0.0001 after dropping channel types with< 10 observations),
and similar to concentration, fluxes in DC and channelized
sites (CH) were similar to NORM channels, while all other
channel types considered had higher median fluxes.

4 Discussion

The rapid increase in availability of aquatic CH4 (as well as
CO2 and N2O) data over the past 5–10 years has been re-
markable and creates new opportunities for examining pat-
terns and drivers of these gases in lotic ecosystems across
broad spatial scales. Similarly, constructing GRiMeDB pro-
vided us with an unprecedented opportunity to identify ten-
dencies in when, where, and how CH4 has been sampled in
streams and rivers. Examination of such data collection ten-
dencies can reveal important biases and gaps within a field
(Stanley et al., 2019; Gomez-Gener et al., 2021b) and thus
points to future research needs and opportunities. Below, we
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Figure 9. Number of observations of concentration (left) and flux (right) by month for 10◦ latitude bands.

discuss the distribution of sampling efforts, methodological
issues, and preliminary data analyses and consider questions
that GRiMeDB can help to answer.

4.1 When and where: sampling effort considerations

The growth of greenhouse gas (GHG) studies in flowing wa-
ter systems in the past decade includes a geographic expan-
sion beyond the large body of historic and current work in
temperate regions of North America and Europe. In particu-

lar, recent research in Africa, Australia, and especially South-
east Asia has greatly improved the global coverage of avail-
able data. However, studies in arid drainages remain scarce
– even beyond what would be expected given their small
river surface area. A possible explanation for the limited
study of CH4 in these systems may be the pervasive focus
on the contribution of streams and rivers to the global at-
mospheric CH4 pool and the corresponding assumption that
aridland systems play a minor role in this context. However,
we suggest that limited study in arid and semi-arid drainages
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Figure 10. Counts of methane (CH4) flux observations by type (left) by major methodological categories for each pathway (middle) and
for the method type used to estimate the gas exchange coefficient k (right). For clarity, the chamber category includes all chamber types and
patterns of gas increase in the chamber unless specified; more resolved methodological data are presented in the GRiMeDB flux table. See
Table A4 for further details about category definitions.

represents a missed opportunity to understand metabolism
and carbon cycling in a set of streams and rivers that drain
nearly half of the global land surface, is increasingly stressed
by growing human water demands (e.g., Sabo et al., 2010;
Lian et al., 2021; Stringer et al., 2021), and supports ecosys-
tem process rates that are amplified by warm temperatures
and highly variable flow regimes (Fisher et al., 1982; Ran et
al., 2021). Beyond arid and semi-arid basins, further research
emphasis in tropical and high-latitude regions would also be
beneficial even given recent improvements in data availabil-
ity and geographic representation of both areas. Existing data
for tropical forests and grasslands are dominated by stud-
ies of African rivers (especially the Congo drainage) and the
Amazon River system. In fact, observations from tropical ar-
eas of the Indomalayan and northern Australasian region rep-
resent < 3 % of all sites, and central America is represented
by a single study. Tropical drainages are frequently charac-
terized by high CH4 concentrations and fluxes along with
rapid changes in land use and river regulation that are affect-
ing C cycling and GHG dynamics (Park et al., 2018; Flecker
et al., 2022). However, understanding or detecting the mag-
nitude and consequences of these anthropogenic changes in
fluvial CH4 is constrained by these current sampling limita-
tions. Finally, while high-latitude regions (north of the Arctic
Circle) are well represented in GriMeDB with > 3600 con-
centration observations, more than 80 % of these values are
derived from studies in the vicinity of the Toolik Field Sta-
tion in Alaska, USA, and thus do not capture the full bio-
physical diversity of Arctic biomes (Metcalfe et al., 2018).
Given that climate change at high latitudes is progressing
faster than elsewhere on the planet (IPCC, 2021) and that the

global north stores massive quantities of C in soils (Hugelius
et al., 2014), more extensive coverage of CH4 across Arctic
drainage systems is warranted.

Although the spatial coverage of CH4 data has improved
markedly over the past decade, expansion across temporal
dimensions has lagged. The predominant mode of sample
collection has been and continues to be through surveys that
yield one or a few observations from individual sites (e.g.,
Bouillon et al., 2012; Kuhn et al., 2017; Jin et al., 2018; Ho
et al., 2022), and studies characterizing seasonal dynamics
or responses to a site-specific environmental change are lim-
ited. Indeed, long-term (> 5-year) CH4 data sets in general
are extremely rare (Leng et al., 2021); no such data are cur-
rently available for fluxes, and most long-term concentration
records are derived from just a few clustered locations. De-
termining the consequences of changes in land use or habi-
tat attributes for fluvial CH4 dynamics has instead relied on
space-for-time substitutions (e.g., Smith et al., 2017; Gatti et
al., 2018; Woda et al., 2020) rather than on direct observa-
tions of change over time. Although this strategy has been
successful in revealing variation in GHG dynamics among
different site types, current knowledge about how gases vary
over time and respond to perturbations is poorly developed
because of these data limitations. This deficit may be par-
ticularly consequential in the case of climate change, as the
broad scope of this phenomenon will inevitably limit the ef-
fectiveness of spatial sampling approaches.

The discussion above regarding the “when” and “where”
of sampling emphasizes large spatial and relatively long tem-
poral scales, consistent with the extent of GRiMeDB. How-
ever, another current deficit in our understanding relates to
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Figure 11. Histograms of gas concentrations and fluxes in GRiMeDB, excluding values reported as below detection or zero. Counts of these
values are reported in Table S2. Dashed vertical lines in the concentration histograms indicate the 100 % saturation concentration based on
the median estimated elevation (250 m) and water temperature (12.5) for all sites and atmospheric concentrations of 1.83, 400, and 0.325 ppm
for methane (CH4), carbon dioxide (CO2), and nitrous oxide (N2O), respectively.

the degree of heterogeneity of this gas at fine spatial and tem-
poral scales and thus whether current sampling strategies are
missing meaningful variation. Recent studies of CO2 provide
a cautionary tale in this context, as failure to account for di-
urnal variation in this gas results in a consistent underestima-
tion of fluvial emissions that is quantifiable at regional (Atter-
meyer et al., 2021) and global (Gómez-Gener et al., 2021b)
scales. Similar questions may arise for spatial variation: that
is, what is the minimum grain size or appropriate spatial scale
for sampling CH4 in running waters (Crawford et al., 2017;
Lupon et al., 2019)? The potential to examine very short-
term variation is not possible using GRiMeDB data because
of our decision to average within-day measurements given

the current small number (ca. 20) of these temporally de-
tailed studies. Assessment of fine-scale spatial variation is
also limited because of limited fine-scale sampling in gen-
eral and by decisions made both by investigators and during
database construction. For example, geomorphologically dis-
tinct units (e.g., an individual riffle or pool) are often used as
a basic sampling unit, and results are presented as averages of
replicates collected at different points within the study reach
(e.g., Hlaváčová et al., 2006; Smith et al., 2017). In general,
information about replication was frequently omitted, or if
reported, information about variability among replicates was
frequently absent. In addition to this limitation, our decision
to combine replicates taken at different points in a channel
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Figure 12. Site-average methane (CH4) concentrations (a–c) and flux (d–f) as a function of latitude, basin area, and Strahler stream order.
For boxplots, the upper and lower edges of each box are the 25th and 75th percentiles, and whiskers are drawn up to 1.5 times the interquartile
range.

Figure 13. Methane (CH4) concentration (a–d) and diffusive flux (e–h) versus concurrent measures of dissolved oxygen (O2; n= 8529 and
2316 for concentration and flux, respectively), dissolved organic carbon (DOC; n= 14 441 and 1901), total nitrogen (total N; n= 8378 and
467), and total phosphorus (total P; n= 6904 and 240). Three outliers were excluded from the DOC plots, and because of the log scale for
CH4, negative and zero values have been omitted.
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Figure 14. Methane (CH4) concentration versus concurrent measures of discharge for (a) all sites with discharge data and (b) sites with> 30
observations (57 sites) with trend lines denoting within-site relationships between concentration and discharge. Each site is represented by a
separate color. Because of the log scale for CH4, negative and zero values are omitted.

Figure 15. Boxplots of site-averaged methane (CH4) concentration (a) and diffusive flux (b) for channel-type categories. Channel categories
are defined in Table 1 but briefly are as follows: NORM – non-targeted sites; CAN – canals; CH – channelized streams; DC – river delta
channels; DD – downstream of dams; DIT – ditches; FP – floodplain backwaters; GT – glacial outflows; IMP – impounded reaches; PI –
permafrost (thermokarst) influenced; PS – point source influenced; SP – springs; TH – thermogenic CH4 inputs; WS – wetland streams. The
number of sites per channel type are listed on the right-hand side of each plot. The vertical black line denotes the median concentration and
flux for NORM sites. Because a log scale is used in these plots, zeros and negative values were excluded. The actual median for non-targeted
sites represented by the vertical line is therefore slightly different than the median displayed in the corresponding boxplot because of this
exclusion. The upper and lower edges of each box are the 25th and 75th percentiles, whiskers are drawn up to 1.5 times the interquartile
range, and points are plotted if beyond the whiskers.

Earth Syst. Sci. Data, 15, 2879–2926, 2023 https://doi.org/10.5194/essd-15-2879-2023



E. H. Stanley et al.: GRiMeDB: the Global River Methane Database of concentrations and fluxes 2895

cross section and within individual channel units that had
hundreds to thousands of data points to avoid ambiguities for
site delineation and data analysis also constrains the oppor-
tunity to examine variation at fine spatial scales. However,
we anticipate that this situation will change over the next few
years as in situ sensors or other devices capable of collect-
ing high-frequency/high-density gas measurements become
more widely available. Recent papers signal this new frontier
and have highlighted the presence (e.g., Lamarche-Gagnon
et al., 2019; Smith and Böhlke, 2019; Chen et al., 2021;
Taillardat et al., 2022) and absence (e.g., Castro-Morales et
al., 2022; Chen et al., 2021; Rovelli et al., 2022; Zhang et
al., 2021) of predictable diel variation in CH4 concentrations
and fluxes and varying degrees of within-reach spatial vari-
ability (Crawford et al., 2016; 2017; Call et al., 2018; Buss-
mann et al., 2022).

4.2 How: methodological considerations

Measuring dissolved GHG concentrations or fluxes involves
multiple steps and calculations. Field and laboratory proto-
cols vary widely in the literature, and methodological variety
is particularly conspicuous for flux determination. Ironically,
even though many studies of lotic CH4 dynamics are framed
in terms of understanding the contribution of these ecosys-
tems to the rapidly increasing atmospheric CH4 pool, flux
measurements lag far behind those of concentrations, and the
vast majority (ca. 85 %) of observations are of the diffusive
pathway alone. Further, the most common method for esti-
mating this pathway involves combining dissolved CH4 con-
centration with k, the gas exchange coefficient. Quantify-
ing k is notoriously challenging (Hall and Ulseth, 2020),
and the large number of approaches for calculating k used
among data providers is concerning and undoubtedly intro-
duces substantial uncertainty. A more in-depth consideration
of the consequences of different models or strategies for ar-
riving at a k value was beyond the scope of this paper, but
inclusion of methodological information should be useful for
such an analysis in the future.

Ebullition measurements are notably scarce despite the po-
tential of this pathway to account for a large fraction of total
emissions in some streams (e.g., from 30 % to 98 % of total
CH4 emissions, as shown in Baulch et al., 2011; Crawford
et al., 2014; Chen et al., 2021). The conventional approach
to quantifying ebullition involves a combination of capturing
bubbles just below the water surface to determine the area
and time-specific rate of bubble volume reaching the surface
and measuring CH4 content of recently erupted bubbles. The
episodic nature and extreme spatial heterogeneity of ebul-
lition (Crawford et al., 2014; Spawn et al., 2015; Chen et
al., 2021; Robison et al., 2021) require multiple bubble trap
replicates that need to be deployed over several days to gener-
ate reliable measurements. Given the logistic challenges and
labor-intensive work involved, indirect approaches are be-
coming more common. These approaches typically use the

difference between a chamber-based measurement of flux,
which is assumed to represent total flux (diffusion+ ebul-
lition) and diffusion calculated from dissolved CH4 and k
(i.e., the “chamber – [concentration+ k]” method in Fig. 10)
to estimate ebullition (e.g., Campeau et al., 2014; Zhang et
al., 2020; Ran et al., 2021). We suggest that this approach
should be used cautiously, however. This strategy is arguably
inappropriate for situations in which the gas content within
a chamber increases in a linear fashion during the measure-
ment period, consistent with the occurrence of diffusive flux
alone. Second, it is not clear whether it is reasonable to as-
sume that chamber-based measurements capture both diffu-
sion and ebullition, even if a chamber-based flux value is
greater than that calculated from a dissolved CH4 concen-
tration. Relatively short chamber deployments are likely to
miss or incompletely capture bubble releases, while long-
term deployments are vulnerable to sampling artifacts asso-
ciated with altered concentration gradients within and/or tur-
bulence around the chamber (Sawakuchi et al., 2014; Lorke
et al., 2015). Given these challenges, it is not altogether sur-
prising that comparisons between direct and indirect mea-
surements of ebullition can yield substantially different re-
sults (e.g., Yang et al., 2012; Bednařík et al., 2017; Chen et
al., 2021).

The final and most profound knowledge gap in the collec-
tion of flux data is the absence of measurements of plant-
mediated emissions. Plant-mediated fluxes can account for
a substantial fraction of total emissions from wetlands and
shallow lake habitats (Bodmer et al., 2021), but the contri-
bution of this pathway is unknown in fluvial systems. In-
deed, we did not include plant-mediated fluxes in GRiMeDB
because we encountered only two papers that had explic-
itly quantified this pathway in streams (Sanders et al., 2007;
Wilcock and Sorrell, 2008). Although aquatic macrophytes
are sparse or absent from many streams and rivers, they
can be abundant in low-gradient, low-disturbance environ-
ments (Riis and Biggs, 2003; Gurnell et al., 2010), where
diffusive fluxes would be constrained by low gas exchange
rates. Sediment trapping and venting by macrophytes en-
hance both methanogenesis and methane emission in these
systems (Sanders et al., 2007), but the significance of such
processes and the contribution of plant-mediated fluxes at
larger spatial scales remain to be determined for fluvial sys-
tems (Bodmer et al., 2021).

4.3 Concentration and flux patterns

Not surprisingly, the massive increase in data availability has
led to differences in averages and measures of variability
for CH4 concentrations and fluxes compared to our previ-
ous efforts. Median values for all three CH4 flux pathways
in GRiMeDB are 1.2–2.2 times lower than those reported by
Stanley et al. (2016) and those from Rosentreter et al. (2021).
Conversely, measures of variability (SD, CV) in GRiMeDB
are almost 3-fold greater than previous estimates, undoubt-
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edly due to the far larger number of observations, the asso-
ciated expansion of geographic scope and channel types, and
the inclusion of temporally resolved data. It is not yet clear
whether the sample sizes are sufficient to capture the true
global-scale variability of fluvial concentrations and fluxes,
and future database updates could be used to examine this
possibility.

Despite the slight lowering of median values compared to
previous estimates, supersaturated concentrations and posi-
tive fluxes are the norm for CH4 as well as for CO2 and N2O.
However, it is likely that CH4 concentrations and flux BDLs
are underreported, as is common with environmental data in
general (Stow et al., 2018), so these latest estimates may still
be slight overestimations of true population medians. Even
given the modest number of zero or undetectable CH4 con-
centrations in GriMeDB (< 2.5 %), decisions about handling
BDLs can have a small but detectable effect on the estimation
of global averages. For example, if these observations are ex-
cluded, median CH4 concentrations for all other observations
increase from 1.49 to 1.51 µmolL−1. If we keep all of these
observations and assign them a value of zero (an unlikely sce-
nario but used here to provide a lower limit for this example),
then the overall median declines to 1.46 µmolL−1. Although
these differences are relatively small, it would likely be con-
sequential for upscaling estimates. At a minimum, we urge
GRiMeDB users to be aware of how these values are handled
and encourage future researchers to determine and report de-
tection limits and include samples that fall below these limits
in their results.

A goal of assembling GRiMeDB was to centralize CH4
data to foster future research efforts. To this end, we in-
cluded information about habitat conditions that allows the
exploration of relationships between CH4 and potential ex-
planatory variables and covariates. To demonstrate this op-
portunity, we provided a limited number of examples of CH4
versus variables that have been identified as potential pre-
dictors or drivers of CH4 production, concentration, or flux
(Figs. 12–14), and these plots suggest both the presence and
absence of relationships. For example, increasing CH4 con-
centrations have been associated with low or decreasing dis-
solved oxygen and/or increasing organic carbon (e.g., Borges
et al., 2018; Jin et al., 2018; Begum et al., 2021), and these
relationships are recognizable for concentration but ambigu-
ous for flux across the entirety of the GRiMeDB data set.
Similarly, increased CH4 production and emissions tend to
be elevated in nutrient-rich (eutrophic) lakes (DelSontro et
al., 2018) and polluted rivers (Rajkumar et al., 2008; Ho
et al., 2022), consistent with positive relationships between
CH4 flux and total nitrogen (TN) and total phosphorus (TP).
However, nutrient enrichment in rivers often occurs concur-
rently with fine sediment and organic matter input; thus, it
remains to be determined whether positive relationships in
Fig. 13g and h are correlative or reflect a causal mechanism.
Finally, increases in discharge have been linked to declines in
gas concentration, likely due to source limitation (i.e., dilu-

tion) of terrestrial supply (Aho et al., 2021; Gómez-Gener et
al., 2021a) and/or greater water turbulence, which increases
gas exchange and thus reduces supersaturated CH4 stocks
(Billett and Harvey, 2013; Kokic et al., 2018). This relation-
ship is not obvious when all data were considered en masse
but became more apparent when examining within-site dy-
namics. In contrast to these three confirmatory examples, al-
though latitude and channel size have also been identified as
determinants of CH4 concentrations or used to extrapolate
site-specific gas measurements to larger (even global) scales
(e.g., Bastviken et al., 2011; Li et al., 2021; Rosentreter et
al., 2021), evidence for such relationships is absent from our
analysis. Further, even for the former examples that indicated
relationships between CH4 concentration and dissolved oxy-
gen (DO), dissolved organic carbon (DOC), or discharge,
there is substantial variability present in these relationships,
the strength of these predictors is likely to vary across scales,
and they explain little of the variability for diffusive fluxes.
In short, substantial opportunities exist to identify multivari-
ate relationships between different predictors and CH4 con-
centrations and fluxes across different scales, and pursuit of
these opportunities should be improved by the substantial in-
crease in data for both gases and potential predictor variables.

The disproportionate contribution of streams and rivers
to atmospheric inputs and the utility of CH4 as an indica-
tor of anthropogenic influences on drainage systems have
inspired several studies that focus on fluvial habitats that
are expected to have high concentrations and fluxes. Many
of these “methane-hunting” studies have demonstrated sig-
nificant increases in CH4 concentrations and/or fluxes asso-
ciated with phenomena such as point source inputs (Alsh-
boul et al., 2016), ditch and canal construction (Peacock et
al., 2021), oil and gas extraction (Woda et al., 2020), or pas-
sage through wetlands (Taillardat et al., 2022). Such signals
persist at the global scale (Fig. 15), highlighting widespread
human enhancement of CH4 emissions from lotic ecosys-
tems. Not all targeted sites are CH4-rich, however. Low con-
centrations in GT likely reflect the effects of cold temper-
atures and/or low organic carbon availability (Crawford et
al., 2015; Burns et al., 2018), while low values at FP sites
may be attributable to their more characteristically lentic
conditions, which favor higher rates of CH4 oxidation in the
water column. Indeed, oxidation has been shown to represent
a significant CH4 sink in floodplain lakes associated with the
Amazon River (Barbosa et al., 2018), and most of the FP sites
in GRiMeDB are part of the Amazon system.

As noted in Sect. 3.4, the availability of supporting in-
formation is inconsistent, as, for example, only ∼ 25 % of
data sources provided data on channel order or basin size.
However, open-access regional and global geospatial data
sets that provide information about site characteristics (e.g.,
Linke et al., 2019; Yang et al., 2020) have increased rapidly
in the past decade, to the benefit of analyses seeking to
link landscape attributes to CH4 distribution among sites.
Recent upscaling effort analyses (Rosentreter et al., 2021;
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Liu et al., 2022; Rocher-Ros et al., 2023) have, for exam-
ple, capitalized on improved estimates of the surface area of
world streams and rivers (Allen and Pavelsky, 2018; Yang
et al., 2020), while the diverse data sets in HydroSHEDS
(Linke et al., 2019) allowed us to evaluate the global rep-
resentativeness of GRiMeDB sites. As new global-scale data
sets become available and become more spatially resolved,
we anticipate that their pairing with GRiMeDB data will re-
sult in significant improvements in the strength and certainty
of data-assimilation models, regional- to global-scale anal-
yses of CH4 distribution and drivers, and quantification of
fluvial emissions into the atmosphere.

5 Code and data availability

GRiMeDB and its associated metadata are available from the
Environmental Data Initiative: https://doi.org/10.6073/pasta/
f48cdb77282598052349e969920356ef (Stanley et al., 2023).

6 Conclusion

The data gathered in GRiMeDB highlight many new oppor-
tunities, both through analysis of CH4 and supporting data in
the database and by revealing gaps that currently exist across
fluvial CH4 studies. The most conspicuous data limitations
include deficits in measurements of non-diffusive flux path-
ways and underrepresentation of sites from arid, tropical, and
arctic biomes. Challenges associated with quantifying ebul-
lition discussed earlier also emphasize the need for more
intercomparisons among flux methodologies. Regardless of
pathway, flux is a difficult process to quantify and can be
highly sensitive to methods or gas exchange model choices,
yet there are few comparisons (such as Raymond et al., 2012;
Lorke et al., 2015) available to inform these decisions. Fi-
nally, we highlight that the expansion of GHG data over the
past decade has proceeded largely across spatial rather than
temporal dimensions. While this expansion has vastly im-
proved the geographic representativeness of the data, long-
term data sets are rare despite their power for generating
ecological understanding and informing policy/management
in the face of environmental change (Hughes et al., 2017).
GHGs are rarely included as routine components of water
quality monitoring programs. Thus, we emphasize the com-
pelling need to establish such sampling efforts and perpetuate
those few that do exist.

Given the rapid growth in both research interest and data
in fluvial GHG dynamics, we imagine future updates and
expansion of GRiMeDB, and we welcome data sets and
associated research products (e.g., theses, journal publica-
tions, reports). To facilitate the data acquisition and updat-
ing process, a downloadable spreadsheet template and de-
tailed information about its use and submission are avail-
able at https://stanley.limnology.wisc.edu/GRiMe (last ac-
cess: 12 June 2023). Regardless of database updates, we rec-

ommend that the minimum basic information to collect along
with GHG data that would be most valuable for later analyses
include well-resolved site location data (latitude and longi-
tude), information about site size (Strahler order and/or basin
size at the sampling site), disturbance or modification rel-
evant to GHGs (e.g., categories listed in Table 1), specific
sample dates and times, discharge, dissolved oxygen, and
temperature at the time of sample collection, and clear infor-
mation about units and method(s) used to measure gas flux.
Finally, we strongly encourage data package (sensu Gries et
al., 2022) publication in a trustworthy public data repository
such as the Environmental Data Initiative that requires meta-
data to meet findability, accessibility, interoperability, and
reusability (FAIR) data principles and increase data findabil-
ity, accessibility, and reuse (Wilkinson et al., 2016).

Despite highlighting areas of data limitation, it is impor-
tant to underscore the opportunities that the growth in GHG
data availability – especially of CH4 data – now provides.
Assembly of GRiMeDB was motivated by the goal of hav-
ing a centralized, standardized resource to facilitate further
studies of CH4 pattern and process in flowing water systems.
Our strategy in developing this database was to maximize op-
portunities for identifying patterns and relationships involv-
ing this gas in future analyses. Past difficulties with such ef-
forts may well be a product of the common practice of av-
eraging values over time or among sites and/or of includ-
ing non-fluvial sites in analyses. Thus, we carefully docu-
mented the data and resolved observations to individual sites
and dates whenever possible to match the pronounced spa-
tial and temporal variance of this gas. Similarly, while we
included a range of habitat types in GRiMeDB, unconven-
tional or targeted sites are easily identifiable. Further, we
carefully examined sites to ensure that they were not situ-
ated within reservoirs/impoundments or estuaries where dis-
tinct processes such as methane oxidation, tidal cycles, or
elevated sulfate reduction may obscure or overtake relation-
ships present in inland-flowing water systems. Thus, we are
optimistic that analysis of GriMeDB data by themselves or
in concert with other complementary data sets will provide
new and unprecedented opportunities to examine relation-
ships between CH4 and environmental drivers or correlates
and provide broad contextual information for site-based stud-
ies of fluvial carbon and GHG dynamics.
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Appendix A: GRiMeDB tables and variables

Table A1. Column titles and description of their content for the GRiMeDB source table.

Column title Description

Title Title of data source

Author Lead author last name

Source Identity of the outlet for the data (e.g., journal, data repository, or agency that presented the data)
For titles with published papers paired with published data sets, the journal is listed in this column.

Pub_year Year of publication, data release, or acquisition of an unpublished data set

Source_ID Unique data source identifier

Additional_data “Yes” in this column indicates that additional data were acquired directly from the author for any field.
Additions are described in the “Comments” field.

Comments Additional information or clarification about the data source

Paper_DOI DOI or hyperlink for journal article or other publication based on the CH4 data

Data_DOI_primary DOI or hyperlink for CH4 data posted in a data repository

Data_DOI_supporting DOI or hyperlink for separate data sets providing supporting data

Table A2. Column titles and content description for the GRiMeDB site table.

Column title Definition

Source_ID Unique data source identifier from the source table

Site_ID Unique site identifier

Site_Name Unique site name

Stream_Name Stream or river name; taken or modified from the data source or generated de novo when a name
was not specified in the data source

Aggregated Yes or no; “yes” if CH4 data entered are averages from > 1 site

N_sites_aggregated Number of sites that were averaged for aggregated sites

Basin_Region Name of the larger drainage basin or region that contains the site. This information is included to facilitate
site grouping during data analysis.

Latitude Decimal degrees, WGS84 ensemble: EPSG:4326 coordinate system

Longitude Decimal degrees, WGS84 ensemble: EPSG:4326 coordinate system

Elevation_m Reported meters above sea level

Slope_m_per_m Reported channel slope (mm−1)

Strahler_order Reported Strahler stream order

Basin_size_km2 Reported basin size in square kilometers

Channel_type Codes denoting distinct site or channel attributes or presence of specified conditions. See Table 1 for
categories and their definitions.

Latitude_snapped Latitude in decimal degrees for the site location after snapping to the closest channel for elevation determination

Longitude_snapped Longitude in decimal degrees for the site location after snapping to the closest channel for elevation determination

Elevation_estimated_m Elevation (meters above sea level) calculated from the DEM. See Sect. 2.2 for details.

Comments Additional information or clarification about the site source
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Table A3. Column titles and definitions for the GRiMeDB concentration table.

Column title Definition

Source_ID Unique paper identifier from the source table

Site_ID Unique site identifier from the site table

Site_Name Unique site name from the site table

Conc_Name Unique name for the sampling event at the site; same as Flux_Name in the flux table if both
concentration and flux data for the same site–date combination are available

Date_start First sampling date

Date_end Last sampling date; this is the same date as Date_start if data are not aggregated over time

Aggregated_Space Yes or no; “yes” if CH4 data entered are averages from > 1 site

Aggregated_Time Yes or no; “yes” if CH4 data entered are averages from > 1 date

FluxYesNo Yes or no; “yes” if there is a corresponding flux measurement associated with this site–date combination

SampleCount Number of samples or observations corresponding to the mean or median concentration

CH4min Minimum measured CH4 concentration (µmolL−1) if data are aggregated spatially or temporally,
have multiple within-day measurements (e.g., a diel study), or are from a data-dense spatial study

CH4max Maximum measured CH4 concentration (µmolL−1) if data are aggregated spatially or temporally,
have multiple within-day measurements (e.g., a diel study), or are from a data-dense spatial study

CH4mean Mean or sole reported CH4 concentration (µmolL−1) for the sampling event

CH4_SD Standard deviation of the mean CH4 concentration

CH4median Median CH4 concentration (µmolL−1)

CO2min Minimum measured CO2 concentration (µmolL−1) if data are aggregated spatially or temporally,
have multiple within-day measurements (e.g., a diel study), or are from a data-dense spatial study

CO2max Maximum measured CO2 concentration (µmolL−1) if data are aggregated spatially or temporally,
have multiple within-day measurements (e.g., a diel study), or are from a data-dense spatial study

CO2mean Mean or sole reported CO2 concentration (µmolL−1) for the sampling event

CO2_SD Standard deviation of the mean CO2 concentration

CO2median Median CO2 concentration (µmolL−1)

N2Omin Minimum measured N2O concentration (µmolL−1) if data are aggregated spatially or temporally,
have multiple within-day measurements (e.g., a diel study), or are from a data-dense spatial study

N2Omax Maximum measured N2O concentration (µmolL−1) if data are aggregated spatially or temporally,
have multiple within-day measurements (e.g., a diel study), or are from a data-dense spatial study

N2Omean Mean or sole reported N2O concentration (µmolL−1) for the concentration for the sampling event

N2O_SD Standard deviation of the mean N2O concentration

N2Omedian Median N2O concentration (µmolL−1)

WaterTemp_degC Water temperature (◦C) measured concurrently with CH4

WaterTemp_degC_estimated Estimated water temperature (◦C). This field was populated only for cases in which temperature
was needed for gas unit conversion. Most estimates were based on temperatures from adjacent
sites, averaging temperatures from prior and proceeding sample dates, or an adjacent
day of the year but from another year.

Cond_uScm Specific conductance (µScm−1)
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Table A3. Continued.

Column title Definition

pH pH

DO_mgL Dissolved oxygen (mgL−1)

DO_percentsat Percent saturation of dissolved oxygen

Q Discharge (m3 s−1) measured at the time of sample collection

NO3 NO3 or NO2+NO3 concentration (µmolL−1) measured concurrently with CH4

NH4 NH4 concentration (µmol L−1) measured concurrently with CH4

TN Total nitrogen (TN) or total dissolved nitrogen (TDN) concentration (µmolL−1) measured concurrently with CH4

SRP Soluble reactive phosphorus (SRP) or PO4 concentration (µmolL−1) measured concurrently with CH4

TP Total phosphorus (TP) or total dissolved phosphorus (TDP) concentration (µmolL−1) measured concurrently with CH4

DOC Dissolved organic carbon (DOC) or total organic carbon (TOC) concentration (µmolL−1) measured concurrently with CH4

Comments Any additional relevant information regarding data

new_CH4_unit Current common units for all CH4 concentrations

new_CO2_unit Current common units for all CO2 concentrations

new_N2O_unit Current common units for all N2O concentrations

new_NO3_unit Current common units for all NO3 or NO2+NO3 concentrations

new_NH4_unit Current common units for all NH4 concentrations

new_TN_unit Current common units for all TN or TDN concentrations

new_SRP_unit Current common units for all SRP or PO4 concentrations

new_TP_unit Current common units for all TP or TDP concentrations

new_DOC_unit Current common units for all DOC or TOC concentrations

new_Q_unit Current common units for all discharge measurements

orig_CH4_unit Original units for CH4 concentration

orig_CO2_unit Original units for CO2 concentration

orig_N2O_unit Original units for N2O concentration

orig_NO3_unit Original units for NO3 or NO2+NO3 concentration

orig_NH4_unit Original units for NH4 concentration

orig_TN_unit Original units for TN concentration

orig_SRP_unit Original units for SRP or PO4 concentration

orig_TP_unit Original units for TP concentration

orig_DOC_unit Original units for DOC concentration

orig_Q_unit Original units of discharge
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Table A4. Column titles and definitions for the GRiMeDB flux table.

Column title Definition

Source_ID Unique paper identifier from the source table

Site_ID Unique site identifier from the site table

Site_Name Unique site name from the site table

Flux_Name Unique name for the sampling event at the site; same as Conc_Name in the concentration table if both concentration and flux data
for the same site–date combination are available

Date_start First sampling date

Date_end Last sampling date; this is the same date as Date_start if data are not aggregated over time.

Aggregated_Space Yes or no; “yes” if CH4 data entered are averages from > 1 site

Aggregated_Time Yes or no; “yes” if CH4 data entered are averages from > 1 date

Diffusive_CH4_Flux_Min Minimum measured CH4 diffusive flux (mmolm−2 d−1) if data are aggregated or are from diel or data-dense spatial studies

Diffusive_CH4_Flux_Max Maximum measured CH4 diffusive flux (mmolm−2 d−1) if data are aggregated or are from diel or data-dense spatial studies

Diffusive_CH4_Flux_Mean Mean or sole reported CH4 diffusive flux (mmolm−2 d−1) for the sampling event

Diffusive_CH4_Flux_SD Standard deviation of the mean CH4 diffusive flux

Diffusive_CH4_Flux_Median Median CH4 diffusive flux (mmol m−2 d−1)

SampleCount_Diffusive Number of samples or observations corresponding to the mean or median diffusive CH4 flux

Diff_Method Methodological category used to measure diffusive gas flux. Categories (with brief explanations in italics) are the following.
– chamber (unspecified) – unspecified response
use of an unspecified type of chamber (suspended, tethered, or free-floating) and pattern of change gas concentration
over time during flux measurements also not specified
– chamber (unspecified) – linear response
unspecified type of chamber with a linear increase in chamber gas concentration over time or use of a linear model to calculate flux
– suspended/tethered chamber – unspecified response
chamber restrained to maintain its position and not float downstream during flux measurement
– suspended/tethered chamber – linear response
– floating chamber – unspecified response
chamber unrestrained and able to float downstream during flux measurement
– floating chamber – linear response
– conc+k
diffusive flux calculated using the equation flux= k(Cw −Ceq ),
where k = gas exchange coefficient, Cw = CH4 concentration measured in water, and Ceq =CH4 concentration
in water in equilibrium with the atmosphere
– other
methods other than those described above

Eb_CH4_Flux_Min Minimum measured CH4 ebullitive flux (mmolm−2 d−1) if data are aggregated or are from diel or data-dense spatial studies

Eb_CH4_Flux_Max Maximum measured CH4 ebullitive flux (mmolm−2 d−1) if data are aggregated or are from diel or data-dense spatial studies

Eb_CH4_Flux_Mean Mean or sole reported CH4 ebullitive flux (mmolm−2 d−1) for the sampling event

Eb_CH4_Flux_SD Standard deviation of the mean CH4 ebullitive flux

Eb_CH4_Flux_Median Median CH4 ebullition flux (mmol m−2 d−1)

SampleCount_Eb Number of samples or observations corresponding to the mean or median ebullitive CH4 flux

Eb_Method Methodological category used to measure ebullitive gas flux. Categories (with brief explanations in italics) are the following.
– echosounder+ bubble analysis
gas bubble volume determined using an echosounder and combined with CH4 content of recently collected bubbles
– departure from linear increase during measurement
nonlinear change in gas concentrations during chamber-based flux measurements taken as evidence of ebullition;
various approaches used to quantify ebullition from these departures
– other
methods other than those described above

Total_CH4_Flux_Min Minimum measured total CH4 flux (mmolm−2 d−1)

Total_CH4_Flux_Max Maximum measured total CH4 flux (mmolm−2 d−1)

Total_CH4_Flux_Mean Mean or sole reported total CH4 flux for the sampling event (mmolm−2 d−1)

Total_CH4_Flux_SD Standard deviation of the mean total CH4 flux

Total_CH4_Flux_Median Median measured total CH4 flux (mmolm−2 d−1)
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Table A4. Continued.

Column title Definition

Total_Method Methodological category used to measure total CH4 flux. Categories (with brief explanations in italics) are the following.
– conc+k and ebullition
total flux calculated as the sum of separate measurements of diffusion determined by the conc+ k method plus
ebullition determined from the bubble trap or echosounder approach combined with bubble CH4 analysis
– floating chamber
free-floating chamber assumed to capture diffusive flux and ebullitive flux (if present)
– suspended/tethered chamber
suspended or tethered chamber assumed to capture diffusive flux and ebullitive flux (if present)
– chamber and ebullition
total flux calculated as the sum of separate measurements of diffusion determined using a floating or
suspended/tethered chamber plus ebullition determined from the bubble trap or echosounder approach
combined with bubble CH4 analysis
– mass balance
total flux represents the difference between all measured inputs to a reach (e.g., dissolved CH4 from upstream flow,
groundwater discharge, and methanogenesis) minus all outputs other than efflux to the atmosphere
(e.g., downstream export, methane oxidation)
– other
methods other than those described above

CO2_Flux_Min Minimum measured CO2 flux (mmolm−2 d−1) if data are aggregated or are from diel or data-dense spatial studies

CO2_Flux_Max Maximum measured CO2 flux (mmolm−2 d−1) if data are aggregated or are from diel or data-dense spatial studies

CO2_Flux_Mean Mean or sole reported CO2 diffusive flux (mmolm−2 d−1) for the sampling event

CO2_Flux_SD Standard deviation of the mean CO2 flux

CO2_Flux_Median Median CO2 flux (mmolm−2 d−1)

N2O_Flux_Min Minimum measured N2O flux (mmolm−2 d−1) if data are aggregated or are from diel or data-dense spatial studies

N2O_Flux_Max Maximum measured N2O flux (mmolm−2 d−1) if data are aggregated or are from diel or data-dense spatial studies

N2O_Flux_Mean Mean or sole reported N2O diffusive flux (mmolm−2 d−1) for the sampling event

N2O_Flux_Stddev Standard deviation of the mean N2O flux

N2O_Flux_Median Median N2O flux (mmolm−2 d−1)

k_Method Methodological category used for estimating the gas exchange coefficient, k; categories (with brief explanations in italics)
are the following.
– physical model
k calculated using equations based on physical variables such as channel slope or water velocity
– chamber+ conc
k determined by chamber-based measurements of flux, dissolved gas concentration, and re-arrangement of the flux equation
flux= k(Cw −Ceq ) to solve for k. Typically, these measurements are made for CO2, and then kCO2 is converted to kCH4 .
– tracer addition
paired conservative and gas tracer additions used to calculate k from concentration declines along a stream reach
– assigned k value
use of k values from other dates or sites in the same study or k values considered to be characteristic of the site
– other
methods other than those described above
– unknown
method to determine k is not described

k_ref k-method citation reported in the data source

Comments Any additional relevant information regarding data entered in this row

new_Diffusive_Flux_unit Current common units for all diffusive CH4 flux data

new_Eb_CH4_Flux_unit Current common units for all ebullitive CH4 flux data

new_Total_Flux_unit Current common units for all total CH4 flux data

new_CO2_Flux_unit Current common units for all CO2 flux data

new_N2O_Flux_unit Current common units for all N2O flux data

orig_Diffusive_Flux_unit Original units for diffusive CH4 flux

orig_Eb_CH4_Flux_unit Original units for ebullitive CH4 flux used

orig_Total_Flux_unit Original units for total CH4 flux

orig_CO2_Flux_unit Original units for CO2 flux

orig_N2O_Flux_unit Original units for N2O flux
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